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ABSTRACT

Recurrent neural networks (RNNs) have shown excellent performance in process-
ing sequence data. However, they are both complex and memory intensive due
to their recursive nature. These limitations make RNNs difficult to embed on
mobile devices requiring real-time processes with limited hardware resources. To
address the above issues, we introduce a method that can learn binary and ternary
weights during the training phase to facilitate hardware implementations of RNNs.
As a result, using this approach replaces all multiply-accumulate operations by
simple accumulations, bringing significant benefits to custom hardware in terms
of silicon area and power consumption. On the software side, we evaluate the
performance (in terms of accuracy) of our method using long short-term memories
(LSTMs) and gated recurrent units (GRUs) on various sequential models including
sequence classification and language modeling. We demonstrate that our method
achieves competitive results on the aforementioned tasks while using binary/ternary
weights during the runtime. On the hardware side, we present custom hardware
for accelerating the recurrent computations of LSTMs with binary/ternary weights.
Ultimately, we show that LSTMs with binary/ternary weights can achieve up to
12× memory saving and 10× inference speedup compared to the full-precision
hardware implementation design.

1 INTRODUCTION

Convolutional neural networks (CNNs) have surpassed human-level accuracy in various complex tasks
by obtaining a hierarchical representation with increasing levels of abstraction (Bengio (2009); Lecun
et al. (2015)). As a result, they have been adopted in many applications for learning hierarchical
representation of spatial data. CNNs are constructed by stacking multiple convolutional layers
often followed by fully-connected layers (Lecun et al. (1998)). While the vast majority of network
parameters (i.e. weights) are usually found in fully-connected layers, the computational complexity
of CNNs is dominated by the multiply-accumulate operations required by convolutional layers (Yang
et al. (2015)). Recurrent neural networks (RNNs), on the other hand, have shown remarkable success
in modeling temporal data (Mikolov et al. (2010); Graves (2013); Cho et al. (2014a); Sutskever et al.
(2014); Vinyals et al. (2014)). Similar to CNNs, RNNs are typically over-parameterized since they
build on high-dimensional input/output/state vectors and suffer from high computational complexity
due to their recursive nature (Xu et al. (2018); Han et al. (2015)). As a result, the aforementioned
limitations make the deployment of CNNs and RNNs difficult on mobile devices that require real-time
inference processes with limited hardware resources.

Several techniques have been introduced in literature to address the above issues. In (Sainath et al.
(2013); Jaderberg et al. (2014); Lebedev et al. (2014); Tai et al. (2015)), it was shown that the weight
matrix can be approximated using a lower rank matrix. In (Liu et al. (2015); Han et al. (2015); Wen
et al. (2016); Ardakani et al. (2016)), it was shown that a significant number of parameters in DNNs
are noncontributory and can be pruned without any performance degradation in the final accuracy
performance. Finally, quantization approaches were introduced in (Courbariaux et al. (2015); Lin et al.
(2015); Courbariaux & Bengio (2016); Kim & Smaragdis (2016); Hubara et al. (2016b); Rastegari
et al. (2016); Hubara et al. (2016a); Zhou et al. (2016); Li & Liu (2016); Zhu et al. (2016)) to
reduce the required bitwidth of weights/activations. In this way, power-hungry multiply-accumulate
operations are replaced by simple accumulations while also reducing the number of memory accesses
to the off-chip memory.
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Considering the improvement factor of each of the above approaches in terms of energy and power
reductions, quantization has proven to be the most beneficial for hardware implementations. However,
all of the aforementioned quantization approaches focused on optimizing CNNs or fully-connected
networks only. As a result, despite the remarkable success of RNNs in processing sequential data,
RNNs have received the least attention for hardware implementations, when compared to CNNs and
fully-connected networks. In fact, the recursive nature of RNNs makes their quantization difficult. In
(Hou et al. (2016)), for example, it was shown that the well-known BinaryConnect technique fails to
binarize the parameters of RNNs due to the exploding gradient problem (Courbariaux et al. (2015)).
As a result, a binarized RNN was introduced in (Hou et al. (2016)), with promising results on simple
tasks and datasets. However it does not generalize well on tasks requiring large inputs/outputs (Xu
et al. (2018)). In (Xu et al. (2018); Hubara et al. (2016b)), multi-bit quantized RNNs were introduced.
These works managed to match their accuracy performance with their full-precision counterparts
while using up to 4 bits for data representations.

In this paper, we propose a method that learns recurrent binary and ternary weights in RNNs during
the training phase and eliminates the need for full-precision multiplications during the inference
time. In this way, all weights are constrained to {+1,−1} or {+1, 0,−1} in binary or ternary
representations, respectively. Using the proposed approach, RNNs with binary and ternary weights
can achieve the performance accuracy of their full-precision counterparts. In summary, this paper
makes the following contributions:

• We introduce a method for learning recurrent binary and ternary weights during both forward
and backward propagation phases, reducing both the computation time and memory footprint
required to store the extracted weights during the inference.
• We perform a set of experiments on various sequential tasks, such as sequence classifi-

cation, language modeling, and reading comprehension. We then demonstrate that our
binary/ternary models can achieve near state-of-the-art results with greatly reduced compu-
tational complexity.1

• We present custom hardware to accelerate the recurrent computations of RNNs with binary
or ternary weights. The proposed dedicated accelerator can save up to 12× of memory
elements/bandwidth and speed up the recurrent computations by up to 10× when performing
the inference computations.

