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ABSTRACT

(Pseudo)random sampling, a costly yet widely used method in (probabilistic) ma-
chine learning and Markov Chain Monte Carlo algorithms, remains unfeasible
on a truly large scale due to unmet computational requirements. We introduce
an energy-efficient algorithm for uniform Float16 sampling, utilizing a room-
temperature stochastic magnetic tunnel junction device to generate truly random
floating-point numbers. By avoiding expensive symbolic computation and map-
ping physical phenomena directly to the statistical properties of the floating-point
format and uniform distribution, our approach achieves a higher level of energy ef-
ficiency than the state-of-the-art Mersenne-Twister algorithm by a minimum factor
of 9721 and an improvement factor of 5649 compared to the more energy-efficient
PCG algorithm. Building on this sampling technique and hardware framework, we
decompose arbitrary distributions into many non-overlapping approximative uni-
form distributions along with convolution and prior-likelihood operations, which
allows us to sample from any 1D distribution without closed-form solutions. We
provide measurements of the potential accumulated approximation errors, demon-
strating the effectiveness of our method.

1 INTRODUCTION

The widespread implementation of artificial intelligence (AI) incurs significant energy use, financial
costs, and CO2 emissions. This not only increases the cost of products, but also presents obstacles
in addressing climate change. Traditional AI methods like deep learning lack the ability to quantify
uncertainties, which is crucial to address issues such as hallucinations or ensuring safety in critical
tasks. Probabilistic machine learning, while providing a theoretical framework for achieving much-
needed uncertainty quantification, also suffers from high energy consumption and is unviable on a
truly large scale due to insufficient computational resources (Izmailov et al., 2021). At the heart
of probabilistic machine learning and Bayesian inference is Markov Chain Monte Carlo (MCMC)
sampling (Kass et al., 1998; Murphy, 2012; Hoffman & Gelman, 2014). Although effective in
generating samples from complex distributions, MCMC is known for its substantial computational
and energy requirements, making it unsuitable for large-scale deployment for applications such as
Bayesian neural networks (Izmailov et al., 2021). In general, random number generation is an
expensive task that is required in many machine learning algorithms.

To address these challenges, this paper proposes a novel hardware framework aimed at improving
energy efficiency, in particular tailored for probabilistic machine learning methods. Our frame-
work builds on uniform floating-point format sampling utilizing stochastically switching magnetic
tunnel junction (s-MTJ) devices as a foundation, achieving significant gains in both computational
resources and energy consumption compared to current pseudorandom number generators. In con-
trast to existing generators, this device-focused strategy not only enhances sampling efficiency but
also incorporates genuine randomness originating from the thermal noise in our devices. Simultane-
ously, this noise is crucial for the probabilistic functioning of the s-MTJs and is associated with low
energy costs during operation.

We present an acceleration approach for efficiently handling probability distributions. Our experi-
ments confirm its effectiveness by quantifying potential approximation errors. This work does not
seek to create a one-size-fits-all setting for all possible probabilistic algorithms that manage proba-
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bility distributions. Rather, we offer a solution approach that researchers can customize and utilize
based on individual required sampling resolution dependent on a specific algorithm.

Our contributions can summarized as follows:

1. We present a novel, highly energy-efficient stochastically switching magnetic tunnel junc-
tion device which is designed to improve both the energy efficiency and precision of our
sampling approach. The device is capable of generating samples from a Bernoulli distribu-
tion whose parameter p can be controlled using a current bias.

2. We present a closed-form solution that defines the parameters for a collection of Bernoulli
distributions applied to the bit positions of the floating-point format, leading to samples that
adhere to a distribution without the need for symbolic calculations. Our simulations indi-
cate that this hardware configuration surpasses existing random number generators in terms
of energy efficiency by a factor of 5649 when using Float16. Additionally, our method
achieves genuine randomness through the use of thermal noise in our hardware devices. In
general, this approach is suitable for any entropy source device or even (pseudo)random
number generator that can produce bits in a reliable (and efficient) Bernoulli fashion.

3. We propose the representation of arbitrary one-dimensional distributions using a mixture
of uniforms model. This approach utilizes our highly efficient hardware-supported uniform
sampling approach to enable sampling from arbitrary 1D distributions. We introduce con-
volution and prior-likelihood transformations for this model to learn and sample from such
distributions without closed-form solutions. Our experimental evaluation shows that this
method is effective, as evidenced by the small approximation error in KL-divergence when
compared to sampling results from known closed-form solutions (0.0343± 0.1473 for the
convolution and 0.0141± 0.1073 for prior-likelihood) for basic usage scenarios.

All code of our experiments is available at www.github.com/TBA.

The structure of this paper begins by reviewing relevant work on random number generation and
Markov-Chain-Monte-Carlo algorithms for probabilistic machine learning in Section 2. Section 3
provides an introduction to the floating-point format, which is the format utilized for generating
samples. In the Approach Section 4, we introduce the stochastically switching magneto-tunneling
junction device being utilized in our approach. Following this, we outline a configuration for these
devices to generate uniform floating-point samples, addressing the statistical challenge of mapping
Bernoulli distributions to specific bitstring positions within the floating-point format. Additionally,
we propose our approach for representing, sampling, and converting arbitrary 1D-distributions us-
ing a mixture of uniforms as representation. Section 5 illustrates our approach through particular
instances and assesses potential approximation errors arising from both the devices and our theoreti-
cal framework in the Float16 format. The paper concludes with Section 6, where we summarize our
findings and outline further research directions. We used LLM-based tools to improve the writing
style and code generation. All reported experiments and simulations can be performed on consumer-
grade computers.

2 RELATED WORK

A majority of artificial intelligence algorithms rely on random number generators. Random num-
ber generators (RNG) are employed for weight initialization or dropout in deep learning or taking
random actions in reinforcement learning. In probabilistic machine learning, Markov-Chain-Monte-
Carlo (MCMC) algorithms utilize them for sampling from proposal distributions or for making de-
cisions on whether to accept or reject samples based on random draws.

