Workshop track - ICLR 2017

SHAKE-SHAKE REGULARIZATION OF 3-BRANCH
RESIDUAL NETWORKS

Xavier Gastaldi
xgastaldi.mba20l1l@london.edu

ABSTRACT

The method introduced in this paper aims at helping computer vision practitioners
faced with an overfit problem. The idea is to replace, in a 3-branch ResNet, the
standard summation of residual branches by a stochastic affine combination. The
largest tested model improves on the best single shot published result on CIFAR-
10 by reaching 2.86% test error. Code is available athttps://github.com/
xgastaldi/shake-shake

1 INTRODUCTION

Deep residual nets (He et al.l |2016a)) were first introduced in the ILSVRC & COCO 2015 com-
petitions (Russakovsky et al.| [2015; |[Lin et al.| [2014), where they won the 1st places on the tasks
of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation. Since
then, significant effort has been put into trying to improve their performance. Scientists have inves-
tigated the impact of pushing depth (He et al., 2016b; |Huang et al., 2016a)), width (Zagoruyko &
Komodakis}, 2016)) and cardinality (Xie et al., 2016} Szegedy et al.,2016;|Abdi & Nahavandi, [2016).

On the regularization side, the introduction of Batch Normalization (loffe & Szegedyl 2015) re-
duced the effectiveness of Dropout (Srivastava et al., [2014)) on computer vision datasets (see |loffe
& Szegedy| (2015); |[Zagoruyko & Komodakis| (2016); [Huang et al.|(2016b))). Searching for alterna-
tives, researchers started to look at the possibilities specifically offered by multi-branch networks.
Some of them noticed that, given the right conditions, it was possible to randomly drop some of the
information paths during training (Huang et al.| 2016b; |Larsson et al., 2016).

Finally, this paper is also related to Shakeout (Kang et al., 2016) (see appendix for details on sim-
ilarities and differences) and to work which has shown that adding noise to activations or weights
reduces overfit (An, [1996; [Blundell et al., 2015}, Neelakantan et al.,[2015]).

The method proposed in this document builds on this previous research and aims at improving the
generalization ability of 3-branch residual networks by replacing, for the residual branches, the
standard summation by a stochastic affine combination.

1.1 MODEL DESCRIPTION

Let x; denote the tensor of inputs into residual block i. Wi(l) and Wi(2) are sets of weights associated
with the 2 residual units. F denotes the residual function, e.g. a stack of two 3x3 convolutional
layers. z;41 denotes the tensor of outputs from residual block :.

A typical pre-activation ResNet with 2 residual branches would follow this equation:

zip1 = i + Flai, W) + Fla, W) ()

Proposed modification - If «; is a random variable following a uniform distribution between 0 and
1, then during training:

Tiy1 = T; + ai]-'(:ci, Wi(l)) + (1 — Ozi)]:(l‘i, Wi(2)) 2)

Following the same logic as for Dropout, all «; are set to the expected value of 0.5 at test time.

https://github.com/xgastaldi/shake-shake
https://github.com/xgastaldi/shake-shake

Workshop track - ICLR 2017

«; «<— rand(0,1)

EmEm || oo

Mul(0.5)

Mul(B) Mul(1-) Mul(0.5)

addition addition P; < rand(0,1) addition

Figure 1: Left: Forward training pass. Center: Backward training pass. Right: At test time.

1.2 TRAINING PROCEDURE

As shown in Figure[T] all scaling coefficients are overwritten with new random numbers before each
forward pass. The key to making this work is to repeat this coefficient update operation before each
backward pass. This results in a stochastic blend of forward and backward flows during training.

1.3 MOTIVATION

This work started as an investigation into the possibility to perform internal tensor augmentation.
The core idea behind this attempt was the belief that, for a computer, there is no real difference
between an input image and an intermediate representation, both are tensors, the only difference is
their shape. We treat them differently because we can’t interpret a 128x8x8 tensor but can interpret
a 3x32x32 image. A computer doesn’t suffer from this prejudice, it sees them all as images. Con-
tinuing with this line of thought, a computer probably sees gradients as images too, which means
that gradient augmentation might also be a possibility. Assuming this can be done, it is reasonable
to assume that this might produce stronger results than noise injection since Batch Normalization
reduces the effectiveness of Dropout (at the input image level or inside the network) but does not
seem to affect the effectiveness of data augmentation (at the input image level). This architecture
was created as an attempt to produce a softer augmentation effect than random crops or flips. The
reasoning was that, for a computer, the affine combination would be somewhat similar to blending
the pictures of a labrador at 70% opacity and of a chihuahua at 30% opacity. This blended picture
would be more difficult to classify as a dog but it wouldn’t be impossible.

