
Workshop track - ICLR 2018

NONLINEAR ACCELERATION OF CNNS

Damien Scieur∗, Edouard Oyallon†, Alexandre d’Aspremont∗ and Francis Bach∗
∗DI, Ecole Normale Supérieure, UMR CNRS 8548, INRIA, PSL Research University.
†CVN, CentraleSupélec, Université Paris-Saclay; Galen team, INRIA Saclay

ABSTRACT

Regularized Nonlinear Acceleration (RNA) can improve the rate of convergence
of many optimization schemes such as gradient descent, SAGA or SVRG, estimat-
ing the optimum using a nonlinear average of past iterates. Until now, its analysis
was limited to convex problems, but empirical observations show that RNA may
be extended to a broader setting. Here, we investigate the benefits of nonlinear
acceleration when applied to the training of neural networks, in particular for the
task of image recognition on the CIFAR10 and ImageNet data sets. In our ex-
periments, with minimal modifications to existing frameworks, RNA speeds up
convergence and improves testing error on standard CNNs.

1 INTRODUCTION

Successful deep Convolutional Neural Networks (CNNs) for large-scale classification are typically
optimized through a variant of the stochastic gradient descent (SGD) algorithm (Krizhevsky et al.,
2012). Refining this optimization scheme is a complicated task and requires a significant amount of
engineering whose mathematical foundations are not well understood (Wilson et al., 2017). Here,
we propose to wrap an adhoc acceleration technique known as Regularized Nonlinear Acceleration
algorithm (RNA) (Scieur et al., 2016), around existing CNN training frameworks. RNA is generic
as it does not depend on the optimization algorithm, but simply requires several successive iterates
of gradient based methods, which involves a minimal adaptation in many frameworks. This meta-
algorithm has been applied successfully to gradient descent in the smooth and strongly convex cases,
with convergence and rate guarantees recently derived in (Scieur et al., 2016). Recent works (Scieur
et al., 2017) further show that it improves standard stochastic optimization schemes such as SAGA
or SVRG (Defazio et al., 2014; Johnson & Zhang, 2013), which indicates it may also be a strong
candidate as an accelerated method in stochastic non convex cases.

RNA is an ideal meta-learning algorithm for deep CNNs, because contrary to many acceleration
methods Lin et al. (2015); Güler (1992), optimization can be performed off-line and does not in-
volve any potentially expensive extra-learning process. This means one can focus on acceleration a
posteriori. RNA related numerical computations are not expensive, and form a simple linear system
from a well-chosen linear combination of several optimization steps. This system is usually very
small relative to the number of parameters, so the cost of acceleration grows linearly with respect to
this number.

Here, we study applications applications of RNA to several recent architectures, like ResNet (He
et al., 2016), applied to classical challenging datasets, like CIFAR10 or ImageNet. Our contribu-
tions are are twofold: first we demonstrate that it is often possible to achieve an accuracy similar to
the final epoch in half the time; second, we show that RNA slightly improves the test classification
performance, at no additional numerical cost. We provide an implementation that can be incorpo-
rated using only few lines of code around many standard Python deep learning frameworks, like
PyTorch1.

1Code can be found here:
https://github.com/windows7lover/RegularizedNonlinearAcceleration

1

https://github.com/windows7lover/RegularizedNonlinearAcceleration


Workshop track - ICLR 2018

2 ACCELERATING WITH REGULARIZED NONLINEAR ACCELERATION

This section briefly describes the RNA procedure and we refer the reader to Scieur et al. (2016)
for more extensive explanations and theoretical guarantees. For the sake of simplicity, we consider
an iterate sequence {θk}0≤k≤K of K + 1 elements of Rd produced from the successive steps of
an iterative optimization algorithm. For example, each θk could correspond to the parameters of a
neural network at epoch i, trained via a gradient descent algorithm, i.e.

θk+1 = θk − η∇f(θk),
with η the step size (or learning rate) of the algorithm. Local minimization of f is naturally achieved
by θ∗ where∇f(θ∗) = 0. RNA aims to linearly combine the parameters θk into an estimate θ̂

θ̂ =
∑
k≤K

ckθk s.t.
∑
k≤K

ck = 1, (1)

so that ∇f(θ̂) becomes smaller. In other terms, RNA output θ̂ which solves approximately

minc
∥∥∇f (∑k≤K ckθk

)∥∥2 subject to
∑

k≤K ck = 1. (2)

In the next subsection, we describe the algorithm and intuitively explain the acceleration mechanism
when using the optimization method (1), because this restrictive setting makes the analysis simpler.

2.1 REGULARIZED NONLINEAR ACCELERATION ALGORITHM

In practice, solving (2) is a difficult task. Instead, we will assume that the function f is approximately
quadratic in the neighbourhood of {θk}k≤K . This approximation is common in optimization for the
design of (quasi-)second order methods, such as the Newton’s method or BFGS. Thus, ∇f can be
considered almost as an affine function, which means:

−∇f
(∑

k≤K ckθk

)
≈
∑

k≤K ck∇f (θk) . (3)

From a finite difference scheme, one can easily recover {∇f(θk)}k from the iterates in (1), because
for any k, we have −η∇f(θk) = (θk+1 − θk). As linearized iterates of a flow tends to be aligned,
minimizing the `2-norm of (3) requires incorporating some regularization to avoid ill-conditioning

minc ‖Rc‖2 + λ‖c‖2 subject to
∑

k≤K ck = 1,

where R = [θ1 − θ0, . . . , θK − θK−1]. This exactly corresponds to the combination of steps 2
and 3 of Algorithm 1. Similar ideas hold is the stochastic case (Scieur et al., 2017), under limited
assumption on the signal to noise ratio.