Hence, the research community focused on the development of efficient random number generators
(L’Ecuyer, 1994) and their infrastructure (Tan et al., 2021; Nagasaka et al., 2018) shares similar-
ities to this work. Physical (true) random number generators (TRNG) using physical devices is
an active research field since the 1950s (L’Ecuyer, 2017). Currently used random number genera-
tors are often feasability-motivated free-running oscillators with randomness from electronic noise
(Stipcevic & Koç, 2014). A very recent subfield are Quantum Based Random Number generators
(QRNG) (Mannalatha et al., 2023; Józwiak et al., 2024; Stipcevic & Koç, 2014; Herrero-Collantes &
Garcia-Escartin, 2017). The concept of employing stochastic magnetic tunnel junctions for random
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number generation has been investigated in recent years. Although these methods generally outper-
form traditional algorithmic random number generators in terms of energy efficiency, they lack three
crucial features for machine learning applications that our approach addresses. First, they lack the
ability to directly produce results using the floating-point format (Zhang et al., 2024; Chen et al.,
2022; Oosawa et al., 2015; Perach et al., 2019), which is critical for machine learning applications.
Converting results to floating-point format later (Fu et al., 2023) introduces unnecessary overhead,
reducing energy efficiency. In general, the unequal spacing characteristic of the floating-point format
complicates the transition from integers, making it non-trivial to maintain all possible floating-point
number candidates within a specific distribution. Second, most works lack the flexibility to generate
arbitrary distributions. Zhang et al. (2024) propose using a conditional probability table for this
purpose. However, their method involves adjusting the current bias for each bit in a sample and
repeating this process for every required sample, which substantially increases energy consumption.
In addition, sequential operations that scale with the number of bits reduce the achievable sampling
speed. Furthermore, they address integer generation only, making their work unsuitable for machine
learning applications. Finally, none of the works addresses directly sampling from a product of
likelihoods (distributions) as often encountered in probabilistic machine learning. It should be noted
that our conceptual approach can in principle be applied with any RNG that generates parametrizable
Bernoulli distributions, given that they are sufficiently (energy-)efficient.

MCMC methods like Metropolis-Hastings (Hastings, 1970; Metropolis et al., 1953) and the state-of-
the-art Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) algorithm are crucial for this research.
The use of MCMC for Bayesian inference and probabilistic machine learning represents the core
application area of this paper, aiming to achieve computational and energy-efficient deployment at
a large scale. Furthermore, (pseudo)random number generation is often discussed in the context of
Monte Carlo approaches as they are closely intertwined and take advantage of efficient random num-
ber sampling as proposed by us. On the other hand, we propose an alternative hardware-supported
approach to the MCMC algorithms themselves with our mixture model. In general, our approach
differs from traditional pseudorandom number generation of MCMC algorithms as we employ a
genuinely random sampling method, making it less suitable for scenarios requiring reproducibility
(L’Ecuyer, 2017; Holohan, 2023; Hill, 2015) or reversability (Yoginath & Perumalla, 2018), our
objectives align in efficient random number generation and genuine statistical independence.

Antunes & Hill (2024) accurately measured the energy usage of random number generators
(Mersenne-Twister, PCG, and Philox) in programming languages and frameworks such as Python,
C, Numpy, Tensorflow, and PyTorch, thus providing a quantification of energy consumption in tools
relevant to AI. The energy measurements of this benchmark serve as baseline against our approach.

3 PRELIMINARIES

We use the floating-point format as the number representation of interest as this is also the format
that machine learning algorithms use. We define a generic floating-point number as follows:

x = ±2e−b · d1.d2 . . . dt, (1)

where e is the exponent adjusted by a bias b, d1.d2 . . . dt represent the mantissa, di ∈ {0, 1}, and
d1 = 1 indicates an implicit leading bit for normalized numbers.

While our approach is generally applicable to any floating-point format, we demonstrate the ap-
proach for the Float16 format in this paper. The use of the Float16 format compared to formats with
more precision bits is advantageous in a real-world setting as it demands less rigor in setting the
current bias for the s-MTJ devices, which is especially relevant for higher-order exponent bits.

In the following, we describe a Float16 number by its 16-bit organization

B = (b0, b1, . . . , b15), (2)

where b15 is the sign bit, b14 to b10 are the exponent bits with a bias of 15, and b9 to b0 are the
mantissa bits. The implicit bit remains unexpressed. This arrangement represents the actual storage
format of the bits in memory. By expressing the floating-point format in terms of its bit structure,
we can directly map an s-MTJ device’s output bit to its equivalent position in the Float16 format.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 APPROACH

4.1 PROBABILISTIC SPINTRONIC DEVICES

Spintronic devices are a class of computing (logic and memory) devices that harness the spin of
electrons (in addition to their charge) for computation (Žutić et al., 2004). This contrasts with tradi-
tional electronic devices which only use electron charges for computation. In essence, we interpret
the upwards and downwards electronic spin as binary states instead of their charge. Changing state
corresponds to changing the direction of the spin. The field of spintronics holds potential for low-
ering energy consumption in comparison to conventional electronics. Applying insufficient current
results in the electronic spin states exhibiting probabilistic behavior due to ambient temperature. In
this research, we utilize this probabilistic behavior by aligning it directly with algorithmic require-
ments.

Spintronic devices are built using magnetic materials, as the magnetization (magnetic moment per
unit volume) of a magnet is a macroscopic manifestation of its correlated electron spins. The pro-
totypical spintronic device, called the magnetic tunnel junction (MTJ), is a three-layer device which
can act both as a memory unit and a switch (Moodera et al., 1995). It consists of two ferromag-
netic layers separated by a thin, insulating non-magnetic layer. When the magnetization of the two
ferromagnetic layers is aligned parallel to each other, the MTJ exhibits a low resistance (RP ). Con-
versely, when the two magnetizations are aligned anti-parallel, the MTJ exhibits a high resistance
(RAP ). By virtue of the two discrete resistance states, an MTJ can act as a memory bit as well as a
switch. In practice, the MTJs are constructed such that one of the ferromagnetic layers stays fixed,
while the other layer’s magnetization can be easily toggled (free layer, FL). Thus, by toggling the
FL, using a magnetic field or electric currents, the MTJ can be switched between its ‘0’ and ‘1’ state.

