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ABSTRACT

In this paper, we explore an efficient variant of convolutional sparse coding with
unit norm code vectors where reconstruction quality is evaluated using an inner
product (cosine distance). To use these codes for discriminative classification, we
describe a model we term Energy-Based Spherical Sparse Coding (EB-SSC) in
which the hypothesized class label introduces a learned linear bias into the coding
step. We evaluate and visualize performance of stacking this encoder to make a
deep layered model for image classification.

1 INTRODUCTION

Sparse coding has been widely studied as a representation for images, audio and other vectorial data.
This has been a highly successful method that has found its way into many applications, from signal
compression and denoising (Donoho, 2006; Elad & Aharon, 2006) to image classification (Wright
et al., 2009), to modeling neuronal receptive fields in visual cortex (Olshausen & Field, 1997). Since
its introduction, subsequent works have brought sparse coding into the supervised learning setting
by introducing classification loss terms to the original formulation to encourage features that are not
only able to reconstruct the original signal but are also discriminative (Jiang et al., 2011; Yang et al.,
2010; Zeiler et al., 2010; Ji et al., 2011; Zhou et al., 2012; Zhang et al., 2013).

While supervised sparse coding methods have been shown to find more discriminative features lead-
ing to improved classification performance over their unsupervised counterparts, they have received
much less attention in recent years and have been eclipsed by simpler feed-forward architectures.

This is in part because sparse coding is computationally expensive. Convex formulations of sparse
coding typically consist of a minimization problem over an objective that includes a least-squares
(LSQ) reconstruction error term plus a sparsity inducing regularizer.

Because there is no closed-form solution to this formulation, various iterative optimization tech-
niques are generally used to find a solution (Zeiler et al., 2010; Bristow et al., 2013; Yang et al.,
2013; Heide et al., 2015). In applications where an approximate solution suffices, there is work
that learns non-linear predictors to estimate sparse codes rather than solve the objective more di-
rectly (Gregor & LeCun, 2010). The computational overhead for iterative schemes becomes quite
significant when training discriminative models due to the demand of processing many training ex-
amples necessary for good performance, and so sparse coding has fallen out of favor by not being
able to keep up with simpler non-iterative coding methods.

In this paper we introduce an alternate formulation of sparse coding using unit length codes and
a reconstruction loss based on the cosine similarity. Optimal sparse codes in this model can be
computed in a non-iterative fashion and the coding objective lends itself naturally to embedding in
a discriminative, energy-based classifier which we term energy-based spherical sparse coding (EB-
SSC). This bi-directional coding method incorporates both top-down and bottom-up information
where the features representation depends on both a hypothesized class label and the input signal.
Like Cao et al. (2015), our motivation for bi-directional coding comes from the “Biased Competition
Theory”, which suggests that visual processing can be biased by other mental processes (e.g., top-
down influence) to prioritize certain features that are most relevant to current task. Fig. 1 illustrates
the flow of computation used by our SSC and EB-SSC building blocks compared to a standard
feed-forward layer.
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Our energy based approach for combining top-down and bottom-up information is closely tied to
the ideas of Larochelle & Bengio (2008); Ji et al. (2011); Zhang et al. (2013); Li & Guo (2014)—
although the model details are substantially different (e.g., Ji et al. (2011) and Zhang et al. (2013)
use sigmoid non-linearities while Li & Guo (2014) use separate representations for top-down and
bottom-up information). The energy function of Larochelle & Bengio (2008) is also similar but
includes an extra classification term and is trained as a restricted Boltzmann machine.
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Figure 1: Building blocks for coding networks explored in this paper. Our coding model uses
non-linearities that are closely related to the standard ReLU activation function. (a) Keeping both
positive and negative activations provides a baseline feed-forward model termed concatenated ReLU
(CReLU). (b) Our spherical sparse coding layer has a similar structure but with an extra bias and
normalization step. Our proposed energy-based model uses (c) energy-based spherical sparse coding
(EB-SSC) blocks that produces sparse activations which are not only positive and negative, but are
class-specific. These blocks can be stacked to build deeper architectures.