2 RELATED WORK

During the binarization process, each element of the full-precision weight matrix W ∈ RdI×dJ with
entries wi,j is binarized by wi,j = αi,jw

B
i,j , where αi,j ≥ 0, i ∈ {1, . . . , dI}, j ∈ {1, . . . , dJ}

and wB
i,j ∈ {−1,+1}. In BinaryConnect (Courbariaux et al. (2015)), the binarized weight element

wB
i,j is obtained by the sign function while using a fixed scalling factor α for all the elements:

wB
i,j = α × sign(wi,j). In TernaryConnect (Lin et al. (2015)), values hesitating to be either +1

or -1 are clamped to zero to reduce the accuracy loss of binarization: wi,j = αi,jw
T
i,j where

wT
i,j ∈ {−1, 0,+1}. To further improve the precision accuracy, TernaryConnect stochastically

assigns ternary values to the weight elements by performingwi,j = α×Bernoulli(|wi,j |)×sign(wi,j)
while using a fixed scaling factor α for each layer. Ternary weight networks (TWNs) were then
proposed to learn the factor α by minimizing the L2 distance between the full-precision and ternary
weights for each layer. Zhou et al. (2016) introduced DoReFa-Net as a method that can learn different
bitwidths for weights, activations and gradients. Since the quantization functions used in the above
works are not differentiable, the derivative of the loss l w.r.t the full-precision W is approximated by

∂l

∂W
≈ ∂l

∂WB
≈ ∂l

∂WT
, (1)

where WB and WT denote binarized and ternarized weights, respectively.

Zhu et al. (2016) introduced the trained ternary quantization (TTQ) method that uses two assymetric
scaling parameters (α1 for positive values and α2 for negative values) to ternarize the weights. In loss-

1The codes for these tasks are available online at https://github.com/arashardakani/
Learning-Recurrent-Binary-Ternary-Weights
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aware binarization (LAB) (Hou et al. (2016)), the loss of binarization was explicitly considered. More
precisely, the loss w.r.t the binarized weights is minimized using the proximal Newton algorithm. Hou
& Kwok (2018) extended LAB to support different bitwidths for the weights. This method is called
loss-aware quantization (LAQ). Recently, Guo et al. (2017) introduced a new method that builds the
full-precision weight matrix W as k multiple binary weight matrices: wi,j ≈

∑k
z=1 α

k
i,jβ

k
i,j where

βk
i,j ∈ {−1,+1} and αk

i,j > 0. Xu et al. (2018) also uses a binary search tree to efficiently derive the
binary codes βk

i,j , improving the prediction accuracy. While using multiple binary weight matrices
reduces the bitwidth by a factor of 32× compared to its full-precision counterpart, it increases not
only the number of parameters but also the number of operations by a factor of k (Xu et al. (2018)).

Among the aforementioned methods, only works of Xu et al. (2018) and Hou & Kwok (2018) targeted
RNNs to reduce their computational complexity and outperformed all the aforementioned methods
in terms of the prediction accuracy. However, they have shown promising results only on specific
temporal tasks: the former targeted only the character-level language modeling task on small datasets
while the latter performs the word-level language modeling task and matches the performance of the
full-precision model when using k = 4. Therefore, there are no binary models that can match the
performance of the full-precision model on the word-level language modeling task. More generally,
there are no binary/ternary models that can perform different temporal tasks while achieving similar
prediction accuracy to its full-precision counterpart is missing in literature.

3 PRELIMINARIES

Despite the remarkable success of RNNs in processing variable-length sequences, they suffer from the
exploding gradient problem that occurs when learning long-term dependencies (Bengio et al. (1994);
Pascanu et al. (2013)). Therefore, various RNN architectures such as Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber (1997)) and Gated Recurrent Unit (GRU) (Cho et al. (2014b))
were introduced in literature to mitigate the exploding gradient problem. In this paper, we mainly
focus on the LSTM architecture to learn recurrent binary/ternary weights due to their prevalent use in
both academia and industry. The recurrent transition of LSTM is obtained by:

ft = σ (Wfhht−1 + Wfxxt + bf ) ,

it = σ(Wihht−1 + Wixxt + bi),

ot = σ(Wohht−1 + Woxxt + bo),

gt = tanh(Wghht−1 + Wgxxt + bg),

ct = ft � ct−1 + it � gt,
ht = ot � tanh(ct), (2)

where {Wfh,Wih,Woh,Wgh} ∈ Rdh×dh , {Wfx,Wix,Wox,Wgx} ∈ Rdx×dh and {bf , bi, bo,
bg} ∈ Rdh denote the recurrent weights and bias. The parameters h ∈ Rdh and c ∈ Rdh are hidden
states. The logistic sigmoid function and Hadamard product are denoted as σ and �, respectively.
The updates of the LSTM parameters are regulated through a set of gates: ft, it, ot and gt. Eq. (2)
shows that the main computational core of LSTM is dominated by the matrix multiplications. The
recurrent weight matrices Wfh,Wih,Woh,Wgh, Wfx,Wix,Wox and Wgx also contain the majority
of the model parameters. As such, we aim to compensate the computational complexity of the LSTM
cell and reduce the number of memory accesses to the energy/power-hungry DRAM by binarizing or
ternarizing the recurrent weights.