An MTJ can serve as a natural source of randomness upon aggressive scaling, i.e. when the FL of
the MTJ is shrunk to such a small volume that it toggles randomly just due to thermal energy in
the vicinity. It is worth noting that the s-MTJ can produce a Bernoulli distribution like probability
density function (PDF), with p = 0.5, without any external stimulus, by virtue of only the ambient
temperature. However, applying a bias current across the s-MTJ can allow tuning of the PDF through
the spin transfer torque mechanism. As shown in Figure 5c-f of Appendix A, applying a positive bias
current across the device makes the high resistance state more favorable, while applying a negative
current has the opposite effect. In fact, by applying an appropriate bias current across the s-MTJ,
using a simple current-mode digital to analog converter as shown in Figure 6a of Appendix A, we
can achieve precise control over the Bernoulli parameter (p) exhibited by the s-MTJ. The p-value of
the s-MTJ responds to the bias current through a sigmoidal dependence. A more detailed version of
this section on the physical principles, device structure and simulations of the s-MTJ device can be
found in Appendix A.

4.2 RANDOM NUMBER SAMPLING

This section describes the configuration of s-MTJ devices representing Bernoulli distributions for
generating uniform random numbers in floating-point formats, particularly Float16. To apply this
method to other floating-point formats, modify the number of total bits in Equation 3, 5 and 6 as
well as the number of exponent bits in Equation 8 and their positions in the format in variable e of
Equation 6.

The configuration C for a set of s-MTJ devices is defined as follows:

C = {(bi, pi) | pi ∈ [0, 1], bi ∈ {b0, . . . , b15}}, (3)

where each pi is the parameter of a Bernoulli distribution representing the probability of the corre-
sponding Float16 format bit being ‘1’ in the output.

The goal is to configure C so that, with infinite resampling, the sequence Bn of Float16 values
converges to a uniform distribution D over the full format. Formally, we seek C such that:

lim
n→∞

P (Bn = b | C) = D(b), where D = Uniform(−65504, 65504) (4)

In order to meet this condition, we need to assign each bit position bi of the Float16 format a prob-
ability pi, representing the frequency of each bit’s occurrence in a uniform Float16 distribution

4
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Table 1: Required 1-bit occurrences in a 3-bit exponent representation

1-Bit Count
e3 0 0 0 0 24 25 26 27

e2 0 0 22 23 0 0 26 27

e1 0 21 0 23 0 25 0 27

(Equations 5-8). The mantissa bits are assigned a value of 0.5, as detailed in line 6, ensuring uni-
formity across the range they cover. This method extends to the sign bit, whose equal likelihood of
toggling maintains the format’s symmetry.

In floating-point formats, increasing the exponent doubles the range covered by the mantissa due to
the base 2 system. Higher exponent ranges need more frequent sampling to maintain uniform cover-
age, as simply doubling sample occurrence from one range to the next does not preserve uniformity.
Table 2 shows the number of 1-bits for each exponent in a 3-bit example. In general, one can see a
specific overall pattern. Specifically, e1 has four groups of size 1, e2 has two groups of size 2, and e3
has one group of size 1. More generally, the first count of any exponent group is always 22

i−1

. For
the first exponent, groups are size 1 (excludable by 1{i>1}). For other exponents, remaining 1-Bit
counts in the first group are

∑c−1
k=1 2

2i−1+k, where c = 2i−1 is the group size, depending on the
position i in the floating-point format. The count of groups based on bit position i and total bits e
is z = 2−i+e. The count sums for remaining groups are given by

∑z−1
k=1

∑c−1
g=1 2

2i−1+2i·k+g , where
z is the number of groups and c their size. The highest exponent bit e3 with one group is excluded
using 1{z>1}. To find the probability of 1-Bit occurrences for each exponent ei, divide by the total
bits 2(2

e) − 1, which depends on the exponent bits e.

Combining everything, we derive the equation for the configuration C as follows:

C = {(bi, pi) | pi ∈ [0, 1], bi ∈ {b0, . . . , b15}, where (5)

pi =

{
oi−9

2(2e)−1
if i ∈ {10, . . . , 14},

0.5 otherwise
, and (6)

oi = 22
i−1

+

c−1∑
k=1

22
i−1+k · 1{i>1} +

z−1∑
k=1

22
i−1+2i·k +

z−1∑
k=1

c−1∑
g=1

22
i−1+2i·k+g · 1{z>1}, and (7)

z = 2−i+e, c = 2i−1, e = 5. (8)

After obtaining a sample s, min-max normalization can be applied to linearly transform it into a
sample s′ that adheres to any specified uniform distribution within the Float16 range:

s′ ∼ Uniform(a, b) = a+
(s+ 65504) · (b− a)

131008
. (9)

The transformation must be performed in a format exceeding Float16, like Float32 or a specialized
circuit, to maintain numerical stability and precision, due to exceeding Float16 limits in the de-
nominator of Equation 9. We assume special cases like NaNs differently represented and Infinities
discarded; we do not evaluate convention specifics in this paper.

4.3 SAMPLING AND LEARNING ARBITRARY 1D-DISTRIBUTIONS

This section addresses how to represent and sample from any arbitrary one-dimensional distribution,
aiming for random and energy-efficient non-parametric sampling without closed-form solutions.

Sampling from a uniform distribution within the Float16 range is an energy-efficient method. Given
that hardware representations of continuous distributions are inherently discretized during real com-
putations, we use a mixture model of uniform distributions as distributional representation. This
approach (Gao et al., 2022) is well-established for handling real-world data that standard distribu-
tions do not adequately represent. In general, mixture models of all forms are used in probabilistic
machine learning to approximate multimodal and complex distributions (Murphy, 2012). We break
down a distribution into several non-overlapping uniform distributions, where the approximation
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error depends on the interval size. The weights of these components indicate the relative probability
density of each interval within the overall distribution.