1.1 NOTATION

Matrices are denoted as uppercase bold (e.g., A), vectors are lowercase bold (e.g., a), and scalars
are lowercase (e.g., a). We denote the transpose operator with ᵀ, the element-wise multiplication
operator with�, the convolution operator with ∗, and the cross-correlation operator with ?. For vec-
tors where we dropped the subscript k (e.g., d and z), we refer to a super vector with K components
stacked together (e.g., z = [zᵀ1 , . . . , z

ᵀ
K ]ᵀ).

2 ENERGY-BASED SPHERICAL SPARSE CODING

Energy-based models capture dependencies between variables using an energy function that measure
the compatibility of the configuration of variables (LeCun et al., 2006). To measure the compatibility
between the top-down and bottom-up information, we define the energy function of EB-SSC to be
the sum of bottom-up coding term and a top-down classification term:

E(x, y, z) = Ecode(x, z) + Eclass(y, z). (1)
The bottom-up information (input signal x) and the top-down information (class label y) are tied
together by a latent feature map z.

2.1 BOTTOM-UP RECONSTRUCTION

To measure the compatibility between the input signal x and the latent feature maps z, we introduce
a novel variant of sparse coding that is amenable to efficient feed-forward optimization. While the
idea behind this variant can be applied to either patch-based or convolutional sparse coding, we
specifically use the convolutional variant that shares the burden of coding an image among nearby
overlapping dictionary elements. Using such a shift-invariant approach avoids the need to learn dic-
tionary elements which are simply translated copies of each other, freeing up resources to discover
more diverse and specific filters (see Kavukcuoglu et al. (2010)).

2



Under review as a conference paper at ICLR 2017

Convolutional sparse coding (CSC) attempts to find a set of dictionary elements {d1, . . . ,dK} and
corresponding sparse codes {z1, . . . , zK} so that the resulting reconstruction, r =

∑K
k=1 dk ∗ zk

accurately represents the input signal x. This is traditionally framed as a least-squares minimization
with a sparsity inducing prior on z:

arg min
z

‖x−
K∑
k=1

dk ∗ zk‖22 + β‖z‖1. (2)

Unlike standard feed-forward CNN models that convolve the input signal x with the filters, this
energy function corresponds to a generative model where the latent feature maps {z1, . . . , zK} are
convolved with the filters and compared to the input signal (Bristow et al., 2013; Heide et al., 2015;
Zeiler et al., 2010).

To motivate our novel variant of CSC, consider expanding the squared reconstruction error ‖x −
r‖22 = ‖x‖22 − 2xᵀr + ‖r‖22. If we constrain the reconstruction r to have unit norm, the recon-
struction error depends entirely on the inner product between x and r and is equivalent to the cosine
similarity (up to additive and multiplicative constants). This suggests the closely related unit-length
reconstruction problem:

arg max
z

xᵀ
( K∑
k=1

dk ∗ zk
)
− β‖z‖1 (3)

s.t.
∥∥ K∑
k=1

dk ∗ zk
∥∥

2
≤ 1

In Appendix A we show that, given an optimal unit length reconstruction r̄∗ with corresponding
codes z̄∗, the solution to the least squares reconstruction problem (Eq. 2) can be computed by a
simple scaling r∗ = (xᵀr̄∗ − β

2 ‖z̄
∗‖1)r̄∗.

The unit-length reconstruction problem is no easier than the original least-squares optimization due
to the constraint on the reconstruction which couples the codes for different filters. Instead consider
a simplified constraint on z which we refer to as spherical sparse coding (SSC):

arg max
‖z‖2≤1

Ecode(x, z) = arg max
‖z‖2≤1

xᵀ
( K∑
k=1

dk ∗ zk
)
− β‖z‖1. (4)

In 2.3 below, we show that the solution to this problem can be found very efficiently without requir-
ing iterative optimization.