4 LEARNING RECURRENT BINARY/TERNARY WEIGHTS

Hou et al. (2016) showed that the methods ignoring the loss of the binarization process fail to binarize
the weights in LSTMs despite their remarkable performance on CNNs and fully-connected networks.
In BinaryConnect as an example, the weights are binarized during the forward computations by
thresholding while Eq. (1) is used to estimate the loss w.r.t. the full-precision weights without
considering the quantization loss. When the training is over, both the full-precision and binarized
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weights can be then used to perform the inference computations of CNNs and fully-connected
networks (Lin et al. (2015)). However, using the aforementioned binarization approach in vanilla
LSTMs fails to perform sequential tasks due to the gradient vanishing problem as discussed in (Hou
et al. (2016)). To further explore the cause of this problem, we performed a set of experiments.
We first measured the probability density of the gates and hidden states of a binarized LSTM and
observed that the binarized LSTM fail to control the flow of information (see Appendix A for more
details). More specifically, the input gate i and the output gate o tend to let all information through,
the gate g tends to block all information, and the forget gate f cannot decide to let which information
through. In the second experiment, we measured the probability density of the input gate i before
its non-linear function applied (i.e., ip = Wihht−1 + Wixxt + bi) at different iterations during the
training process. In this experiment, we observed that the binarization process changes the probability
density of the gates and hidden states during the training process, resulting in all positive values for
ip and values centered around 1 for the input gate i (see Appendix A for more details). To address
the above issue, we propose the use of batch normalization in order to learn binarized/ternarized
recurrent weights.

It is well-known that a network trained using batch normalization is less susceptible to different
settings of hyperparameters and changes in the distribution of the inputs to the model (Ioffe &
Szegedy (2015)). The batch normalization transform can be formulated as follows:

BN(x;φ, γ) = γ + φ� x− E(x)√
V(x) + ε

, (3)

where x and ε denote the unnormalized vector and a regularization hyperparameter. The mean and
standard deviation of the normalized vector are determined by model parameters φ and γ. The
statistics E(x) and V(x) also denote the estimations of the mean and variance of the unnormalized
vector for the current minibatch, respectively. Batch normalization is commonly applied to a layer
where changing its parameters affects the distributions of the inputs to the next layer. This occurs
frequently in RNN where its input at time t depends on its output at time t− 1. Several works have
investigated batch normalization in RNNs (Cooijmans et al. (2016); Laurent et al. (2016); Amodei
et al. (2016)) to improve their convergence speed and performance.

The main goal of our method is to represent each element of the full-precision weight W either as
wi,j = αwB

i,j or wi,j = αwT
i,j , where α is a fixed scaling factor for all the weights and initialized

from Glorot & Bengio (2010). To this end, we first divide each weight by the factor α to normalize
the weights. We then compute the probability of getting binary or ternary values for each element of
the full-precision matrix W by

P (wi,j = 1) =
wN

i,j + 1

2
, P (wi,j = −1) = 1− P (wi,j = 1), (4)

for binarization and

P (wi,j = 1) = P (wi,j = −1) = |wN
i,j |, P (wi,j = 0) = 1− P (wi,j = 1), (5)

for ternarization, where wN
i,j denotes the normalized weight. Afterwards, we stochastically sample

from the Bernoulli distribution to obtain binarized/ternarized weights as follows

wB
i,j = Bernoulli(P (wi,j = 1))× 2− 1, wT

i,j = Bernoulli(P (wi,j = 1))× sign(wi,j). (6)

Finally, we batch normalize the vector-matrix multiplications between the input and hidden state
vectors with the binarized/ternarized weights WB/T

fh ,WB/T
ih ,WB/T

oh ,WB/T
gh , WB/T

fx ,WB/T
ix ,WB/T

ox

and WB/T
gx . More precisely, we perform the recurrent computations as

ft = σ
(

BN(WB/T
fh ht−1;φfh, 0) + BN(WB/T

fx xt;φfx, 0) + bf

)
,

it = σ
(

BN(WB/T
ih ht−1;φih, 0) + BN(WB/T

ix xt;φix, 0) + bi

)
,

ot = σ
(

BN(WB/T
oh ht−1;φoh, 0) + BN(WB/T

ox xt;φox, 0) + bo

)
,

gt = tanh
(

BN(WB/T
gh ht−1;φgh, 0) + BN(WB/T

gx xt;φgx, 0) + bg

)
. (7)
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Table 1: Testing character-level BPC values of quantized LSTM models and size of their weight
matrices in terms of KByte.

Linux Kernel War & Peace Penn Treebank

Model Precision Test Size Test Size Test Size

LSTM (baseline) Full-precision 1.73 5024 1.72 4864 1.39 16800

LSTM with binary weights (ours) Binary 1.79 157 1.78 152 1.43 525
BinaryConnect (Courbariaux et al. (2015)) Binary 4.24 157 5.10 152 2.51 525

LAB (Hou et al. (2016)) Binary 1.88 157 1.86 152 1.56 525

LSTM with ternary weights (ours) Ternary 1.75 314 1.72 304 1.39 1050
TWN (Li & Liu (2016)) Ternary 1.85 314 1.86 304 1.51 1050
TTQ (Zhu et al. (2016)) Ternary 1.88 314 1.83 304 1.49 1050

LAQ (Hou & Kwok (2018)) Ternary 1.81 314 1.80 304 1.46 1050
LAQ (Hou & Kwok (2018)) 3 bits 1.84 471 1.83 456 1.46 1575
LAQ (Hou & Kwok (2018)) 4 bits 1.90 628 1.83 608 1.47 2100

DoReFa-Net (Zhou et al. (2016)) 3 bits 1.84 471 1.95 456 1.47 1575
DoReFa-Net (Zhou et al. (2016)) 4 bits 1.90 628 1.92 608 1.47 2100

In fact, batch normalization cancels out the effect of the binarization/ternarization on the distribution
of the gates and states during the training process. Moreover, batch normalization regulates the scale
of binarized/ternarized weights using its parameter φ in addition to α.

