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ABSTRACT

Federated learning (FL) is an emerging distributed machine learning method that
empowers in-situ model training on decentralized edge devices. However, multiple
simultaneous training activities could overload resource-constrained devices. In this
work, we propose a smart multi-tenant FL system, MuFL, to effectively coordinate
and execute simultaneous training activities. We first formalize the problem of
multi-tenant FL, define multi-tenant FL scenarios, and introduce a vanilla multi-
tenant FL system that trains activities sequentially to form baselines. Then, we
propose two approaches to optimize multi-tenant FL: 1) activity consolidation
merges training activities into one activity with a multi-task architecture; 2) after
training it for rounds, activity splitting divides it into groups by employing affinities
among activities such that activities within a group have better synergy. Extensive
experiments demonstrate that MuFL outperforms other methods while consuming
40% less energy. We hope this work will inspire the community to further study
and optimize multi-tenant FL.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has attracted considerable attention as it enables
privacy-preserving distributed model training among decentralized devices. It is empowering growing
numbers of applications in both academia and industry, such as Google Keyboard (Hard et al., 2018),
medical imaging analysis (Li et al., 2019; Sheller et al., 2018), and autonomous vehicles (Zhang et al.,
2021a; Posner et al., 2021). Among them, some applications contain multiple training activities for
different tasks. For example, Google Keyboard includes query suggestion (Yang et al., 2018), emoji
prediction (Ramaswamy et al., 2019), and next-world prediction (Hard et al., 2018); autonomous
vehicles relates to multiple computer vision (CV) tasks, including lane detection, object detection,
and semantic segmentation (Janai et al., 2020).

However, multiple simultaneous training activities could overload edge devices (Bonawitz et al.,
2019). Edge devices have tight resource constraints, whereas training deep neural networks for the
aforementioned applications is resource-intensive. As a result, the majority of edge devices can only
support one training activity at a time (Liu et al., 2019); multiple simultaneous federated learning
activities on the same device could overwhelm its memory, computation, and power capacities. Thus,
it is important to navigate solutions to well coordinate these training activities.

A plethora of research on FL considers only one training activity in an application. Many studies
are devoted to addressing challenges including statistical heterogeneity (Li et al., 2020; Wang et al.,
2020a), system heterogeneity (Chai et al., 2020; Yang et al., 2021), communication efficiency
(Karimireddy et al., 2020; Zhu et al., 2021), and privacy issues (Bagdasaryan et al., 2020; Huang et al.,
2021). A common limitation is that they only focus on one training activity, but applications like
Google Keyboard and autonomous vehicles require multiple training activities for different targets
(Yang et al., 2018; Ramaswamy et al., 2019). Multi-tenancy of an FL system is designed by Bonawitz
et al. (2019) to prevent simultaneous training activities from overloading devices. However, it mainly
considers differences among training activities, neglecting potential synergies.

In this work, we propose a smart multi-tenant federated learning system, MuFL, to efficiently
coordinate and execute simultaneous training activities under resource constraints by considering
both synergies and differences among training activities. We first formalize the problem of multi-
tenant FL and define four multi-tenant FL scenarios based on two variances in Section 3: 1) whether
all training activities are the same type of application, e.g., CV applications; 2) whether all clients
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support all training activities. Then, we define a vanilla multi-tenant FL system that supports all
scenarios by training activities sequentially. Built on it, we further optimize the scenario, where all
training activities are the same type and all clients support all activities, by considering both synergies
and differences among activities in Section 4. Specifically, we propose activity consolidation to merge
training activities into one activity with a multi-task architecture that shares common layers and has
specialized layers for each activity. We then introduce activity splitting to divide the activity into
multiple activities based on their synergies and differences measured by affinities between activities.

We demonstrate that MuFL reduces the energy consumption by over 40% while achieving superior
performance to other methods via extensive experiments on three different sets of training activities in
Section 5. We believe that MuFL is beneficial for many real-world applications such as autonomous
vehicles, voice assistance systems, and robotics (more examples in Appendix A). We summarize our
contributions as follows:

• We formalize the problem of multi-tenant FL and define four multi-tenant FL scenarios. To
the best of our knowledge, we are the first work that investigates multi-tenant FL in-depth.
• We propose MuFL, a smart multi-tenant federated learning system to efficiently coordinate

and execute simultaneous training activities by proposing activity consolidation and activity
splitting to consider both synergies and differences among training activities.
• We establish baselines for multi-tenant FL and demonstrate that MuFL elevates performance

with significantly less energy consumption via extensive empirical studies.

2 RELATED WORK

In this section, we first review the concept of multi-tenancy in cloud computing and machine learning.
Then, we provide a literature review of multi-task learning and federated learning.