This problem is a relaxation of convolutional sparse coding since it ignores non-orthogonal inter-
actions between the dictionary elements1. Alternately, assuming unit norm dictionary elements, the
code norm constraint can be used to upper-bound the reconstruction length. We have by the triangle
and Young’s inequality that:∥∥∑

k

dk ∗ zk
∥∥

2
≤
∑
k

‖dk ∗ zk‖2 ≤
∑
k

‖dk‖1‖zk‖1 ≤ D
∑
k

‖zk‖2 (5)

where the factor D is the dimension of zk and arises from switching from the 1-norm to the 2-norm.
Since D

∑
k ‖zk‖2 ≤ 1 is a tighter constraint we have

max
‖
∑

k dk∗zk‖2≤1
Ecode(x, z) ≥ max∑

k ‖zk‖2≤ 1
D

Ecode(x, z) (6)

However, this relaxation is very loose, primarily due to the triangle inequality. Except in special
cases (e.g., if the dictionary elements have disjoint spectra) the SSC codes will be quite different
from the standard least-squares reconstruction.

1We note that our formulation is also closely related to the dynamical model suggested by Rozell et al.
(2008), but without the dictionary-dependent lateral inhibition between feature maps. Lateral inhibition can
solve the unit-length reconstruction formulation of standard sparse coding but requires iterative optimization.
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2.2 TOP-DOWN CLASSIFICATION

To measure the compatibility between the class label y and the latent feature maps z, we use a set
of one-vs-all linear classifiers. To provide more flexibility, we generalize this by splitting the code
vector into positive and negative components:

zk = z+
k + z−k z+

k ≥ 0 z−k ≤ 0

and allow the linear classifier to operate on each component separately. We express the classifier
score for a hypothesized class label y by:

Eclass(y, z) =

K∑
k=1

w+ᵀ
y z+

k +

K∑
k=1

w−ᵀy z−k . (7)

The classifier thus is parameterized by a pair of weight vectors (w+
yk and w−yk) for each class label

y and k-th channel of the latent feature map.

This splitting, sometimes referred to as full-wave rectification, is useful since a dictionary element
and its negative do not necessarily have opposite visual semantics. This splitting also allows the
classifier the flexibility to assign distinct meanings or alternately be completely invariant to contrast
reversal depending on the problem domain. For example, Shang et al. (2016) found CNN models
with ReLU non-linearities which discard the negative activations tend to learn pairs of filters which
are related by negation. Keeping both positive and negative responses allowed them to halve the
number of dictionary elements.

We note that it is also straightforward to introduce spatial average pooling prior to classification by
introducing a fixed linear operator P used to pool the codes (e.g., w+ᵀ

y Pz+
k ). This is motivated by

a variety of hand-engineered feature extractors and sparse coding models, such as Ren & Ramanan
(2013), which use spatially pooled histograms of sparse codes for classification. This fixed pooling
can be viewed as a form of regularization on the linear classifier which enforces shared weights over
spatial blocks of the latent feature map. Splitting is also quite important to prevent information loss
when performing additive pooling since positive and negative components of zk can cancel each
other out.

2.3 CODING

Bottom-up reconstruction and top-down classification each provide half of the story, coupled by the
latent feature maps. For a given input x and hypothesized class y, we would like to find the optimal
activations z that maximize the joint energy function E(x, y, z). This requires solving the following
optimization:

arg max
‖z‖2≤1

xᵀ
( K∑
k=1

dk ∗ zk
)
− β‖z‖1 +

K∑
k=1

w+ᵀ
yk z

+
k +

K∑
k=1

w−ᵀyk z
−
k , (8)

where x ∈ RD is an image and y ∈ Y is a class hypothesis. zk ∈ RF is the k-th component
latent variable being inferred; z+

k and z−k are the positive and negative coefficients of zk, such that
zk = z+

k + z−k . The parameters dk ∈ RM , w+
yk ∈ RF , and w−yk ∈ RF are the dictionary filter,

positive coefficient classifier, and negative coefficient classifier for the k-th component respectively.
A key aspect of our formulation is that the optimal codes can be found very efficiently in closed-
form—in a feed-forward manner (see Appendix B for a detailed argument).

2.3.1 ASYMMETRIC SHRINKAGE

To describe the coding processes, let us first define a generalized version of the shrinkage function
commonly used in sparse coding. Our asymmetric shrinkage is parameterized by upper and lower
thresholds −β− ≤ β+

shrink(β+,β−)(v) =

 v − β+ if v − β+ > 0
0 otherwise

v + β− if v + β− < 0
(9)
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(a) −β− ≤ 0 ≤ β+ (b) 0 ≤ −β− ≤ β+ (c) −β− ≤ β+ ≤ 0 (d) β− ≤ 0 ≤ −β+

Figure 2: Comparing the behavior of asymmetric shrinkage for different settings of β+ and β−.
(a)-(c) satisfy the condition that −β− ≤ β+ while (d) does not.

