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ABSTRACT

Motivated by the challenging problem of modeling nonlinear dynamics of brain
activations in calcium imaging, we propose a novel approach for learning a nonlin-
ear differential equation model: a variable-projection optimization approach for
estimating the parameters of the multivariate (coupled) van der Pol oscillator. To
the best of our knowledge, we are the first to propose a successful approach to
learning such nonlinear dynamical model, and to demonstrate that it can accurately
capture nonlinear dynamics of the brain data. Furthermore, in order to further
improve the predictive accuracy when forecasting future brain activity, we use the
learned analytical van der Pol model to generate large amounts of simulated data
for LSTM pretraining, since brain imaging datasets are often limited in size, and
since the generic LSTM model may benefit from the oscillator prior imposed via
such pretraining. Indeed, the proposed combination of the analytical approach with
the general-purpose statistical LSTM model improves the performance of both
methods.

1 INTRODUCTION

Neuroscience is a source of exceedingly interesting and challenging data for analysis and modeling,
generated by the underlying multivariate coupled nonlinear dynamical system, a.k.a. the brain. Brain
activity clearly exhibits a highly nonlinear, oscillatory and periodic (or nearly periodic) behavior, with
sharp phase transitions between different states; thus, modeling such time series can be nontrivial.
Also, state-of-art temporal models such as LSTM networks may require large amounts of training
data, not always readily available in biological applications, in order to capture complex nonlinear
dynamical processes; moreover, such models generally lack interpretability.

In this work, we consider brain-wide calcium imaging larval zebrafish data Ahrens & et al (2013)
and propose a novel approach for estimating the parameters of van der Pol oscillator – an analytical
model governed by nonlinear ordinary differential equations, which describe calcium dynamics in the
brain using both observed voltage-like variables, reflecting voxel activity, and hidden recovery-like
variables, reflecting excitability. To the best of our knowledge, we are the first ones to propose an
approach to this problem, and demonstrate its successful application on real data. Note that fitting
parameters of linear state space systems is a well-studied problem. However, inferring parameters
from nonlinear ODEs requires more care, and we develop a specialized algorithm that is different from
the classic EM approach typically used for linear systems. Namely, we propose a variable-projection
optimization approach to estimate the parameters of the multivariate (coupled) van der Pol oscillator,
and demonstrate that the proposed model can accurately capture the nonlinear dynamics of the brain
data, and provide interpretable results as it learns a coupling matrix indicating interactions across
brain areas.

Furthermore, we improve the accuracy of predicting future brain activity using a combination of both
analytical van der Pol model and general-purpose statistical model such as LSTM, which outperforms
both techniques considered separately. Namely, the van der Pol model learned on relatively small
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training dataset is used as a simulator of unlimited pre-training data which effectively impose an
oscillatory "prior" on LSTM, i.e. a kind of regularizer which directs LSTM model towards specific
oscillatory patterns we assume are present in the data.

2 OUR APPROACH

Whole-Brain Calcium Imaging Data. In Ahrens & et al (2013), light-sheet microscopy was used to
record the neural activity of a whole brain of the larval zebrafish, reported by a genetically-encoded
calcium marker, in vivo and at 0.8 Hz sampling rate. From the publicly available data Channel (2013)
it is possible to obtain a movie of 500 frames with a 2D collapsed view of 80% of the approximately
40,000–100,000 neurons in the brain, with a resolution of 400 by 250 pixels (approximately 600 by
270 microns). We performed SVD to reduce the dimensionality of the data and we used the top 6
components explaining most of the variance (spatial components corresponding to brain areas; we
learn a coupled oscillator on time components).