So far, we have only considered the forward computations. During the parameter update, we use
full-precision weights since the parameter updates are small values. To update the full-precision
weights, we use Eq. (1) to estimate its gradient since the binarization/ternarization functions are
indifferentiable (See Algorithm 1 and its details in Appendix B). It is worth noting that using batch
normalization makes the training process slower due to the additional computations required to
perform Eq. (3).

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed LSTMs with binary/ternary weights on
different temporal tasks to show the generality of our method. We defer hyperparameters and tasks
details for each dataset to Appendix C due to the limited space.

5.1 CHARACTER-LEVEL LANGUAGE MODELING

For the character-level modeling, the goal is to predict the next character and the performance is
evaluated on bits per character (BPC) where lower BPC is desirable. We conduct quantization
experiments on Penn Treebank (Marcus et al. (1993)), War & Peace (Karpathy et al. (2015)) and
Linux Kernel (Karpathy et al. (2015)) corpora. For Penn Treebank dataset, we use a similar LSTM
model configuration and data preparation to Mikolov et al. (2012). For War & Peace and Linux Kernel
datasets, we also follow the LSTM model configurations and settings in (Karpathy et al. (2015)).
Table 1 summarizes the performance of our binarized/ternarized models compared to state-of-the-art
quantization methods reported in literature. All the models reported in Table 1 use an LSTM layer
with 1000, 512 and 512 units on a sequence length of 100 for the experiments on Penn Treebank
(Marcus et al. (1993)), War & Peace (Karpathy et al. (2015)) and Linux Kernel (Karpathy et al.
(2015)) corpora, respectively. The experimental results show that our model with binary/ternary
weights outperforms all the existing quantized models in terms of prediction accuracy. Moreover,
our ternarized model achieves the same BPC values on War & Peace and Penn Treebank datasets
as the full-precision model (i.e., baseline) while requiring 32× less memory footprint. It is worth
mentioning the accuracy loss of our ternarized model over the full-precision baseline is small.

In order to evaluate the effectiveness of our method on a larger dataset for the character-level language
modeling task, we use the Text8 dataset which was derived from Wikipedia. For this task, we use one
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Table 2: Test character-level performance of our quantized models on the Text8 corpus.

Text8

Model Precision Test (BPC) Size (MByte)

LSTM (baseline) Full-precision 1.46 64.9

LSTM with binary weights (ours) Binary 1.54 2.0
LSTM with ternary weights (ours) Ternary 1.51 4.0

BinaryConnect (Courbariaux et al. (2015)) Binary 2.45 2.0

LSTM layer of size 2000 and train it on sequences of length 180. We follow the data preparation
approach and settings of Mikolov et al. (2012). The test results are reported in Table 2. While our
models use recurrent binary or ternary weights during runtime, they achieve acceptable performance
when compared to the full-precision models.

5.2 WORD-LEVEL LANGUAGE MODELING

Similar to the character-level language modeling, the main goal of word-level modeling is to predict
the next word. However, this task deals with large vocabulary sizes, making the model quantization
difficult. Xu et al. (2018) introduced a multi-bit quantization method, referred to as alternating method,
as a first attempt to reduce the complexity of the LSTMs used for this task. However, the alternating
method only managed to almost match its performance with its full-precision counterpart using 4
bits (i.e., k = 4). However, there is a huge gap in the performance between its quantized model
with 2 bits and the full-precision one. To show the effectiveness of our method over the alternating
method, we use a small LSTM of size 300 similar to (Xu et al. (2018)) for a fair comparison. We
also examine the prediction accuracy of our method over the medium and large models introduced
by Zaremba et al. (2014): the medium model contains an LSTM layer of size 650 and the large
model contains two LSTM layers of size 1500. We also use the same settings described in (Mikolov
et al. (2010)) to prepare and train our model. Table 3 summarizes the performance of our models in
terms of perplexity. The experimental results show that our binarized/ternarized models outperform
the alternating method using 2-bit quantization in terms of both perplexity and the memory size.
Moreover, our medium-size model with binary weights also has a substantial improvement over the

Table 3: Test performance of the proposed LSTM with recurrent binary/ternary weights on the Penn
Treebank (PTB) corpus.