Let D be the distribution to be represented, F16 the set of Float16 values, and Ui ∼ Uniform(ai, bi)
for i = 1, 2, . . . , k non-overlapping interval components of our mixture model, where each Ui is
uniform on [ai, bi) with ai, bi ∈ F16. The mixture probability density function fU is defined by

D(x) = fU (x) =

k∑
i=1

wifUi
(x) (10)

such that
∑

x∈X wifUi(x) = 1 and wifUi(x) is the probability density function of component Ui:

fUi
(x) =

{
1

bi−ai
if x ∈ [ai, bi)

0 otherwise.

To draw a sample from the distribution D, we first perform a uniform sampling within the interval
[0, 1], which is assigned to the intervals of the components according to their respective weights.
From the selected component interval, we then perform another uniform sampling within that spe-
cific range. Therefore, obtaining a sample from D requires two uniform sampling steps.

Our approach is particularly suited for the concentration of statistical distributions in ranges (e.g.,
near zero due to data normalization). Using a high component resolution in this range ensures
precise sampling, though it may cause inaccuracies further afield. We propose using a balanced
number of s-MTJ devices to manage errors, offering a viable and energy-efficient solution. More
research is needed to tailor distribution resolutions to specific algorithms. The effectiveness of our
method is demonstrated through the analysis of cumulative approximation errors in Section 5.3.

Probabilistic machine learning relies heavily on thorough sampling from the posterior distribution.
We have introduced an efficient sampling method, but operations involving two arbitrary distribu-
tions are necessary to derive a posterior distribution. Modern probabilistic machine learning mainly
uses distributions that have closed-form solutions and methods for approximating unknown distri-
butions to familiar ones. We introduce both the sum (convolution) and the computation of prior-
likelihood (pointwise multiplication) as methods to facilitate the learning of posterior distributions
in a non-parametric manner, bypassing the need for closed-form solutions.

In all definitions, it is assumed that the intervals {[ai, bi)} in our mixture models are consistent across
all represented distributions. Variations in notation (e.g., {[ci, di)}) highlight different distributions.

The convolution Z = X + Y for two independent random variables X and Y is defined as
fZ(z) =

∫∞
−∞ fX(x)fY (z − x) dx. For approximating the convolution using interval sets with

weights, we calculate the mean of sums of interval bounds for each combination (Cartesian prod-
uct). Let {Xi = ([ai, bi), wi)}ni=1 and {Yj = ([cj , dj), vj)}nj=1 represent the mixture models for X
and Y respectively, covering the entire Float16 range.

Calculating the means results in

mij =
ai + bi

2
+

cj + dj
2

, (11)

with a combined weight:
uij = wi · vj . (12)

This intermediate set {(mij , uij)}ni,j=1 contains pairs of mean and weight. Define {Zl =
([gl, hl), rl)}nl=1 as the desired distribution. Update the weights for Zl by

rl =

n∑
l=1

uij · 1[gl,hl)(mij), (13)

where 1[gl,hl)(x) is the indicator function that is 1 if x ∈ [gl, hl) and 0 otherwise. Lastly, the weights
are normalized

r′l =
rl∑n
s=1 rs

. (14)
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b11
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b12
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Sign Bit
Exponent
Mantissa

Figure 1: Hardware setup for sampling one value from a uniform Float16 distribution.

It should be noted that sampling from both normalized and unnormalized distributions yields equiva-
lent results since normalization maintains the relative proportions within our distributions. However,
it keeps the weights bounded and manageable for storage purposes.

Intermediate pairs of mean and weight for the prior-likelihood computation is obtained by

mii =
ai + bi

2
=

ci + di
2

, where ai = ci and bi = di (15)

and
uii = wi · vi. (16)

Aside from above equations, the remaining algorithm is that of convolution. Note that the joint
distribution is derived by simultaneously sampling from two mixture models. The components of
the models remain unchanged during sampling.

5 EVALUATION

5.1 ENERGY CONSUMPTION OF THE S-MTJ APPROACH

Figure 1 depicts our hardware configuration for sampling a single Float16 value. Each di is an s-
MTJ device. The devices d10, · · · , d14 for the exponent are equipped with 4 control bits to adjust
the current bias ci, which corresponds to the Bernoulli probability. The other devices are set to a
fixed current bias equivalent to a Bernoulli of 0.5. The resolution, which determines how accurately
we can set the Bernoulli distributions for a device, is dependent on the number of control bits and is
visualized in Figure 2. This Figure displays the specific Bernoulli values achievable with 4 control
bits. Although additional control bits could allow for more precise settings, we restrict this number
to 4 due to physical limitations in setting current biases in hardware with higher resolution while
keeping the bias circuit simple (and hence energy-efficient). Our approach focuses on achieving
high accuracy around a probability of 1 (cf. configuration in Section 5.2) by taking advantage of
the characteristics of the sigmoid function, thus making 4 bits sufficient for achieving the required
probability density function.

For our specific case, where the s-MTJs are being configured to generate a uniform distribution of
Float16 samples, the p for each s-MTJ is predetermined and fixed. All the mantissa and sign bits
require p = 0.5, which is exhibited by the s-MTJ without any current bias (cf. 4.1 and 4.2). Thus,
these eleven s-MTJs do not require a current biasing circuit. The predetermined p-values for the five
exponent bits correspond to specific current biases as shown in Figure 2, which amount to a total
power consumption of 20.86W, as determined through SPICE simulations (see Appendix D). For a
sampling rate of 1MHz, this corresponds to 20.86 pJ biasing energy per Float16 sample. Reading
the state of all sixteen s-MTJs, assuming a nominal resistance of 1 kΩ and 10 ns readout with 10 µA
probe current, amounts to an additional readout energy dissipation of 16 fJ per Float16 sample.

Given a hardware accelerator-style architecture, our system is designed with an embarrassingly par-
allel structure, capable of producing samples every 1 µs. Energy-wise, there is no difference between
parallel and sequential setups. Using min-max normalization, sampled intervals can be transformed
efficiently into other intervals. It is reasonable that each of the five floating point operations men-
tioned in Equation 9 within a normalization circuit consumes about 150 fJ on modern microproces-
sors (Ho et al., 2023), leading to an extra energy cost of 750 fJ per sample.