Fig. 2 shows a visualization of this function which generalizes the standard shrinkage proximal
operator by allowing for the positive and negative thresholds. In particular, it corresponds to the
proximal operator for a version of the `1-norm that penalizes the positive and negative components
with different weights |v|asym = β+‖v+‖1 +β−‖v−‖1. The standard shrink operator corresponds
to shrink(β,−β)(v) while the rectified linear unit common in CNNs is given by a limiting case
shrink(0,−∞)(v). We note that −β− ≤ β+ is required for shrink(β+,β−) to be a proper function
(see Fig. 2).

2.3.2 FEED-FORWARD CODING

We now describe how codes can be computed in a simple feed-forward pass. Let

β+
yk = β −w+

yk, β−yk = β −w−yk (10)

be vectors of positive and negative biases whose entries are associated with a spatial location in the
feature map k for class y. The optimal code z can be computed in three sequential steps:

1. Cross-correlate the data with the filterbank dk ? x

2. Apply an asymmetric version of the standard shrinkage operator

z̃k = shrink(β+
yk,β

−
yk)(dk ? x) (11)

where, with abuse of notation, we allow the shrinkage function (Eq. 9) to apply entries
in the vectors of threshold parameter pairs β+

yk,β
−
yk to the corresponding elements of the

argument.

3. Project onto the feasible set of unit length codes

z∗ =
z̃

‖z̃‖2
. (12)

2.3.3 RELATIONSHIP TO CNNS:

We note that this formulation of coding has a close connection to single layer convolutional neural
network (CNN). A typical CNN layer consists of convolution with a filterbank followed by a non-
linear activation such as a rectified linear unit (ReLU). ReLUs can be viewed as another way of
inducing sparsity, but rather than coring the values around zero like the shrink function, ReLU
truncates negative values. On the other hand, the asymmetric shrink function can be viewed as the
sum of two ReLUs applied to appropriately biased inputs:

shrink(β+,β−)(x) = ReLU(x− β+)− ReLU(−(x+ β−)),

SSC coding can thus be seen as a CNN in which the ReLU activation has been replaced with shrink-
age followed by a global normalization.
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3 LEARNING

We formulate supervised learning using the softmax log-loss that maximizes the energy for the true
class label yi while minimizing energy of incorrect labels ȳ.

arg min
d,w+,w−,β≥0

α

2
(‖w+‖22 + ‖w−‖22 + ‖d‖22)

+
1

N

N∑
i=1

[− max
‖z‖2≤1

E(xi, yi, z) + log
∑
ȳ∈Y

max
‖z̄‖2≤1

eE(xi,ȳ,z̄)]

s.t. − (β −w−yk) ≤ (β −w+
yk) ∀y, k

, (13)

where α is the hyperparameter regularizing w+
y , w−y , and d. We constrain the relationship between

β and the entries of w+
y and w−y in order for the asymmetric shrinkage to be a proper function (see

Sec. 2.3.1 and Appendix B for details).

In classical sparse coding, it is typical to constrain the `2-norm of each dictionary filter to unit length.
Our spherical coding objective behaves similarly. For any optimal code z∗, there is a 1-dimensional
subspace of parameters for which z∗ is optimal given by scaling d inversely to w, β. For simplicity
of the implementation, we opt to regularize d to assure a unique solution. However, as Tygert et al.
(2015) point out, it may be advantageous from the perspective of optimization to explicitly constrain
the norm of the filter bank.

Note that unlike classical sparse coding, where β is a hyperparameter that is usually set using cross-
validation, we treat it as a parameter of the model that is learned to maximize performance.

3.1 OPTIMIZATION

In order to solve Eq. 13, we explicitly formulate our model as a directed-acyclic-graph (DAG) neural
network with shared weights, where the forward-pass computes the sparse code vectors and the
backward-pass updates the parameter weights. We optimize the objective using stochastic gradient
descent (SGD).