Van der Pol Model. Because neuronal calcium dynamics are largely driven by transmembrane
voltage and voltage-dependent calcium channels, we propose to describe the calcium dynamics of a
neuron, or small clusters of them, as a 2D differential equation with a voltage-like variable (activity),
and a recovery-like variable (excitability), following similar approaches in the literature M. (2007).
In this paper, we propose the following nonlinear oscillator model for each scalar component:

ẋ1i(t) = α1x1i(t)(1− x1i2(t)) + α2x2i(t) +

m∑
j=1

Wijx1j(t) (1)

ẋ2i(t) = −α3x1i(t)

where x1i(t) and x2i(t) represent the (observed) activity- and the (hidden) recovery-like variables of
the i-th neural unit, respectively, and where the W matrix represents the coupling strength between
the observed variables, or neural units. The parameters αk determine the bifurcation diagram of
the system, allowing for a rich availability of possible dynamical states including oscillations and
spike-like responses S. (2003); M. (2007).

Our ultimate goal is to learn the dynamical model (1), i.e. to estimate the parameters αi, i = 1, ..., 5
and Wij , from calcium imaging data. We discretize the ODE model in equation (1), and formulate a
joint inference problem for the state space x and parameters α,W that is informed by noisy direct
observations of some components; and constrained by the discretized dynamics.

Parameter estimation. We consider learning one component firs, and then extend the approach to
multivariate model. Let xk ∈ R2 denote a component of the van der Pol model given earlier in the
equation (1), where xk = (xk1 , x

k
2), i.e. a combination of both the observed and the hidden variables,

and k is the time index. The discretized dynamics governing the evolution of the single component
x = (x1, x2) can be written as xk+1 = g(xk, α), where g is a first-order Euler discretization of the
nonlinear ODE (1). The same α inform the evolution of the entire time series x =

[
xT1 · · · xTN

]T
,

which we write as G(x, α) = η0, with

G(x, α) =


x1

x2 − g(x1, α)
...

xN − g(xN−1, α)

 , η0 =


x0

0
...
0

 . (2)

Given noisy observations zk = Hkx
k + ωk, we obtain consider ODE-constrained optimization

problem

min
x,α

1

2
‖z −Hx‖2 s.t. G(x, α) = η0, (3)

To solve this problem, we use a recent technique from PDE-constrained optimization, called the
penalty method van Leeuwen & Herrmann (2015). The technique is a new take on the quadratic
penalty method. Rewriting (6) with a quadratic penalty, we obtain the relaxed problem

min
x,α

fλ(x, α) :=
1

2
‖z −Hx‖2 + λ

2
‖G(x, α)− η0‖2. (4)
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Figure 1: Predictive performance: correlation between
the actual and predicted time series.

Figure 2: Predictive performance: root mean square
error (RMSE) between the actual and predicted time
series.

The key idea is to then use partial minimization with respect to x at each iteration of α (see appendix
for more detail).

Extending the model to m components, and incorporating W parameters besides α, we obtain
the coupled model shown previously in (1) (more details on the optimization are provided in the
Appendix). Furthermore, we implemented a combination of the above optimization with stochastic
search in order to improve parameter initialization before starting optimization; the combined
approach, alternating between stochastic search and variable-projection yielded best results.

3 EXPERIMENTS

First, we evaluated multiple runs of van der Pol estimation procedure described above, and obtained
high correlations between the actual data and the model’s prediction, ranging from 0.76 to 0.83 for
all six components, demonstrating that the model was able to capture well the underlying dynamics
in the data.

We next compared our van der Pol model, LSTM and hybrid O-LSTM approach (which consists in
simulating multiple times series from the van der Pol model estimated above and pretraining LSTM
before training it on real data), as well as baseline Vector Auto-Regressive (VAR) model. LSTM:
implementation details. Our LSTM networks, implemented in Keras, contained two layers, 128 units
in each layer, followed by the fully-connected layer and linear activation; we used the mean squared
error and the optimizer RMSProp; the drop-out rate was set to 0.8. We used a time window of 6 to
predict the next time point.

O-LSTM was pretrained with 100 epochs using the above simulated data, and then trained with 50
epochs on the real training dataset; the number of epochs was selected so that the total number of
samples used for training was the same for both simulated and real training data.