2 INFLUENCE OF FORWARD AND BACKWARD TRAINING PROCEDURES

This architecture was tested on CIFAR-10 (Krizhevskyl [2009). The Shake-Shake code is
based on fb.resnet.torcH!| and is available at https://github.com/xgastaldi/
shake-shake. All the implementation details can be found in appendix. The base network is
a 26 2x32d ResNet (i.e. the network has a depth of 26, 2 residual branches and the first residual
block has a width of 32). ”Shake” means that all scaling coefficients are overwritten with new ran-
dom numbers before the pass. “Even” means that all scaling coefficients are set to 0.5 before the
pass. “Keep” means that we keep, for the backward pass, the scaling coefficients used during the
forward pass. “Batch” means that, for each residual block i, we apply the same scaling coefficient
for all the images in the mini-batch. “Image” means that, for each residual block ¢, we apply a
different scaling coefficient for each image in the mini-batch. The numbers in Table [T| represent the
average of 3 runs except for the 96d models which were run 5 times.

'https://github.com/facebook/fb.resnet.torch

https://github.com/xgastaldi/shake-shake
https://github.com/xgastaldi/shake-shake
https://github.com/facebook/fb.resnet.torch

Workshop track - ICLR 2017

Table 1: Error rates (%) on CIFAR-10. Results that surpass all competing methods by more than
0.1% are bold and the overall best result is blue

Model
Forward Backward Level 262x32d 262x64d 26 2x96d
Even Even n/a 4.27 3.76 3.58
Even Shake Batch 4.44 - -
Shake Keep Batch 4.11 - -
Shake Even Batch 3.47 3.30 -
Shake Shake Batch 3.67 3.07 -
Even Shake Image 4.11 - -
Shake Keep Image 4.09 - -
Shake Even Image 3.47 3.20 -
Shake Shake Image 3.55 2.98 2.86

What can be observed in Table[T] and Figure [2]is that "Shake-Keep” or ”S-K” models (i.e. ”Shake”
— Forward — ”Keep” — Backward) do not have a particularly strong effect on the error rate. The
network seems to be able to see through the perturbations when the weight update is done with the
same ratios as during the forward pass. “Even-Shake” only works when applied at the “Image” level.
”Shake-Even” and “’Shake-Shake” models all produce strong results at 32d but the better training
curves of “Shake-Shake” models start to make a difference when the number of filters of the first
residual block is increased to 64d. Applying coefficients at the “Image” level seems to improve
regularization.

Error rate Error rate

T+t
0 500 1000 1500 0 500 1000 1500

epoch gpoch

o F———

Figure 2: Left: Training curves of a selection of 32d models Right: Training curves (dark) and test
curves (light) of the 96d models.

As of Feb. 16 2017, the best single shot model on CIFAR-10 is a DenseNet-BC k=40 (3.46%
error rate) with 25.6M parameters. The second best model is a ResNeXt-29, 16x64d (3.58% error
rate) with 68.1M parameters. A small 26 2x32d ”Shake-Even-Image” model with 2.9M parameters
obtains approximately the same error rate. That’s roughly 9 times less parameters than the DenseNet
model and 23 times less parameters than the ResNeXt model. A 26 2x96d ”Shake-Shake-Image”
ResNet with 26.2M parameters, reaches a test error of 2.86‘%@

3 CONCLUSION

Early experiments seem to indicate an ability to combat overfit. While these results are encouraging,
further tests need to be performed to explore the possibilities offered by this regularization method.

2 Average of 5 runs. Median 2.87%, Min = 2.72%, Max = 2.95%.

Workshop track - ICLR 2017

REFERENCES

Masoud Abdi and Saeid Nahavandi. Multi-residual networks. arXiv preprint arXiv:1609.05672,
2016.

Guozhong An. The effects of adding noise during backpropagation training on a generalization
performance. Neural Comput., 1996.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In ICML’15. 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016b.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
arXiv preprint arXiv:1608.06993, 2016a.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In ECCV, 2016b.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In /ICML, 2015.