Consequently, generating 230 samples without linear transformation yields an energy consumption

(16 · 1 fJ + 20.862 pJ) · 230 = 22.42mJ. (17)

7
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Applying the transformation yields

(16 · 1 fJ + 20.862 pJ + 750 fJ) · 230 = 23.22mJ. (18)

Our method’s energy usage is compared to actual energy measurements taken by Antunes & Hill
(2024). They benchmarked advanced pseudorandom number generators like Mersenne Twister,
PCG, and Philox. This includes evaluations across original C versions (O2 and O3 suffixes refer to
C flags) and adaptations in Python, NumPy, TensorFlow, and PyTorch, relevant platforms and lan-
guages for AI. Each measurement reports the total energy used to produce 230 pseudorandom 32-bit
integers or 64-bit doubles, which are common outputs from these generators. Often, specific algo-
rithms and implementations are limited to producing only certain numeric formats (like integers or
doubles), particular bit sizes, or specific stochastic properties. As such, comparing different imple-
mentations and floating-point formats is somewhat limited. However, given that all implementations
serve the same machine learning algorithms and that our energy consumption estimates show vast
differences, this comparison is deemed both reasonable and significant.

Although our method introduces considerable energy costs due to transformations, the overall en-
ergy usage, when including linear transformations, is reduced by factor 5649 (pcg32integer) com-
pared to the most efficient pseudorandom number generator currently available. Compared to the
double-generating Mersenne-Twister (mt19937arO2), we obtain an improvement by factor 9721.
We provide a full comparison against all benchmarked generators in Figure 7 of Appendix E.

Quantifying the energy-saving potential impact on downstream tasks is challenging due to the vast
array of algorithmic sampling approaches, corresponding domain-specific applications, and possible
assumptions at the circuit or software implementation levels. Therefore, we illustrate the potential by
comparing the fundamental MCMC rejection sampling approach with our mixture-based sampling
method described in Section 4.3. In this benchmark, we focus only on the fundamental operations
performed by each algorithm and corresponding energy expenses, making as few assumptions as
possible. We ignore related factors such as memory usage, bus transfers, or other implementation
specifics. Rejection sampling is a popular MCMC method that enables flexible sampling from arbi-
trary distributions in an algorithmic manner without additional assumptions, making it an equivalent
alternative to our approach. We show the utilized pseudocode in Figure 1 and the resulting energy
benchmarks in Figure 8 and 9 of Appendix F. As target distribution, we used a the prior-likelihood
product of a Beta(2, 5) and aN (0.1, 0.12) (cf. Figure 16 of Appendix H). We repeated experiments
100 times with 50 000 samples each and report mean values. We assign both the s-MTJ approach
and the rejection sampling approach the same energy costs of 150 fJ for floating-point operations
(Ho et al., 2023), including the probability density function for simplification. Our approach utilizes
two random uniform draws per sample and according linear transformations. Rejection sampling
utilizes two random draws per iteration to decide on a candidate sample: one draw from a proposal
distribution (uniform in our experiments) and one uniform draw to determine whether to accept the
candidate. It also adds several floating-point operations per iteration. We quantify the potential
energy associated with uniform drawings in two ways. First, we consider the rejection sampling al-
gorithm using the mt19937arO3 random number generator (Mersenne Twister), which is the most
energy-efficient floating-point generator in our reference benchmark (see Figure 7 in Appendix E).
Second, we assume that the rejection sampling algorithm employs our efficient uniform sampling
approach. The benchmark illustrates that sampling from a non-parametric distribution using our
method not only offers energy savings but also provides algorithmic improvements. Notably, while
rejection sampling does not yield a sample in every iteration, our mixture-based approach consis-
tently does. Overall, Figure 8 in Appendix F shows that the most energy-intensive operation in
rejection sampling is the generation of uniform random draws. Comparing the traditional rejection
sampling implementation against our s-MTJ approach yields an overall improvement by several or-
ders of magnitude (improvement factor of 5.67×1013). Even when the rejection sampling algorithm
utilizes our s-MTJ approach for uniform draws, we still experience a significant overhead (improve-
ment factor 5.32) due to the inherent inefficiency of rejection sampling. Naturally, more proposals
are rejected than accepted (by factor of 5.4x in our experiments), increasing both the necessary ran-
dom draws and the corresponding arithmetic operations. This demonstrates not only a significant
energy-efficiency improvement but also highlights the algorithmic advantage of our mixture-based
s-MTJ approach.
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Figure 2: Possible Bernoulli resolutions for s-MTJ device with 4 control bits.

(a) First Moment (Mean) (b) Second Moment (Variance) (c) Third Moment (Kurtosis)

Figure 3: Physical approximation error comparison for the first three moments of the uniform dis-
tribution (s-MTJ-based approach vs. closed-form solution sampling). Second moment standard
deviation omitted due to equivalence to the means.

5.2 PHYSICAL APPROXIMATION ERROR: IMPACT OF CONTROL BITS RESOLUTION

The number of control bits in an s-MTJ device impacts both energy consumption and the precision
of setting the energy bias, which in turn affects the available probabilities of obtaining bit sam-
ples. Figure 2 illustrates this relationship. This section evaluates the approximation error caused by
imprecision in achieving a desired Bernoulli distribution.