Word-PTB

Model Precision Test (Perplexity) Size (KByte) Operations (MOps)

Small LSTM (baseline) Full-precision 91.5 2880 1.4

Small LSTM with binary weights (ours) Binary 92.2 90 1.4
Small LSTM with ternary weights (ours) Ternary 90.7 180 1.4

Small BinaryConnect LSTM (Courbariaux et al. (2015)) Binary 125.9 90 1.4
Small Alternating LSTM (Xu et al. (2018)) 2 bits 103.1 180 2.9
Small Alternating LSTM (Xu et al. (2018)) 3 bits 93.8 270 4.3
Small Alternating LSTM (Xu et al. (2018)) 4 bits 91.4 360 5.8

Medium LSTM (baseline) Full-precision 87.6 27040 13.5

Medium LSTM with binary weights (ours) Binary 87.2 422 13.5
Medium LSTM with ternary weights (ours) Ternary 86.1 845 13.5

Medium BinaryConnect LSTM (Courbariaux et al. (2015)) Binary 108.4 422 13.5

Large LSTM (baseline) Full-precision 78.5 144000 72

Large LSTM with binary weights (ours) Binary 76.5 4500 72
Large LSTM with ternary weights (ours) Ternary 76.3 9000 72

Large BinaryConnect LSTM (Courbariaux et al. (2015)) Binary 128.5 4500 72
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Table 4: Test accuracy of the proposed LSTM with recurrent binary/ternary weights on the pixel by
pixel MNIST classification task.

MNIST

Model Precision Test (%) Size (KByte) Operations (KOps)

LSTM (baseline) Full-precision 98.9 162 80.8

LSTM with binary weights (ours) Binary 98.6 5 80.8
LSTM with ternary weights (ours) Ternary 98.8 10 80.8

BinaryConnect (Courbariaux et al. (2015)) Binary 68.3 5 80.8
Alternating LSTM (Xu et al. (2018)) 2 bits 98.8 10 161.6

alternating method using 4-bit quantization. Finally, our models with recurrent binary and ternary
weights yield a comparable performance compared to their full-precision counterparts.

5.3 SEQUENTIAL MNIST

We perform the MNIST classification task (Le et al. (2015)) by processing each image pixel at each
time step. In this task, we process the pixels in scanline order. We train our models using an LSTM
with 100 nodes, followed by a softmax classifier layer. Table 4 reports the test performance of our
models with recurrent binary/ternary weights. While our binary model uses a lower bit precision
and fewer operations for the recurrent computations compared to the alternating models, its loss of
accuracy is small. On the other hand, our ternary model requires the same memory size and achieves
the same accuracy as the alternating method while requiring 2× fewer operations.

5.4 QUESTION ANSWERING

Hermann et al. (2015) recently introduced a challenging task that involves reading and comprehension
of real news articles. More specifically, the main goal of this task is to answer questions about the
context of the given article. To this end, they also introduced an architecture, called Attentive
Reader, that exploits an attention mechanism to spot relevant information in the document. Attentive
Reader uses two bidirectional LSTMs to encode the document and queries. To show the generality
and effectiveness of our quantization method, we train Attentive Reader with our method to learn
recurrent binary/ternary weights. We perform this task on the CNN corpus (Hermann et al. (2015))
by replicating Attentive Reader and using the setting described in (Hermann et al. (2015)). Table 5
shows the test accuracy of binarized/ternarized Attentive Reader. The simulation results show that
our Attentive Reader with binary/ternary weights yields similar accuracy rate to its full-precision
counterpart while requiring 32× smaller memory footprint.

5.5 DISCUSSIONS

As discussed in Section 4, the training models ignoring the quantization loss fail to quantize the
weights in LSTM while they perform well on CNNs and fully-connected networks. To address this
problem, we proposed the use of batch normalization during the quantization process. To justify

Table 5: Test accuracy of Attentive Reader with recurrent binary/ternary weights on CNN question-
answering task.

CNN

Model Precision Test (%) Size (MByte)

Attentive Reader (baseline) Full-precision 59.81 7471

Attentive Reader with binary weights (ours) Binary 59.22 233
Attentive Reader with ternary weights (ours) Ternary 60.03 467

BinaryConnect Attentive Reader (Courbariaux et al. (2015)) Binary 5.34 233
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Figure 1: (a) Distribution ofWh used in the LSTM layer on the Penn Treebank corpus. (b) Distribution
of the prediction accuracy on the Penn Treebank corpus when using stochastic ternarization over
10000 samples.

the importance of such a decision, we have performed different experiments over a wide range of
temporal tasks and compared the accuracy performance of our binarization/ternarization method with
binaryconnect as a method that ignores the quantization loss. The experimental results showed that
binaryconnect method fails to learn binary/ternary weights. On the other hand, our method not only
learns recurrent binary/ternary weights but also outperforms all the existing quantization methods in
literature. It is also worth mentioning that the models trained with our method achieve a comparable
accuracy performance w.r.t. their full-precision counterpart.

Figure 1(a) shows a histogram of the binary/ternary weights of the LSTM layer used for character-
level language modeling task on the Penn Treebank corpus. In fact, our model learns to use binary
or ternary weights by steering the weights into the deterministic values of -1, 0 or 1. Despite the
CNNs or fully-connected networks trained with binary/ternary weights that can use either real-valued
or binary/ternary weights, the proposed LSTMs trained with binary/ternary can only perform the
inference computations with binary/ternary weights. Moreover, the distribution of the weights is
dominated by non-zero values for the model with ternary weights.

To show the effect of the probabilistic quantization on the prediction accuracy of temporal tasks, we
adopted the ternarized network trained for the character-level language modeling tasks on the Penn
Treebank corpus (see Section 5.1). We measured the prediction accuracy of this network on the test
set over 10000 samples and reported the distribution of the prediction accuracy in Figure 1(b). Figure
1(b) shows that the variance imposed by the stochastic ternarization on the prediction accuracy is
very small and can be ignored. It is worth mentioning that we also have observed a similar behavior
for other temporal tasks used in this paper.