Figures 6 and 7 show the median correlation and the root-means square error, respectively, for several
predictive methods: vector autoregressive (VAR) model (magenta), van der Pol model (yellow),
LSTM (blue), and O-LSTM, i.e. LSTM pretrained on the data simulated using the above van der Pol
model (green). Here we estimated parameters of the models on 100 consecutive points of training
data, and then predicted the next 30 points (x-axis plots the index of the time points being predicted).

Note that the linear VAR model (magenta) performs poorly, unable to capture the nonlinear dynamics;
both van der Pol (yellow) and LSTM (blue) have somewhat comparable performance, outperforming
each other in shorter or in longer run; however the combination of both, O-LSTM model appears to
be superior to both, achieving best accuracy for majority of future time points.

3



Workshop track - ICLR 2018

REFERENCES

MB Ahrens and et al. Whole-brain functional imaging at cellular resolution using light-sheet
microscopy. Nature Methods, 10:413–420, 2013.

Aleksandr Y Aravkin, Dmitriy Drusvyatskiy, and Tristan van Leeuwen. Efficient quadratic penal-
ization through the partial minimization technique. IEEE Transactions on Automatic Control,
2017.

Discover Magazine Youtube Channel. Calcium imaging data from ahrens et al, (2013), March 2013.
URL https://www.youtube.com/watch?v=lppAwkek6DI.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Izhikevich E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
MIT Press„ 2007.

Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer„ 2003.

Tristan van Leeuwen and Felix J Herrmann. A penalty method for pde-constrained optimization in
inverse problems. Inverse Problems, 32(1):015007, 2015.

4 APPENDIX

5 ESTIMATING VAN DER POL PARAMETERS: KALMAN
SMOOTHING-CONSTRAINED INFERENCE

We discretize the ODE model in equation (1), and formulate a joint inference problem for the state
space x and parameters α,W that is informed by noisy direct observations of some components; and
constrained by the discretized dynamics.

5.1 INFERENCE FOR A SINGLE COMPONENT

Let xk ∈ R2 denote a component of the van der Pol model given earlier in the equation (1), where
xk = (xk1 , x

k
2), i.e. a combination of both the observed and the hidden variables, and k is the time

index. The discretized dynamics governing the evolution of the single component x = (x1, x2) can
be written

xk+1 = g(xk, α),

where g is a first-order Euler discretization of the nonlinear ODE (1). The same α inform the evolution
of the entire time series x =

[
xT1 · · · xTN

]T
, which we write as G(x, α) = η0, with

G(x, α) =


x1

x2 − g(x1, α)
...

xN − g(xN−1, α)

 , η0 =


x0

0
...
0

 . (5)

Given noisy observations
zk = Hkx

k + ωk,

we obtain consider ODE-constrained optimization problem

min
x,α

1

2
‖z −Hx‖2 s.t. G(x, α) = η0, (6)

Problem (6) is challenging because (1) the ODE constraint function G is nonlinear in x, and (2)
because it is a joint optimization problem over α. To solve this problem, we use a recent technique
from PDE-constrained optimization, called the penalty method van Leeuwen & Herrmann (2015).
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The technique is a new take on the quadratic penalty method. Rewriting (6) with a quadratic penalty,
we obtain the relaxed problem

min
x,α

fλ(x, α) :=
1

2
‖z −Hx‖2 + λ

2
‖G(x, α)− η0‖2. (7)

The key idea is to then use partial minimization with respect to x at each iteration of α, thinking of
the problem as follows:

min
α
f̃λ(α) := min

x
fλ(x, α).

The intuitive advantages of this method (find the best state estimate for each α regime) are borne out
by theory. In particular, for a large class of models, the objective function fλ(α) is well-behaved for
large λ, unlike the joint objective fλ(x, α) Aravkin et al. (2017)1.