Algorithm 1 Regularized Nonlinear Acceleration (RNA), (and computational complexity).
Input: Sequence of vectors {θ0, θ1, . . . , θK} ∈ Rd , regularization parameter λ > 0.

1: Compute R = [θ1 − θ0, . . . , θK − θK−1] O(K)
2: Solve (RTR+ λI)z = 1. O(K2d+K3)
3: Normalize c = z/(

∑
k≤K zk). O(K)

Output: θ̂ =
∑

k≤K ckθk. O(Kd)

2.2 PRACTICAL USAGE

We produced a software package based on PyTorch that includes in minimal modifications of exist-
ing standard procedures. As claimed, the RNA procedure does not require any access to the data,
but simply stores regularly some model parameters in a buffer. On the fly acceleration on CPU is
achievable, since one step of RNA is roughly equivalent to squaring a matrix of size d×K, to form a
K×K matrix and solve the corresponding system. K is typically 10 in the experiments that follow.

3 APPLICATIONS TO CNNS

We now describe the performance of our method on classical CNN training problems.

2



Workshop track - ICLR 2018

50 100 150 200 250 300 350

Epoch

0

5

10

15

20

25

30
Cifar10: % Top-1 Error (Validation Set)

VGG-19

VGG-19 + RNA

Resnet-18

Resnet-18 + RNA

Densenet-121

Densenet-121 + RNA

1 30 60 90

Epoch

30

35

40

45

50

55

60

65

70

75
Imagenet: % Top-1 Error (Validation Set)

AlexNet

AlexNet + RNA

Resnet-18

Resnet-18 + RNA

Figure 1: Comparison of Top-1 error between vanilla and extrapolated network.

3.1 CLASSIFICATION PIPELINES

Because the RNA algorithm is generic, it can be easily applied to many different existing CNN
training codes. We used our method with various CNNs on CIFAR10 and ImageNet; the first dataset
consists of 50k RGB images of size 32 × 32 whereas the latter is more challenging with 1.2M
images of size 224 × 224. Data augmentation via random translation is applied. In both cases, we
trained our CNN via SGD with momentum 0.9 and a weight decay of 10−5, until convergence. The
initial learning rate is 0.1 (0.01 for VGG and AlexNet), and is decreased by 10 at epoch 150, 250 and
30, 60, 90 respectively for CIFAR and ImageNet. For ImageNet, we used AlexNet (Krizhevsky et al.,
2012) and ResNet (He et al., 2016) because they are standard architectures in computer vision. For
the CIFAR dataset, we used the standard VGG, ResNet and DenseNet (Huang et al., 2017). AlexNet
is trained with drop-out (Srivastava et al., 2014) on its fully connected layers, whereas the others
CNNs are trained with batch-normalization (Ioffe & Szegedy, 2015).

In these experiments, each θk corresponds to the parameters resulting from one pass on the data. We
apply successively, off-line, at each epoch j the RNA on {θj−K+1, ...θj} and report the accuracy
obtained by the extrapolated CNN on the validation set. Here, we fix K = 10 and λ = 10−8.

3.2 NUMERICAL RESULTS

Figure 1 reports performance on the validation set of the vanilla and extrapolated CNN via RNA,
at each epoch. Observe that RNA accuracy convergence is smoother than on the original CNNs
which shows an effective variance reduction. In addition, we observe the impact of acceleration: the
accelerated networks quickly present good generalization performance, even competitive with the
best one. Note that several iterations after a learning rate drop are necessary to obtain acceleration
because this corresponds to a brutal change in the optimization. Furthermore, selecting the hyper-
parameter λ can be tricky: for example, a larger λ removes the outlier validation performance at
epoch 40 of Figure 1, for ResNet-18 on ImageNet. Here, we have deliberately chosen to use generic
parameters to make the comparison as fair as possible, but more sophisticated adaptive strategies
has been discussed by Scieur et al. (2017).

Tables 3.2 reports the lowest validation error of the vanilla architectures compared to their extrap-
olated counterpart. Off-line optimization by RNA has only slightly improved final accuracy, but
these improvements have been obtained after the training procedure, in an offline fashion, without
extra-learning.

Network Vanilla +RNA
VGG 6.18% 5.86%
Resnet18 4.71% 4.64%
Densenet 121 4.50% 4.42%

Network Vanilla +RNA
AlexNet 43.72% 43.72%
Resnet18 30.11% 29.64%

Table 1: Lowest Top-1 error on CIFAR10 (Left) and ImageNet (Right)

3



Workshop track - ICLR 2018

ACKNOWLEDGMENTS

REFERENCES

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pp. 1646–1654, 2014.

Osman Güler. New proximal point algorithms for convex minimization. SIAM Journal on Opti-
mization, 2(4):649–664, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, volume 1, pp. 3, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pp. 315–323, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems, pp. 3384–3392, 2015.

Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlinear acceleration. In
Advances In Neural Information Processing Systems, pp. 712–720, 2016.

Damien Scieur, Francis Bach, and Alexandre d’Aspremont. Nonlinear acceleration of stochastic
algorithms. In Advances in Neural Information Processing Systems, pp. 3985–3994, 2017.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4151–4161, 2017.

4


	Introduction
	Accelerating with Regularized Nonlinear Acceleration
	Regularized Nonlinear Acceleration Algorithm
	Practical Usage

	Applications to CNNs
	Classification pipelines
	Numerical results