Figure 2 illustrates the learning curves and generalization of our method to longer sequences on the
validation set of the Penn Treebank corpus. In fact, the proposed training algorithm also tries to
retains the main features of using batch normalization, i.e., fast convergence and good generalization
over long sequences. Figure 2(a) shows that our model converges faster than the full-precision LSTM
for the first few epochs. After a certain point, the convergence rate of our method decreases, that
prevents the model from early overfitting. Figure 2(b) also shows that our training method generalizes
well over longer sequences than those seen during training. Similar to the full-precision baseline,
our binary/ternary models learn to focus only on information relevant to the generation of the next
target character. In fact, the prediction accuracy of our models improves as the sequence length
increases since longer sequences provides more information from past for generation of the next
target character.

While we have only applied our binarization/ternarization method on LSTMs, our method can be
used to binarize/ternarize other recurrent architectures such as GRUs. To show the versatility of
our method, we repeat the character-level language modeling task performed in Section 5.1 using
GRUs on the Penn Treebank, War & Peace and Linux Kernel corpora. We also adopted the same
network configurations and settings used in Section 5.1 for each of the aforementioned corpora. Table
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Figure 2: (a) The learning curve on the validation set of the Penn Treebank corpus. (b) Performance
on the test set of the Penn Treebank corpus over longer sequences.

Table 6: Testing character-level BPC values of quantized GRU models and size of their weight
matrices in terms of KByte.

Linux Kernel War & Peace Penn Treebank

Model Precision Test Size Test Size Test Size

GRU (baseline) Full-precision 1.82 3772 1.75 3662 1.40 12612

GRU with binary weights (ours) Binary 1.90 124 1.92 120 1.46 406
GRU with ternary weights (ours) Ternary 1.81 241 1.82 235 1.41 799

6 summarizes the performance of our binarized/ternarized models. The simulation results show that
our method can successfully binarize/ternarize the recurrent weights of GRUs.

As a final note, we have investigated the effect of using different batch sizes on the prediction accuracy
of our binarized/ternarized models. To this end, we trained an LSTM of size 1000 over a sequence
length of 100 and different batch sizes to perform the character-level language modeling task on the
Penn Treebank corpus. Batch normalization cannot be used for the batch size of 1 as the output vector
will be all zeros. Moreover, using a small batch size leads to a high variance when estimating the
statistics of the unnormalized vector, and consequently a lower prediction accuracy than the baseline
model without bath normalization, as shown in Figure 3. On the other hand, the prediction accuracy
of our binarization/ternarization models improves as the batch size increases, while the prediction
accuracy of the baseline model decreases.
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Figure 3: Effect of different batch sizes on the prediction accuracy of the character-level language
modeling task on the Penn Treebank corpus.
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Table 7: Implementation results of the proposed binary/ternary models vs full-precision models.
Low-Power High-Speed

Model Full-Precision Binary Ternary Full-Precision Binary Ternary
# MAC Units 100 100 100 100 1000 500

Throughput (GOps/sec) 80 80 80 80 800 400
Silicon Area (mm2) 2.56 0.24 0.42 2.56 2.54 2.16

Power (mW) 336 37 61 336 347 302

6 HARDWARE IMPLEMENTATION

The introduced binarized/ternarized recurrent models can be exploited by various dataflows such
as DaDianNao (Chen et al. (2014)) and TPU (Jouppi et al. (2017)). In order to evaluate the effec-
tiveness of LSTMs with recurrent binary/ternary weights, we build our binary/ternary architecture
over DaDianNao as a baseline which has proven to be the most efficient dataflow for DNNs with
sigmoid/tanh functions. In fact, DaDianNao achieves a speedup of 656× and reduces the energy by
184× over a GPU (Chen et al. (2014)). Moreover, some hardware techniques can be adopted on top
of DaDianNao to further speed up the computations. For instance, Zhang et al. (2016) showed that
ineffectual computations of zero-valued weights can be skipped to improve the run-time performance
of DaDianNao. In DaDianNao, a DRAM is used to store all the weights/activations and provide the
required memory bandwidth for each multiply-accumulate (MAC) unit. For evaluation purposes,
we consider two different application-specific integrated circuit (ASIC) architectures implementing
Eq. (2): low-power implementation and high-speed inference engine. We build these two archi-
tectures based on the aforementioned dataflow. For the low-power implementation, we use 100
MAC units. We also use a 12-bit fixed-point representation for both weights and activations of the
full-precision model as a baseline architecture. As a result, 12-bit multipliers are required to perform
the recurrent computations. Note that using the 12-bit fixed-point representation for weights and
activations guarantees no prediction accuracy loss in the full-precision models. For the LSTMs
with recurrent binary/ternary weights, a 12-bit fixed-point representation is only used for activations
and multipliers in the MAC units are replaced with low-cost multiplexers. Similarly, using 12-bit
fixed-point representation for activations guarantees no prediction accuracy loss in the introduced bi-
nary/ternary models. We implemented our low-power inference engine for both the full-precision and
binary/ternary-precision models in TSMC 65-nm CMOS technology. The synthesis results excluding
the implementation cost of the DRAM are summarized in Table 7. They show that using recurrent
binary/ternary weights results in up to 9× lower power and 10.6× lower silicon area compared to the
baseline when performing the inference computations at 400 MHz.