Evaluating fλ(α) requires a minimization routine. We compute gradient and Hessian approximations

∇xfλ = HT (Hx− z) + λGTx (G(x, α)− η0)
∇2
xfλ ≈ HTH + λGTxGx

where Gx = ∇xG(x, α). Evaluating fλ requires obtaining an (approximate) minimizer x̂. With x̂ in
hand, ∇αfλ can be computed using the formula

∇αfλ(α) ≈ λGα(x̂, α)(G(x̂, α)− η0), Gα = ∇αG(x, α). (8)

The accuracy of the inner solve in x can be increased as the optimization over α proceeds. Con-
straints can also be placed on α if desired, to eliminate non-physical regimes or to incorporate prior
information.

5.2 EXTENSION TO m COMPONENTS

In addition to estimating the dynamic parameters α, we are also interested in inferring the connectivity
matrix W . Extending the model to m components, we obtain the coupled model shown previously in
(1). We discretize the entire dynamic model again using a first-order Euler scheme to get g(xk, α,W ),
so that the full nonlinear process model G now has form

G(x, α,W ) =


x1

x2 − g(x1, α,W )
...

xN − g(xN−1, α,W )

 , (9)

with x ∈ R2mN .

The optimization approach for m components is analogous to the single-component case with only α
unknown. Specifically we consider

min
x,α,W

fλ(x, α,W ) :=
1

2
‖z −Hx‖2 + λ

2
‖G(x, α,W )− η0‖2,

and optimize this function by partially minimizing in x and then working with the value function

f̃λ(α,W ) = min
x
fλ(x, α,W ).

For the m-parameter case, we optimize over x at each iteration using the Gauss-Newton method
detailed in the previous section. The outer iteration is a fast projected gradient method for minimizing
f̃λ(α,W ) subject to simple bound constraints.

1Specifically, the Lipschitz constant of the gradient of f̃λ(·) stays bounded as λ ↑ ∞, which is clearly false
for fλ(·, ·).
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Figure 3: Van der Pol optimization procedure: variable-projection augmented with stochastic search.

6 LEARNING VAN DER POL MODEL:
VARIABLE-PROJECTION + STOCHASTIC SEARCH

Optimizing van der Pol model can benefit considerably from a good initialization of its parameters,
as we observed in multiple experiments. To improve initialization, we start with a random walk
(stochastic search) in the parameter space, aiming at producing a reasonably good starting point for
the optimization procedure; given a combination of parameters, we simulate time series using the
corresponding van der Pol model, and measure the correlation and the mean-squared error between
the simulated and the real (training) data, discarding the parameters whose performance metrics
are under some threshold. Once a sufficiently high-performing model is found, we switch to the
variable-projection (VP) method described above, initialized with the current parameters, which
are now optimized even further; the whole process of alternating between random walk and VP
optimization can be repeated several times, as shown in Figure 3. This combined procedure will be
referred to in our subsequent section as simply van der Pol optimization.

Stochastic search: implementation details. We start with an initial guess for alphas (same value
for all univariate oscillators), zero connectivity matrix W and a random guess for the initial condition
of the hidden variables, x2(0). At every stochastic search step, these parameters are updated in
a certain stochastic way, described below, and the differential equations with the new parameters
are integrated; if the resulting time-series solution improves the fit to the training data, the new
parameters are accepted, otherwise they are dismissed. As a measure of the goodness of fit we use a
linear combination of the Symmetric Mean Absolute Percentage Error and the Pearson correlation.
In the first stage of our search, we only update αs and x2(0), while keeping zero weight matrix W
(i.e., disconnected components). In each step, one of the components xi is chosen randomly, and
its corresponding αs and x2i(0) are changed using a Gaussian random walk. Also, once in a while,
larger steps are taken (with greater than usual variance), in order to escape potential local minima.
After the above initial stage, assuming a reasonably good parameters of individual oscillators are
obtained, we start changing all parameters, including W . Unlike the rest of the parameters, all the
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Figure 4: Van der Pol model fit on simulated data.

components of W change at every step, though normally using smaller (low-variance) random steps,
in between less frequent higher-variance ones.