As mentioned in Sec. 2.3 shrinkage function is assymetric with parameters β+
yk or β−yk as defined

in Eq. 10. However, the inequality constraint on their relationship to keep the shrinkage function a
proper function is difficult to enforce when optimizing with SGD. Instead, we introduce a central
offset parameter and reduce the ordering constraint to pair of positivity constraints. Let

ŵ+
yk = β+

yk − bk ŵ−yk = β−yk + bk (14)

be the modified linear “classifiers” relative to the central offset bk. It is straightforward to see that
if β+

yk and β−yk that satisfy the constrain in Eq. 13, then adding the same value to both sides of
the inequality will not change that. However, taking bk to be a midpoint between them, then both
β+
yk − bk and β−yk + bk will be strictly non-negative.

Using this variable substitution, we rewrite the energy function (Eq. 1) as

E′(x, y, z) = xᵀ
( K∑
k=1

dk ∗ zk
)

+

K∑
k=1

bk1
ᵀzk −

K∑
k=1

ŵ+ᵀ
yk z

+
k +

K∑
k=1

ŵ−ᵀyk z
−
k . (15)

where b is constant offset for each code channel. The modified linear “classification” terms now
take on a dual role of inducing sparsity and measuring the compatibility between z and y.

This yields a modified learning objective that can easily be solved with existing implementations for
learning convolutional neural nets:

arg min
d,ŵ+,ŵ−,b

α

2
(‖ŵ+‖22 + ‖ŵ−‖22 + ‖d‖22)

+
1

N

N∑
i=1

[− max
‖z‖2≤1

E′(xi, yi, z) + log
∑
ȳ∈Y

max
‖z̄‖2≤1

eE
′(xi,ȳ,z̄)]

s.t. ŵ+
yk, ŵ

−
yk � 0 ∀y, k

, (16)
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where ŵ+ and ŵ− are the new sparsity inducing classifiers, and b are the arbitrary origin points. In
particular, adding the K origin points allows us to enforce the constraint by simply projecting ŵ+

and ŵ− onto the positive orthant during SGD.

3.1.1 STACKING BLOCKS

We also examine stacking multiple blocks of our energy function in order to build a hierarchical
representation. As mentioned in Sec. 3.1.1, the optimal codes can be computed in a simple feed-
forward pass—this applies to shallow versions of our model. When stacking multiple blocks of our
energy-based model, solving for the optimal codes cannot be done in a feed-forward pass since the
codes for different blocks are coupled (bilinearly) in the joint objective. Instead, we can proceed
in an iterative manner, performing block-coordinate descent by repeatedly passing up and down the
hierarchy updating the codes. In this section we investigate the trade-off between the number of
passes used to find the optimal codes for the stacked model and classification performance.

For this purpose, we train multiple instances of a 2-block version of our energy-based model that
differ in the number of iterations used when solving for the codes. For recurrent networks such as
this, inference is commonly implemented by “unrolling” the network, where the parts of the net-
work structure are repeated with parameters shared across these repeated parts to mimic an iterative
algorithm that stops at a fixed number of iterations rather than at some convergence criteria.
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Figure 3: Comparing the effects of unrolling a 2-block version of our energy-based model. (Best
viewed in color.)

In Fig. 3, we compare the performance between models that were unrolled zero to four times. We
see that there is a difference in performance based on how many sweeps of the variables are made.
In terms of the training objective, more unrolling produces models that have lower objective values
with convergence after only a few passes. In terms of testing error, however, we see that full code
inference is not necessarily better, as unrolling once or twice has lower errors than unrolling three
or four times. The biggest difference was between not unrolling and unrolling once, where both the
training objective and testing error goes down. The testing error decreases from 0.0131 to 0.0074.
While there is a clear benefit in terms of performance for unrolling at least once, there is also a
trade-off between performance and computational resource, especially for deeper models.