For the high-speed design, we consider the same silicon area and power consumption for both the full-
precision and binary/ternary-precision models. Since the MAC units of the binary/ternary-precision
model require less silicon area and power consumption as a result of using multiplexers instead of
multipliers, we can instantiate up to 10× more MAC units, resulting in up to 10× speedup compared
to the full-precision model (see Table 7). It is also worth noting that the models using recurrent
binary/ternary weights also require up to 12× less memory bandwidth than the full-precision models.
More details on the proposed architecture are provided in Appendix D.

7 CONCLUSION

In this paper, we introduced a method that learns recurrent binary/ternary weights and eliminates
most of the full-precision multiplications of the recurrent computations during the inference. We
showed that the proposed training method generalizes well over long sequences and across a wide
range of temporal tasks such as word/character language modeling and pixel by pixel classification
tasks. We also showed that learning recurrent binary/ternary weights brings a major benefit to custom
hardware implementations by replacing full-precision multipliers with hardware-friendly multiplexers
and reducing the memory bandwidth. For this purpose, we introduced two ASIC implementations:
low-power and high-throughput implementations. The former architecture can save up to 9× power
consumption and the latter speeds up the recurrent computations by a factor of 10.
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APPENDIX A
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Figure 4: Probability density of states/gates for the BinaryConnect LSTM compared to its full-
precision counterpart on the Penn Treebank character-level modeling task. Both models were trained
for 50 epochs. The vertical axis denotes the time steps.

Figure 4 shows the probability density of the gates and hidden states of the BinaryConnect LSTM
and its full-precision counterpart both trained with 1000 units and a sequence length of 100 on Penn
Treebank corpus Marcus et al. (1993) for 50 epochs. The probability density curves show that the
gates in the binarized LSTM fail to control the flow of information. More specifically, the input gate i
and the output gate o tend to let all information through, the gate g tends to block all information, and
the forget gate f cannot decide to let which information through.
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Figure 5: Probability density of ip for (a) the BinaryConnect LSTM compared to (b) its full-precision
counterpart for a single time step at different training iterations on the Penn Treebank character-level
modeling task. The vertical axis denotes the training iterations.

Figure 5 illustrates the probability density of ip at different iterations during the training process. The
simulation results show a shift in probability density of ip during the training process, resulting in
all positive values for ip and values centered around 1 for the input gate i. In fact, the binarization
process changes the probability density of the gates and hidden states during the training phase.

APPENDIX B

Learning recurrent binary/ternary weights are performed in two steps: forward propagation and
backward propagation.

Forward Propagation: A key point to learn recurrent binary/ternary weights is to batch-normalize
the result of each vector-matrix multiplication with binary/ternary recurrent weights during the
forward propagation. More precisely, we first binarize/ternarize the recurrent weights. Afterwards,
the unit activations are computed while using the recurrent binarized/ternarized weights for each time
step and recurrent layer. The unit activations are then normalized during the forward propagation.

Backward Propagation: During the backward propagation, the gradient with respects to each
parameter of each layer is computed. Then, the updates for the parameters are obtained using a
learning rule. During the parameter update, we use full-precision weights since the parameter updates
are small values. More specifically, the recurrent weights are only binarized/ternarized during the
forward propagation. Algorithm 1 summarizes the training method that learns recurrent binary/ternary
weights. It is worth noting that batch normalizing the state unit c can optionally be used to better
control over its relative contribution in the model.
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Algorithm 1: Training with recurrent binary/ternary weights. l is the cross entropy loss function.
B/T() specifies the binarization/ternarization function. The batch normalization transform is also
denoted by BN(·;φ, γ). L and T are also the number of LSTM layers and time steps, respectively.
Data: Full-precision LSTM parameters Wfh, Wih, Woh, Wgh, Wfx, Wix, Wox, Wgx, bf , bi,

bo and bg for each layer. Batch normalization parameters for hidden-to-hidden and
input-to-hidden states. The classifier parameters Ws and bs. Input data x1, its
corresponding targets y for each minibatch.

1 1. Forward Computations
2 for l = 1 to L do
3 Wl

fhB/T
← B/T(Wl

fh), Wl
ihB/T

← B/T(Wl
ih)

4 Wl
ohB/T

← B/T(Wl
oh), Wl

ghB/T
← B/T(Wl

gh)

5 Wl
fxB/T

← B/T(Wl
fx), Wl

ixB/T
← B/T(Wl

ix)

6 Wl
oxB/T

← B/T(Wl
ox), Wl

gxB/T
← B/T(Wl

gx)

7 for t = 1 to T do
8 flt = σ

(
BN(Wl

fhB/T
hl
t−1;φlfh, 0) + BN(Wl

fxB/T
xlt;φlfx, 0) + bl

f

)
9 ilt = σ

(
BN(Wl

ihB/T
hl
t−1;φlih, 0) + BN(Wl

ixB/T
xlt;φlix, 0) + bl

i

)
10 olt = σ

(
BN(Wl

ohB/T
hl
t−1;φloh, 0) + BN(Wl

oxB/T
xlt;φlox, 0) + bl

o

)
11 glt = tanh

(
BN(Wl

ghB/T
hl
t−1;φlgh, 0) + BN(Wl

gxB/T
xlt;φlgx, 0) + bl

g

)
12 clt = flt � clt−1 + ilt � gl

t

13 hl
t = ol

t � tanh
(
BN(clt;φlc, γlc)

)
14 end
15 xl+1 = hl

16 end
17 ŷ = softmax(WshL + bs)
18 2. Backward Computations
19 Compute the loss function l knowing ŷ and y