Four control bits allow 16 distinct, uniformly spaced current biases for an s-MTJ device. The
stability of reading a ‘1’ or ‘0’ from the device follows a sigmoid function, enhancing resolution
near 0 and 1, but reducing it around 0.5. This effect is beneficial as it yields the configurations
c10, c11, · · · , c14 = {(10, 0.66666), (11, 0.80000), (12, 0.94118), (13, 0.99611), (14, 0.99998)} for
our hardware setup shown in Figure 1, as derived from Equations 5-8. Higher exponent bits demand
greater precision than lower ones, highlighting the advantages of the Float16 format over larger
formats due to the physical constraints in setting the energy bias. To precisely analyze distribution
shifts, we compared the first three moments (mean, variance, kurtosis) of the uniform Float16 distri-
bution in Figures 3a, 3b, and 3c. We conducted 100 000 samples per measurement, repeating each
measurement 100 times, and report the results as mean and standard deviations. We evaluated the
empirical moments of these distributions against theoretical expectations using closed-form solu-
tions. Control Bits Sampling v1 uses the closest distance, assigning equal probabilities of 0.9933
to c13 and c14. Control Bits Sampling v2 assigns probabilities of 0.9911 to c13 and 0.9933 to c14,
testing whether having a difference is more effective than the closest distance method (see Figure
2). The mean values over all three moments are consistent for all bit resolutions. Furthermore,
the deviation in the second moment is relatively minor given its high absolute value in the closed-
form expression. Figure 11-14 of Appendix G visualizes samples using perfect resolution sampling
and sampling that considers physical control bit boundaries. The distributions with approximation
offsets show a slight bias, favoring values near zero (this is experimentally attributable to the off-
sets in exponent 4 and 5). However, this primarily accounts for only two bins in the overall range,
each representing 0.25% of values. While the overall distribution remains unaffected, the effect
can be removed by rejecting samples from the two bins in question, impacting approximately ev-
ery 200th sample. These observations highlight that physical inaccuracies have minor effects. If
necessary, these can be easily addressed through rejection from those bins, depending on the appli-
cation’s requirements. Although we assume that most applications will not be significantly affected,
performance evaluations are required to verify this assumption (for any minor distribution shifts).
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Table 2: Approximation error comparison (mixture-based approach vs. closed-form solution)

Approach for Distribution P DKL(P ∥ Qclosed-form) ∆ Qclosed-form

Sampling Qclosed-form Convolution 1.6932± 0.1032 -
Mixture-based Convolution 1.7274± 0.1033 0.0343± 0.1473
Sampling Qclosed-form Prior-Likelihood 0.7959± 0.0859 -
Mixture-based Prior-Likelihood 0.8099± 0.0845 0.0141± 0.1073

5.3 CONCEPTUAL APPROXIMATION ERROR: IMPACT OF MIXTURE MODEL COMPONENTS

This section discusses approximation errors induced by our conceptual approach due to interval res-
olution and transformation errors. It examines the convolution and prior-likelihood transformation
of two distributions. The convolution analysis spans the interval [−1, 1) with a 0.0005 resolution,
comprising 4000 elements. Similarly, the prior-likelihood transformation is analyzed over the inter-
val [−0.5, 1.5) using the same resolution.

The approximation error is quantified by setting up transformations as described in Section 4.3.
Control bit errors are not considered, attributing the error solely to the theoretical approach. We
set up input distributions and their closed-form probability density functions. We convolved two
Gaussian distributions N (0.2, 0.12) to get N (0.4, 0.12 + 0.12). Using a Beta(2, 5) prior and a
N (0.1, 0.12) likelihood, we derived the final distribution by multiplying their densities.

We evaluated the difference in outcomes between our mixture-based approach and the closed-form
solution using Kullback-Leibler (KL) divergence. We used kernel density estimation with a uni-
form kernel and a bandwidth of 0.0005 for density estimation. To assess the inherent offset between
closed-form densities and sampling-based ones due to limited sample sizes, we sampled 50 000
times from the Gaussian closed-form distribution. We also used rejection sampling with a uniform
proposal distribution, allowing us to obtain samples from the prior-likelihood multiplication. Re-
maining KL discrepancies can be attributed to the approximation errors of our mixture model. We
repeated these sampling-based evaluations 100 times, recording the mean and standard deviation.

Table 2 shows the approximation errors observed. As shown in Table 2, each method aligns
well with the closed-form probability densities. The approximation errors due to sample size are
0.0141 ± 0.1073 for prior-likelihood transformations and 0.0343 ± 0.1473 for convolutions. The
slightly higher error in convolutions is likely due to more frequent recalculations of means and
weights (Cartesian product), while prior-likelihood transformations are linear (pointwise multipli-
cation). Appendix 15 illustrates the sampled distributions for these calculations.

6 CONCLUSION AND FUTURE WORK

We introduced a hardware-driven highly energy-efficient acceleration method for transforming and
sampling one-dimensional probability distributions, using stochastically switching magnetic tunnel
junctions. This method includes a precise initialization for these devices for uniform random number
sampling that beats current state-of-the-art Mersenne-Twister by a factor of 5649, a uniform mix-
ture model for distribution sampling, and convolution and prior-likelihood computations to enhance
learning and sampling efficiency.

We assessed the approximation error associated with the s-MTJ devices and our theoretical frame-
work. Findings show that the physical approximation error is negligible when sampling uniform
random numbers. Furthermore, the KL-divergence showed only minor variations compared to
sampling from the closed-form solution, noting deviations of 0.0343 ± 0.1473 in convolution and
0.0141 ± 0.1073 in prior-likelihood operations. Our approach improves existing machine learning
algorithms directly by generating random numbers with high efficiency. It also allows the devel-
opment of specialized solutions designed for specific algorithms and tasks in the future. Further
studies will explore the performance impact of approximation and conceptual error on specific al-
gorithms in (probabilistic) machine learning currently unsuitable for MCMC methods and validate
the s-MTJ method by building a prototype including statistical randomness testing of the device
(Martı́nez et al., 2018; L’Ecuyer, 2017).
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A ADDITIONAL INFORMATION ON THE SPINTRONIC DEVICE

Spintronic devices are a class of computing (logic and memory) devices that harness the spin of
electrons (in addition to their charge) for computation. This contrasts with traditional electronic de-
vices which only use electron charges for computation. Spintronic devices are built using magnetic
materials, as the magnetization (magnetic moment per unit volume) of a magnet is a macroscopic
manifestation of its correlated electron spins. The prototypical spintronic device, called the mag-
netic tunnel junction (MTJ), is a three-layer device which can act both as a memory unit and a
switch (Žutić et al., 2004; Moodera et al., 1995). It consists of two ferromagnetic layers separated
by a thin, insulating non-magnetic layer. When the magnetization of the two ferromagnetic layers
is aligned parallel to each other, the MTJ exhibits a low resistance (RP ). Conversely, when the two
magnetizations are aligned anti-parallel, the MTJ exhibits a high resistance (RAP ). By virtue of the
two discrete resistance states, an MTJ can act as a memory bit as well as a switch. In practice, the
MTJs are constructed such that one of the ferromagnetic layers stays fixed, while the other layer’s
magnetization can be easily toggled (free layer, FL). Thus, by toggling the FL, using a magnetic
field or electric currents, the MTJ can be switched between its ‘0’ and ‘1’ state.