VP and Stochastic Search combination: implementation details. As described above, we esti-
mate van der Pol parameters using a combination of stochastic search and variable-projection (VP)
optimization. In our experiments, up to 200000 stochastic steps were used with a maximum of 50
outer iterations of the VP optimization every 1000 stochastic steps. The W matrix remains zero
for the first 15000 iterations. However the starting step for the optimization is random (uniformly
distributed between 1 and 1000) in order to contribute for getting different resultant fittings, and
associated parameters, after every run. Large stochastic steps are performed after every 30 small
steps; the variance in W steps increases by one order of magnitude (from 0.01 to 0.1); for α steps,
the variances remains the same (0.1), but larger steps involve changing all components at once, rather
than one at a time in smaller steps. After experimenting with various values of λ parameter in the VP
optimization, we chose λ = 3e9.

Time series prediction.
Once a van der Pol model is trained on a given time window, we can use it to predict the future time
series, by integrating the model with the given parameters and the initial hidden state variable.

Interpretability.
Note that one of the advantages of the analytical van der Pol model is its interpretability, as it learns
the interaction matrix W among different spatial components, i.e. brain areas.

7 HYBRID APPROACH: OSCILLATOR-PRETRAINED LSTM (O-LSTM)

Clearly, an alternative to learning an analytical model, such as van der Pol, would be to use a general-
purpose statistical model for time-series prediction, such as, for example, Vector Autoregressive
Model (VAR) or recurrent neural network, in particular, LSTM networks. However, we found that the
linear VAR model was not capturing well nonlinear dependencies in our data (as shown later in the
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Figure 5: Van der Pol model fit on training data; correlations between the true and predicted time series for each
of the six temporal SVD components. Bottom-right: an interaction matrix W .

empirical section), while LSTM networks were much more effective, while neither LSTM nor van
der Pol model where dominating its rival in all settings; as we will see shortly, combining the two
approaches led to the best performance. We will first provide a brief background on LSTM model.

7.1 BACKGROUND: LONG SHORT-TERM MEMORY (LSTM)

Recurrent neural networks take input in the shape of a sequence x = (x1, ..., xT ) and compute hidden
vector sequence h = (h1, ..., hT ) and output vector y = (y1, ..., yT ) by iterating the following
equations from t = 1 to T :

ht = H(Wxhxt +Whhht−1 + bh) (10)
yt =Whyht + by, (11)

where the W terms denote weight matrices, b terms denote bias vectors, and H is the hidden layer
function.

Given the dynamic nature of neural responses and therefore EEG, using recurrent neural networks
(RNN) is a reasonable choice for modeling brain activity’s temporal evolution. Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a RNN with improved memory. It uses
memory cells with an internal memory and gated inputs/outputs which have shown to be more
efficient in capturing long-term dependencies. The hidden layer function for LSTM is computed by
the following set of equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (12)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (13)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (14)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (15)

ht = ot tanh(ct), (16)

where σ is the logistic sigmoid function, and the components of the LSTM model, referred to as input
gate, forget gate, output gate and cell activation vectors are denoted, respectively, as i, f , o, and c
(see (Hochreiter & Schmidhuber, 1997) for details).

LSTM: implementation details. Our LSTM networks, implemented in Keras, contained two layers,
128 units in each layer, followed by the fully-connected layer and linear activation; we used the mean
squared error and the optimizer RMSProp; the drop-out rate was set to 0.8.
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We used LSTM for multivariate time-series prediction, where each time point t is represented by an
n-dimensional vector (corresponding, in our case, to temporal components of the data at time t). We
denote by LSTM(k) the model which uses the previous k time points to predict the k + 1-st time
point. The prediction of the time step k + 2 is performed by shifting the window of length k one
step forward and using the prediction for the k + 1-st data point a new data point, iteratively. In our
experiments, several values of k were tried and k = 6 was selected.

7.2 LSTM WITH OSCILLATORY PRIOR (O-LSTM)

In general, given a relatively small amount of data for training LSTM, and a prior knowledge of
some data properties, such as an oscillatory behavior, in our case, it would be best to find a way to
inform LSTM about such a prior, i.e. to combine the generic statistical model such as LSTM with a
domain-specific analytical model such as van der Pol.