20 Obtain the updates ∆Ws and ∆bs by computing
∂l

∂Ws
and

∂l

∂bs
, respectively

21 for l = 1 to L do
22 Obtain the updates ∆Wl

fh, ∆Wl
ih, ∆Wl

oh, ∆Wl
gh, ∆Wl

fx, ∆Wl
ix, ∆Wl

ox and ∆Wl
gx by

computing
∂l

∂Wl
fhB/T

,
∂l

∂Wl
ihB/T

,
∂l

∂Wl
ohB/T

,
∂l

∂Wl
ghB/T

,
∂l

∂Wl
fxB/T

,
∂l

∂Wl
ixB/T

,

∂l

∂Wl
oxB/T

and
∂l

∂Wl
gxB/T

, respectively

23 Obtain the updates ∆bl
f , ∆bl

i, ∆bl
o, ∆bl

g , ∆hl
0 and ∆cl0 by computing

∂l

∂bl
f

,
∂l

∂bl
i

,
∂l

∂bl
o

,

∂l

∂bl
g

,
∂l

∂hl
0

and
∂l

∂cl0
, respectively

24 Obtain the updates ∆φlfh, ∆φlih, ∆φloh, ∆φlgh, ∆φlfx, ∆φlix, ∆φlox, ∆φlgx, ∆φlc and ∆γlc

by computing
∂l

∂φlfh
,
∂l

∂φlih
,
∂l

∂φloh
,
∂l

∂φlgh
,
∂l

∂φlfx
,
∂l

∂φlix
,
∂l

∂φlgx
,
∂l

∂φlox
,
∂l

∂φlc
and

∂l

∂γlc
,

respectively
25 end
26 Update the network parameters using their updates
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Figure 6: Probability density of states/gates for our binarized LSTM on the Penn Treebank character-
level modeling task. The model was trained for 50 epochs. The vertical axis denotes the time
steps.

APPENDIX C

C.1 CHARACTER-LEVEL LANGUAGE MODELING

Penn Treebank: Similar to Mikolov et al. (2012), we split the Penn Treebank corpus into 5017k,
393k and 442k training, validation and test characters, respectively. For this task, we use an LSTM
with 1000 units followed by a softmax classifier. The cross entropy loss is minimized on minibatches
of size 64 while using ADAM learning rule. We use a learning rate of 0.002. We also use the
training sequence length of size 100. Figure 6 depicts the probability density of the states/gates of
our binarized model trained on the Penn Treebank corpus. While the probability density of our model
is different from its full-precision counterpart (see Figure 4), it shows that the gates can control the
flow of information.

Linux Kernel and Leo Tolstoy’s War & Peace: Linux Kernel and Leo Tolstoy’s War and Peace
corpora consist of 6,206,996 and 3,258,246 characters and have a vocabulary size of 101 and 87,
respectively. We split these two datasets similar to Karpathy et al. (2015). We use one LSTM layer
of size 512 followed by a softmax classifier layer. We use an exponentially decaying learning rate
initialized with 0.002. ADAM learning rule is also used as the update rule.

Text8: This dataset has the vocabulary size of 27 and consists of 100M characters. Following the
data preparation approach of Mikolov et al. (2012), we split the data into training, validation and test
sets as 90M, 5M and 5M characters, respectively. For this task, we use one LSTM layer of size 2000
and train it on sequences of length 180 with minibatches of size 128. The learning rate of 0.001 is
used and the update rule is determined by ADAM.

C.2 WORD-LEVEL LANGUAGE MODELING

Penn Treebank: Similar to Mikolov et al. (2010), we split the Penn Treebank corpus with a 10K size
vocabulary, resulting in 929K training, 73K validation, and 82K test tokens. We start the training with
a learning rate of 20. We then divide it by 4 every time we see an increase in the validation perplexity
value. The model is trained with the word sequence length of 35 and the dropout probability of 0.5,
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0.65 and 0.65 for the small, medium and large models, respectively. Stochastic gradient descent is
also used to train our model while the gradient norm is clipped at 0.25.

C.3 SEQUENTIAL MNIST

MNIST: MNIST dataset contains 60000 gray-scale images (50000 for training and 10000 for testing),
falling into 10 classes. For this task, we process the pixels in scanline order: each image pixel is
processed at each time step similar to Le et al. (2015). We train our models using an LSTM with 100
nodes, a softmax classifier layer and ADAM step rule with learning rate of 0.001.

C.4 QUESTION ANSWERING

CNN: For this task, we split the data similar to Hermann et al. (2015). We adopt Attentive Reader
architecture to perform this task. We train the model using bidirectional LSTM with unit size of 256.
We also use minibatches of size 128 and ADAM learning rule. We use an exponentially decaying
learning rate initialized with 0.003.

APPENDIX D

We implemented our binary/ternary architecture in VHDL and synthesized via Cadence Genus
Synthesis Solution using TSMC 65nm GP CMOS technology. Figure 7 shows the latency of the
proposed binary/ternary architecture for each time step and temporal task when performing the
vector-matrix multiplications on binary/ternary weights. The simulation results show that performing
the computations on binary and ternary weights can speed up the computations by factors of 10× and
5× compared to the full-precision models.

PTB (Char) Text8 W&P Linux Kernel PTB (Word) MNIST CNN
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Figure 7: Latency of the proposed accelerator over full-precision, binary and ternary models.
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