Guoliang Kang, Jun Li, and Dacheng Tao. Shakeout: A new regularized deep neural network
training scheme. In AAAI Conference on Artificial Intelligence, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
works without residuals. arXiv preprint arXiv:1605.07648, 2016.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollér, and C. Lawrence Zitnick. Microsoft COCO:
Common objects in context. In ECCV, 2014.

Ilya Loshchilov and Frank Hutter. Sgdr: stochastic gradient descent with restarts. arXiv preprint
arXiv:1608.03983, 2016.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alex A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In ICLR 2016 Workshop, 2016.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. arXiv preprint arXiv:1611.05431, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Workshop track - ICLR 2017

A IMPLEMENTATION DETAILS

The first layer is a 3x3 Conv with 16 filters, followed by 3 stages each having 4 residual blocks. The
feature map size is 32, 16 and 8 for each stage. Width is doubled when downsampling. The network
ends with a 8x8 average pooling and a fully connected layer (total 26 layers deep). Residual paths
have the following structure: ReLU-Conv3x3-BN-ReLU-Conv3x3-BN-Mul. The skip con-
nections represent the identity function except during downsampling where a slightly customized
structure consisting of 2 concatenated flows is used. Each of the 2 flows has the following com-
ponents: 1x1 average pooling with step 2 followed by a 1x1 convolution. The input of one of the
two flows is shifted by 1 pixel right and 1 pixel down to make the average pooling sample from a
different position. The concatenation of the two flows doubles the width. Models were trained on
the CIFAR-10 50k training set and evaluated on the 10k test set. Standard translation and flipping
data augmentation is applied on the 32x32 input image. Due to the introduced stochasticity, all mod-
els were trained for 1800 epochs. Training starts with a learning rate of 0.2 and is annealed using
a Cosine function without restart (see |Loshchilov & Hutter| (2016)). All models were trained on 2
GPUs with a mini-batch size of 128. Other implementation details are as in fb.resnet.torch.

B ANALYSIS OF SIMILARITIES AND DIFFERENCES BETWEEN SHAKE-SHAKE
AND SHAKEOUT

B.1 SIMILARITIES

Both methods use the idea of replacing bernoulli variables by scaling coefficients.

B.2 DIFFERENCES

Starting points: The starting point for Shakeout is Dropout while the starting point for Shake-
Shake is a mix of FractalNet drop-path and Stochastic Depth (if we imagine applying drop-path to
a 3 branch ResNet where the skip connection is never dropped). Dropping a path is equivalent to
setting «; to 0 or 1.

Multiplications: Both Dropout and Shakeout perform an element-wise multiplication between 2
tensors. In the case of Dropout, the usual steps are to:

1. Create a tensor of the same size as the input tensor
2. Fill this tensor with Os and 1s taken from a Bernoulli distribution

3. Perform an element-wise multiplication between this noise tensor and the original input

In the case of Shakeout the Bernoulli distribution is replaced by eq (1) in the Shakeout paper.

Shake-Shake, on the other hand, multiplies the whole mini-batch tensor with just one scalar «; (or
1-— Oél').

Applying Shake-Shake regularization at the Image level is slightly more complex but follows
the same logic. Let xy denote the original input mini-batch tensor of dimensions 128x3x32x32.
The first dimension stacks 128 images of dimensions 3x32x32. Inside the second stage of a 26
2x32d model, this tensor is transformed into a mini-batch tensor x; of dimensions 128x64x16x16.
Applying Shake-Shake regularization at the Image level means slicing this tensor along the first
dimension and, for each of the 128 slices, multiplying the j** slice (of dimensions 64x16x16) with
a scalar a; 5 (or 1 — a 4).

Forward - Backward: Shakeout keeps the same coefficients between the Forward and Backward
passes whereas Shake-Shake updates them before each pass (Forward and Backward).

Number of flows: Shake-Shake regularization works by summing up 2 residual flows plus a skip
connection whereas Shakeout only needs one flow.

	Introduction
	Model description
	Training procedure
	Motivation

	Influence of Forward and Backward training procedures
	Conclusion
	Implementation details
	Analysis of similarities and differences between Shake-Shake and Shakeout
	Similarities
	Differences