4 EXPERIMENTS

We evaluate the benefits of combining top-down and bottom-up information to produce class-
specific features on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset using a deep version of
our EB-SSC. All experiments were performed using MatConvNet (Vedaldi & Lenc, 2015) frame-
work with the ADAM optimizer (Kingma & Ba, 2014). The data was preprocessed and augmented
following the procedure in Goodfellow et al. (2013). Specifically, the data was made zero mean and
whitened, augmented with horizontal flips (with a 0.5 probability) and random cropping. No weight
decay was used, but we used a dropout rate of 0.3 before every convolution layer except for the first.
For these experiments we consider a single forward pass (no unrolling).
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Base Network
block kernel, stride, padding activation
conv1 3× 3× 3× 96, 1, 1 ReLU/CReLU
conv2 3× 3× 96/192× 96, 1, 1 ReLU/CReLU
pool1 3× 3, 2, 1 max
conv3 3× 3× 96/192× 192, 1, 1 ReLU/CReLU
conv4 3× 3× 192/384× 192, 1, 1 ReLU/CReLU
conv5 3× 3× 192/384× 192, 1, 1 ReLU/CReLU
pool2 3× 3, 2, 1 max
conv6 3× 3× 192/384× 192, 1, 1 ReLU/CReLU
conv7 1× 1× 192/384× 192, 1, 1 ReLU/CReLU

Table 1: Underlying block architecture common across all models we evaluated. SSC networks
add an extra normalization layer after the non-linearity. And EB-SSC networks insert class-specific
bias layers between the convolution layer and the non-linearity. Concatenated ReLU (CReLU) splits
positive and negative activations into two separate channels rather than discarding the negative com-
ponent as in the standard ReLU.

4.1 CLASSIFICATION

We compare our proposed EB-SSC model to that of Springenberg et al. (2015), which uses rectified
linear units (ReLU) as its non-linearity. This model can be viewed as a basic feed-forward version
of our proposed model which we take as a baseline. We also consider variants of the baseline model
that utilize a subset of architectural features of our proposed model (e.g., concatenated rectified
linear units (CReLU) and spherical normalization (SN)) to understand how subtle design changes of
the network architecture affects performance.

We describe the model architecture in terms of the feature extractor and classifier. Table 1 shows the
overall network architecture of feature extractors, which consist of seven convolution blocks and two
pooling layers. We test two possible classifiers: a simple linear classifier (LC) and our energy-based
classifier (EBC), and use softmax-loss for all models. For linear classifiers, a numerical subscript
indicates which of the seven conv blocks of the feature extractor is used for classification (e.g., LC7

indicates the activations out of the last conv block is fed into the linear classifier). For energy-based
classifiers, a numerical subscript indicates which conv blocks of the feature extractor are replace
with a energy-based classifier (e.g., EBC6−7 indicates the activations out of conv5 is fed into the
energy-based classifier and the energy-based classifier has a similar architecture to the conv blocks
it replaces). The notation differ because for energy-based classifiers, the optimal activations are a
function of the hypothesized class label, whereas for linear classifiers, they are not.

Model Train Err. (%) Test Err. (%) # params
ReLU+LC7 1.20 11.40 1.3M
CReLU+LC7 2.09 10.17 2.6M
CReLU(SN)+LC7 0.99 9.74 2.6M
SSC+LC7 0.99 9.77 2.6M
SSC+EBC6−7 0.21 9.23 3.2M

Table 2: Comparison of the baseline ReLU+LC7 model, its derivative models, and our proposed
model on CIFAR-10.

The results shown in Table 2 compare our proposed model to the baselines ReLU+LC7 (Springen-
berg et al., 2015) and CReLU+LC7 (Shang et al., 2016), and to intermediate variants. The base-
line models all perform very similarly with some small reductions in error rates over the baseline
CReLU+LC7. However, CReLU+LC7 reduces the error rate over ReLU+LC7 by more than one
percent (from 11.40% to 10.17%), which confirms the claims by Shang et al. (2016) and demon-
strates the benefits of splitting positive and negative activations. Likewise, we see further decrease
in the error rate (to 9.74%) from using spherical normalization. Though normalizing the activations
doesn’t add any capacity to the model, this improved performance is likely because scale-invariant
activations makes training easier. On the other hand, further sparsifying the activations yielded no
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benefit. We tested values β = {0.001, 0.01} and found 0.001 to perform better. Replacing the linear
classifier with our energy-based classifier further decreases the error rate by another half percent (to
9.23%).