An MTJ can serve as a natural source of randomness upon aggressive scaling, i.e. when the FL
of the MTJ is shrunk to such a small volume that it toggles randomly just due to thermal energy
in the vicinity. As schematically illustrated in Figure 4a, the self-energy of the magnetic layer is
minimum and equal for the magnetization pointing vertically up or down, i.e. polar angle θM = 0o

or 180o, respectively. The self-energy is maximum for the horizontal orientation (θM = 90o). The
corresponding energy barrier, ∆E dictates the time scale at which the magnet can toggle between
the up and down oriented states owing to thermal energy. This time scale follows an Arrhenius law
dependence (Camsari et al., 2019), i.e.

τ↑↓ = τ0e
∆E
kT , (19)

where, τ0 is the inverse of attempt frequency, typically of the order of 1 ns, k is the Boltzmann
constant and T is the ambient temperature. The energy barrier for a magnet is ∆E = KUV =
µ0HKMSV/2, where KU , V , HK and MS are the magnet’s uniaxial anisotropy energy, volume,
effective magnetic anisotropy field and saturation magnetization, respectively. µ0 is the magnetic
permeability of free space. Thus, it can be observed that by reducing the volume V of the mag-
netic free layer, we can make its ∆E comparable to kT and achieve natural toggling frequencies
of computational relevance, as shown in Figure 4b. Figure 5a shows a time-domain plot of the
normalized state of such an s-MTJ, calculated using micromagnetic simulations with the MuMax3
package (Vansteenkiste et al., 2014). Further details on the micromagnetic simulations are included
in Appendix B. A histogram of the resistance state of this s-MTJ is presented in Figure 5b. It is
worth noting that the s-MTJ can produce such a Bernoulli distribution like probability density func-
tion (PDF), with p = 0.5, without any external stimulus, by virtue of only the ambient temperature.
However, applying a bias current across the s-MTJ can allow tuning of the PDF through the spin
transfer torque mechanism (Stiles & Zangwill, 2002). As shown in Figure 5c-f, applying a positive
bias current across the device makes the high resistance state more favorable, while applying a nega-
tive current has the opposite effect. In fact, by applying an appropriate bias current across the s-MTJ,
using a simple current-mode digital to analog converter as shown in Figure 6a, we can achieve pre-
cise control over the Bernoulli parameter (p) exhibited by the s-MTJ. Details on the current-biasing
circuit are included in Appendix D. The p-value of the s-MTJ responds to the bias current through a
sigmoidal dependence, as shown in Figure 6b.
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Figure 4: (a) Schematic illustration of the self-energy (E) of a nanomagnet with respect to the polar
angle (θM ) of its magnetization (indicated by thick arrows). (b) Natural frequency of stochastic
switching for a nanomagnet of a particular diameter at different temperatures.

Figure 5: Dynamics of the normalized resistance of a stochastic MTJ for different bias current
densities. (a) Ibias = 0 produces equal probability of observing the high or low state. (b) Histogram
of the observed resistance state for Ibias = 0. (c, d) Trace and histogram of the observed resistance
for a bias current of 2 × 1011 A/m2. (e, f) Trace and histogram of the observed resistance for a bias
current of -2 × 1011 A/m2.
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Figure 6: (a) Schematic diagram of a current-mode digital to analog converter for providing the
biasing current to a stochastic MTJ. (b) Variation of the Bernoulli parameter of the stochastic MTJ
with bias current. Red triangles are data point obtained from micromagnetic simulations, while the
grey dotted line is a theoretical fit (sigmoid function).
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B MICROMAGNETIC SIMULATIONS

Dynamics of a ferromagnet’s magnetization in response to external stimuli, like magnetic fields,
currents or heat can be modelled using micromagnetic simulations. The magnetization dynamics
can be described using a differential equation, known as the Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equation:

dm⃗

dt
= −γm⃗× H⃗eff + αm⃗× dm⃗

dt
+ τ∥

m⃗× (x⃗× m⃗)

|x⃗× m⃗|
+ τ⊥

x⃗× m⃗

|x⃗× m⃗|
(20)

where, m⃗ is the normalized magnetization (M⃗/|M⃗ |), γ and α are the gyromagnetic ratio and damp-
ing constant for the ferromagnet, x is a unit vector along the direction of applied electric current and,
τ∥ and τ⊥ are current-induced torque magnitudes acting parallel and perpendicular to the current.
H⃗eff is the effective magnetic field acting on the ferromagnet, which contains contributions from
externally applied magnetic fields, exchange interactions, magneto-crystalline anisotropy, shape
anisotropy, thermal fields, and demagnetization, among others.

The simulations results presented here are performed for a van der Waals (vdW) magnetic material,
Fe3GaTe2 (FGaT) (Zhang et al., 2022; Kajale et al., 2024). Being a vdW material, FGaT has a
layered structure which makes it an ideal candidate for building ultra-thin (monolayer) magnetic thin
films of high quality needed for achieving stochasticity. FGaT also exhibits perpendicular magnetic
anisotropy, which means its self-energy is lower for magnetization pointing out of plane as compared
to the magnetization pointing in-plane. This property is crucial for building compact, nanoscale
spintronic devices. The simulations are performed using the MuMax3 program (Vansteenkiste et al.,
2014), for devices shaped as circular discs. The values of different physical parameters used in the
micromagnetic simulations are compiled in Table 3. Certain parameters, whose experimental values
are not determined, are set to typical values for similar materials and are indicated as such. All
simulations can be replicated using standard consumer-grade computers without requiring extensive
resources.

Table 3: Parameters Used in Micromagnetic Simulations With the MuMax3 Code.