We propose here a conceptually simple approach for introducing such prior into general-purpose
LSTM: pretraining LSTM on a large amount of simulated data obtained from van der Pol, before
"fine-tuning" LSTM on a relatively small amount of available real data, hoping that the data simulated
from the analytical model will bias/regularize the LSTM model towards oscillating time series. More
specifically, we propose the following procedure :

1. train n van der Pol models (using the stochastic procedure in Figure 3) on the training data;
2. for each of those models, simulate m noisy versions of time series (each of length k)

obtained by integrating the model;
3. pre-train LSTM on the simulated data
4. continue LSTM training on real training data

O-LSTM: implementation details. Simulated data for pretraining LSTM contained 15 noisy
versions of the 18 simulated time-series (160 time steps each), obtained by integrating the van der
Pol equations with different sets of parameters estimated as described previosuly, by a combination
of VP method and stochastic search.

LSTM was pretrained with 100 epochs using the above simulated data, and then trained with 50
epochs on the real training dataset; the number of epochs was selected so that the total number of
samples used for training was the same for both simulated and real training data.

8 EXPERIMENTS

Figure 6: Predictive performance: correlation between
the actual and predicted time series.

Figure 7: Predictive performance: root mean square
error (RMSE) between the actual and predicted time
series.

We now present our empirical results, including (1) simulated results; (2) the quality of van der Pol
model fit on the training data, (3) predictive accuracy when forecasting time series using our van der
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Pol model, LSTM and hybrid O-LSTM, as well as baseline Vector Auto-Regressive (VAR) model,
and (4) a brief discussion of interpreting van der Pol interaction matrix.

8.1 SIMULATED DATA

First, we simulated time series using van der Pol models with a variety of parameter values, and
provided our algorithm with the initial value of the hidden variable, just to assess the ability of our
approach to recover hidden component which is unavailable in real data. Figure 4 presents the results
for one of such experiments, where the recovered observed and hidden components match the actual
ones very closely.

8.2 EVALUATING VAN DER POL MODEL FIT ON REAL DATA

Next, we evaluated multiple runs of van der Pol estimation procedure described above, combining
stochastic search with VP optimization; Figure 5 shows the fit to the training data achieved by one of
the best-performing model; we can see that the correlations between the actual data and the model’s
prediction are quite high, ranging from 0.76 to 0.83 for all six components, demonstrating that the
model was able to capture well the underlying dynamics in the data.

In the right bottom corner of the figure, we plot the coupling matrix W . As mentioned before, this ma-
trix represents the coupling strength between the different components, which, in turn, correspond to
particular brain areas (spatial components shown before in Figure ??). Thus, W contains an interest-
ing information about interactions (positive and negative) across different brain regions/subnetworks.
For example, we oserve a strong positive interactions between the components 4 and 5, which
correspond to the brain areas where an "flip-flop" oscillating behavior can be clearly observed (e.g.,
see the 2D version of the temporal data at https://www.youtube.com/watch?v=lppAwkek6DI).

8.3 PREDICTION ON TEST DATA

Figures 6 and 7 show the median correlation and the root-means square error, respectively, for several
predictive methods: vector autoregressive (VAR) model (magenta), van der Pol model (yellow),
LSTM (blue), and O-LSTM, i.e. LSTM pretrained on the data simulated using the above van der Pol
model (green). Here we estimated parameters of the models on 100 consequtive points of training
data, and then predicted the next 30 points (x-axis plots the index of the time points being predicted).

Note that the linear VAR model (magenta) performs poorly, unable to capture the nonlinear dynamics;
both van der Pol (yellow) and LSTM (blue) have somehwat comparable perfromance, outperforming
each other in shorter or in longer run; however the combination of both, O-LSTM model appears to
be superior to both, achieving best accuracy for majority of future time points.
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