4.2 DECODING CLASS-SPECIFIC CODES

A unique aspect of our model is that it is generative in the sense that each layer is explicitly trying to
encode the activation pattern in the prior layer. Similar to the work on deconvolutional networks built
on least-squares sparse coding (Zeiler et al., 2010), we can synthesize input images from activations
in our spherical coding network by performing repeated deconvolutions (transposed convolutions)
back through the network. Since our model is energy based, we can further examine how the top-
down information of a hypothesized class effects the intermediate activations.

Figure 4: The reconstruction of an airplane image from different levels of the network (rows) across
different hypothesized class labels (columns). The first column is pure reconstruction, i.e., unbiased
by a hypothesized class label, the remaining columns show reconstructions of the learned class bias
at each layer for one of ten possible CIFAR-10 class labels. (Best viewed in color.)

The first column in Fig. 4 visualizes reconstructions of a given input image based on activations
from different layers of the model by convolution transpose. In this case we put in zeros for class
biases (i.e., no top-down) and are able to recover high fidelity reconstructions of the input. In the
remaining columns, we use the same deconvolution pass to construct input space representations of
the learned classifier biases. At low levels of the feature hierarchy, these biases are spatially smooth
since the receptive fields are small and there is little spatial invariance capture in the activations. At
higher levels these class-conditional bias fields become more tightly localized.

Finally, in Fig. 5 we shows decodings from the conv2 and conv5 layer of the EB-SSC model for a
given input under different class hypotheses. Here we subtract out the contribution of the top-down
bias term in order to isolate the effect of the class conditioning on the encoding of input features.
As visible in the figure, the modulation of the activations focused around particular regions of the
image and the differences across class hypotheses becomes more pronounced at higher layers of the
network.

5 CONCLUSION

We presented an energy-based sparse coding method that efficiently combines cosine similarity,
convolutional sparse coding, and linear classification. Our model shows a clear mathematical con-
nection between the activation functions used in CNNs to introduce sparsity and our cosine similar-
ity convolutional sparse coding formulation. Our proposed model outperforms the baseline model
and we show which attributes of our model contributes most to the increase in performance. We
also demonstrate that our proposed model provides an interesting framework to probe the effects of
class-specific coding.

REFERENCES

Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional sparse coding. In Computer
Vision and Pattern Recognition (CVPR), 2013.

9



Under review as a conference paper at ICLR 2017

(a) conv2 (b) conv5

Figure 5: Visualizing the reconstruction of different input images (rows) for each of 10 different
class hypotheses (cols) from the 2nd and 5th block activations for a model trained on MNIST digit
classification.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang, Yongzhen Huang, Liang
Wang, Chang Huang, Wei Xu, et al. Look and think twice: Capturing top-down visual attention
with feedback convolutional neural networks. In International Conference on Computer Vision
(ICCV), 2015.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 2006.

Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image processing, 2006.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C Courville, and Yoshua Bengio. Max-
out networks. In International conference on Machine learning (ICML), 2013.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In International
Conference on Machine Learning (ICML), 2010.

Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast and flexible convolutional sparse
coding. In Computer Vision and Pattern Recognition (CVPR), 2015.

Zhengping Ji, Wentao Huang, G. Kenyon, and L.M.A. Bettencourt. Hierarchical discriminative
sparse coding via bidirectional connections. In International Joint Converence on Neural Net-
works (IJCNN), 2011.

Zhuolin Jiang, Zhe Lin, and Larry S Davis. Learning a discriminative dictionary for sparse coding
via label consistent K-SVD. In Computer Vision and Pattern Recognition (CVPR), 2011.

Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël Mathieu, and Yann L
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APPENDIX A

Here we show that spherical sparse coding (SSC) with a norm constraint on the reconstruction is
equivalent to standard convolutional sparse coding (CSC). Expanding the least squares reconstruc-
tion error and dropping the constant term ‖x‖2 gives the CSC problem:

max
z

2xᵀ
( K∑
k=1

dk ∗ zk
)
− ‖

K∑
k=1

dk ∗ zk‖22 − β
K∑
k=1

‖zk‖1.