Parameter Value

Saturation magnetization (MS) 3.95× 104 A/m (Kajale et al., 2024)
Effective anisotropy field (KU ) 3.02× 106 A/m (Kajale et al., 2024)
Permeability of free space (µ0) 1.26× 10−6 kg·m/s2·A2

Temperature (T ) 300 K
Gilbert damping constant (α) 0.02 (typical)
Exchange stiffness (Aex) 1.3× 1013 J/m
Thickness 1 nm
Diameter 2 nm
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C POTENTIAL LIMITATIONS OF SIMULATED S-MTJ DEVICES

While the proposed s-MTJ devices show great promise for energy-efficient true random number
generation, their practical implementation remains an active area of research. The materials system
integral to achieving reliable device performance at extreme scaling—particularly 2D magnetic ma-
terials—presents unique challenges due to their relative novelty. Key hurdles include the wafer-scale
growth of room-temperature monolayer 2D magnetic materials with BEOL compatibility and their
integration with tunnel barriers (e.g., 2D hBN or bulk MgO) and spin-orbit torque layers. These
challenges remain unmet at a wafer scale. Nonetheless, the promising benchmarking results pre-
sented in this study may serve as a catalyst for experimental advancements toward realizing these
hardware goals. Additionally, we must consider the effects of process-voltage-temperature (PVT)
variations on s-MTJs. Leading semiconductor foundries have already established mature MTJ fab-
rication processes for embedded MRAM (e.g., high-level caches), demonstrating the feasibility of
fabricating PVT-robust MTJ devices for commercial applications. However, for s-MTJs specifi-
cally, temperature variations may have unique implications. Unlike traditional deterministic MTJs,
the natural frequency of stochastic switching in s-MTJs is highly temperature-dependent. To ensure
uncorrelated samples, the sampling frequency must remain below the device’s natural frequency
across the entire rated operating temperature range. It is worth noting, however, that under typical
operating conditions, devices are likely to experience heating, which increases the natural frequency
of the devices. This inherent behavior provides a safety margin, ensuring that the samples remain
uncorrelated even in elevated temperature conditions.
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D POWER ESTIMATION OF THE CURRENT BIASING CIRCUIT

The current biasing circuit was simulated using Cadence Virtuoso using the Global Foundries
22FDX (22 nm FDSOI) process design kit. The circuit has been designed for a maximum bias
current of 20 µA to attain an s-MTJ with Bernoulli parameter p = 0.99. The current levels cor-
responding to p = 0.67 and p = 0.99 are divided into 4-bit resolution (Figure 2). The four bias
bits (B0-B3) are fed to the transistors P0, P1, P2, P3 (LSB to MSB), which are sized to produce
currents I0, 2I0, 4I0 and 8I0, respectively, when the corresponding bias bit it ‘1’. A constant current
Ibase = 2.82 µA is additionally supplied through P4 to create a baseline of p = 0.67 for the s-MTJs.
The transistors are operated at a low supply voltage of 0.35 V to achieve a small I0 = 1.14 µA.
Thus, each exponent bit can be set to its requisite Bernoulli parameter by appropriately setting the
4-bit bias word, and the power dissipation in the biasing circuit can be estimated for each of the
exponent bits. Lengths of all the transistors are set to 20 nm. Width of P4 is set to 260 nm, while the
widths of P0, P1, P2 and P3 are 100 nm, 200 nm, 400 nm, and 800 nm, respectively. As discussed
in the main text, our proposed method requires only positive current biases for the stochastic MTJs.
Thus, the unipolar current mode DAC proposed here suffices for our application. For more general
use cases where both positive and negative bias currents may be needed, a bipolar current-steering
DAC can be utilized.
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E ENERGY CONSUMPTION OF RANDOM NUMBER GENERATORS
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Figure 7: Power consumption analysis in Joules (logarithmic scale) for 230 random numbers. Bench-
marks were performed by Antunes & Hill (2024).
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F ENERGY CONSUMPTION OF REJECTION SAMPLING

Algorithm 1 Rejection Sampling Algorithm (cf. Koller (2009))

Require: Probability density pdf(·) of target distribution, constant c, number of samples N
Ensure: Array of samples S with size N from the target distribution

1: Initialize empty list of samples: S ← [ ]
2: while length of S < N do
3: xproposed ∼ U(0, 1)

4: paccept ←
pdf(xproposed)

c
5: u ∼ U(0, 1)
6: if u < paccept then
7: S ← S ∪ xproposed
8: end if
9: end while

10: return S
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Figure 8: Back-of-the-envelope power consumption analysis in femtojoules (logarithmic scale) for
50 000 samples from rejection sampling (RJ) and the mixture-based sampling approach. RJ sam-
pling assumes draws using mt19937arO3 according to benchmarks from Antunes & Hill (2024).
Other operations of the S-MTJ approach refer to the normalization overhead.
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G ADDITIONAL FIGURES ON PHYSICAL APPROXIMATION ERROR

Figure 10: Visualization of samples obtained with three different assumptions. Perfect Resolution
Sampling assumes the precise values obtained from Equations 5-8 in Section 4.2. Control Bits
Sampling v1 assumes the closest distance measure to actual obtainable control bits. Control Bits
Sampling v2 assumes that each exponent bit should actually be different over closest distance, even
if the physically closest distance would imply redundant values.
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Figure 11: Histogram of 100 000 samples with 400 bins over the full Float16 range obtained by
Perfect Resolution Sampling.

Figure 12: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained
via Control Bits Sampling v1. The values show a slight bias, favoring those near zero. Each bin
represents 0.25% of the overall range. Flattening the distribution by rejecting samples from the two
most overrepresented bins would affect only 0.5 % of samples.

Figure 13: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained
via Control Bits Sampling v2. The values show a slight bias, favoring those near zero. Each bin
represents 0.25% of the overall range. Flattening the distribution by rejecting samples from the two
most overrepresented bins would affect only 0.5% of samples.

Figure 14: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained
via Control Bits Sampling v1 with rejecting from the two most overrepresented bins around zero.
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H ADDITIONAL FIGURES FOR CONCEPTUAL APPROXIMATION ERROR

Figure 15: Sampling from the convolution of two Gaussian distributions, N (0.2, 0.12) and
N (0.2, 0.12), resulting in N (0.4,

√
0.12 + 0.12).

Figure 16: Sampling after Prior-Likelihood Transformation: Using a Beta(2, 5) prior and a
N (0.1, 0.12) likelihood, the final distribution is derived by multiplying their densities.
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