Let ε = ‖
∑K
k=1 dk ∗ zk‖2 be the norm of the reconstruction for some code z and let u be the

reconstruction scaled ε to have unit norm so that:

u =

∑K
k=1 dk ∗ zk

‖
∑K
k=1 dk ∗ zk‖2

=

K∑
k=1

dk ∗ z̄k with z̄ =
1

ε
z

We rewrite the least-squares objective in terms of these new variables:

max
z̄,ε>0

g(z̄, ε) = max
z̄,ε>0

2xᵀ
(
εu
)
− ‖εu‖22 − β‖εz̄‖1

= max
z̄,ε>0

2ε
(
xᵀu− β

2
‖z̄‖1

)
− ε2

Taking the derivative of g w.r.t. ε yields the optimal scaling ε∗ as a function of z̄:

ε(z̄)∗ = xᵀu− β

2
‖z̄‖1.

Plugging ε(z̄)∗ back into g yields:

max
z̄,ε>0

g(z̄, ε) = max
z̄,‖u‖2=1

(
xᵀu− β

2
‖z̄‖1

)2
.

Discarding solutions with ε < 0 can be achieved by simply dropping the square which results in the
final constrained problem:

arg max
z̄

xᵀ
( K∑
k=1

dk ∗ z̄k
)
− β

2

K∑
k=1

‖z̄k‖1

s.t. ‖
K∑
k=1

dk ∗ z̄k‖2 ≤ 1.

APPENDIX B

We show in this section that coding in the EB-SSC model can be solved efficiently by a combination
of convolution, shrinkage and projection, steps which can be implemented with standard libraries
on a GPU. For convenience, we first rewrite the objective in terms of cross-correlation rather than
convolution (i.e., , xᵀ(dk ∗ zk) = (dk ? x)ᵀzk). For ease of understanding, we first consider the
coding problem when there is no classification term.

z∗ = arg max
‖z‖22≤1

vᵀz− β‖z‖1,

where v = [(d1 ? x)ᵀ, . . . , (dK ? x)ᵀ]ᵀ. Pulling the constraint into the objective, we get its La-
grangian function:

L(z, λ) = vᵀz− β‖z‖1 + λ
(
1− ‖z‖22

)
.

From the partial subderivative of the Lagrangian w.r.t. zi we derive the optimal solution as a function
of λ; and from that find the conditions in which the solutions hold, giving us:

zi(λ)∗ =
1

2λ
·

{
vi − β vi > β

0 otherwise
vi + β vi < β

. (17)
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This can also be compactly written as:

z(λ)∗ =
1

2λ
z̃, (18)

z̃ = s2 � v − βs

where s = sign(z∗) ∈ {−1, 0, 1}|z| and s2 = s � s ∈ {0, 1}|z|. The sign vector of z∗ can
be determined without knowing λ, as λ is a Lagrangian multiplier for an inequality it must be non-
negative and therefore does not change the sign of the optimal solution. Lastly, we define the squared
`2-norm of z̃, a result that will be used later:

‖z̃‖22 = z̃ᵀ(s2 � v)− βz̃ᵀs
= z̃ᵀv − β‖z̃‖1. (19)

Substituting z(λ)∗ back into the Lagrangian we get:

L(z(λ)∗, λ) =
1

2λ
vᵀz̃− β

2λ
‖z̃‖1 + λ

(
1− 1

4λ2
‖z̃‖22

)
,

and the derivative w.r.t. λ is:

∂L(z(λ)∗

∂λ
= − 1

2λ2
vᵀz̃ +

β

2λ2
‖z̃‖1 + 1 +

1

4λ2
‖z̃‖22.

Setting the derivative equal to zero and using the result from Eq. 19, we can find the optimal solution
to λ:

λ2 =
1

2
z̃ᵀv − β

2
‖z̃‖1 −

1

4
‖z̃‖22 =

1

2
‖z̃‖22 −

1

4
‖z̃‖22

=⇒ λ∗ =
1

2
‖z̃‖2.

Finally, plugging λ∗ into Eq. 18 we find the optimal solution

z∗ =
z̃

‖z̃‖2
. (20)
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