Multi-tenancy of Cloud Computing and Machine Learning Multi-tenancy has been an important
concept in cloud computing. It refers to the software architecture where a single instance of software
serves multiple users (Chong & Carraro, 2006; Fehling et al., 2010). Multi-tenant software archi-
tecture is one of the foundations of software as a service (SaaS) applications (Mietzner et al., 2008;
Cai et al., 2013). Recently, researchers have adopted this idea to machine learning (especially deep
learning) training and inference. Specifically, some studies investigate how to share GPU clusters
among multiple users to train deep neural networks (DNN) (Jeon et al., 2019; Zhao et al., 2020; Lao
et al., 2021), but these methods are for GPU clusters that have enormous computing resources, which
are inapplicable to edge devices that have limited resources. Targeting on-device deep learning, some
researchers define multi-tenant as processing multiple computer vision (CV) applications for multiple
concurrent tasks (Fang et al., 2018; Jiang et al., 2018). However, they focus on the multi-tenant
on-device inference rather than training. On the contrary, we focus on multi-tenant federated learning
(FL) training on devices, where the multi-tenancy refers to multiple concurrent FL training activities.

Multi-task Learning Multi-task learning is a popular machine learning approach to learn models
that generalize on multiple tasks (Thrun, 1995; Zhang & Yang, 2021). A plethora of studies investigate
parameter sharing approaches that share common layers of a similar architecture (Caruana, 1997;
Eigen & Fergus, 2015; Bilen & Vedaldi, 2016; Nekrasov et al., 2019). Besides, many studies employ
new techniques to address the negative transfer problem (Kang et al., 2011; Zhao et al., 2018) among
tasks, including soft parameter sharing (Duong et al., 2015; Misra et al., 2016), neural architecture
search (Lu et al., 2017; Huang et al., 2018; Vandenhende et al., 2019; Guo et al., 2020; Sun et al.,
2020), and dynamic loss reweighting strategies (Kendall et al., 2018; Chen et al., 2018; Yu et al.,
2020). Instead of training all tasks together, task grouping trains only similar tasks together. The
early works of task grouping (Kang et al., 2011; Kumar & Daumé, 2012) are not adaptable to DNN.
Recently, several studies analyze the task similarity (Standley et al., 2020) and task affinities (Fifty
et al., 2021) for task grouping. In this work, we adopt the idea of task grouping to consolidate
and split training activities. The state-of-the-art task grouping methods (Standley et al., 2020; Fifty
et al., 2021), however, are unsuitable for our scenario because they focus on the inference efficiency,
bypassing the intensive computation on training. Thus, we propose activity consolidation and activity
splitting to group training activities based on their synergies and differences.

Federated Learning Federated learning emerges as a promising privacy-preserving distributed
machine learning technique that uses a central server to coordinate multiple decentralized clients to
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train models (McMahan et al., 2017; Kairouz et al., 2021). The majority of studies aim to address the
challenges of FL, including statistical heterogeneity (Li et al., 2020; Wang et al., 2020a;b; Zhuang
et al., 2020; yuyang deng et al., 2021; Zhang et al., 2021b), system heterogeneity (Chai et al.,
2020; Yang et al., 2021), communication efficiency (McMahan et al., 2017; Konečný et al., 2016;
Karimireddy et al., 2020; Zhu et al., 2021), and privacy concerns (Bagdasaryan et al., 2020; Huang
et al., 2021). Among them, federated multi-task learning (Smith et al., 2017; Marfoq et al., 2021)
is an emerging method to learn personalized models to tackle statistical heterogeneity. However,
these personalized FL methods mainly focus on training one activity of an application in a client.
Multi-tenant FL that handles multiple concurrent training activities is rarely discussed; the prior work
(Bonawitz et al., 2019) mainly considers the differences among training activities. In this work, we
optimize multi-tenant FL by further considering their synergies by splitting activities into groups.
Our problem is also fundamentally different from clustered FL (Ghosh et al., 2020; Ouyang et al.,
2021); They group models of the same training activity, whereas we group training activities.

3 PROBLEM SETUP

This section provides preliminaries of federated learning (FL), presents the problem definition of
multi-tenant FL, and classifies four multi-tenant FL scenarios. Besides, we introduce a vanilla
multi-tenant FL system supports for all scenarios.

3.1 PRELIMINARIES AND PROBLEM DEFINITION

In the federated learning setting, the majority of studies consider optimizing the following problem:

min
ω∈Rd

f(ω) :=

K∑
k=1

pkfk(ω) :=

K∑
k=1

pkEξk∼Dk
[fk(ω; ξk)], (1)

where ω is the optimization variable, K is the number of selected clients to execute training, fk(ω) is
the loss function of client k, pk is the weight of client k in model aggregation, and ξk is the training
data sampled from data distribution Dk of client k. FedAvg (McMahan et al., 2017) is a popular
federated learning algorithm, which sets pk to be proportional to the dataset size of client k.

Equation 1 illustrates the objective of single training activity in FL, but in real-world scenarios,
multiple simultaneous training activities could overload edge devices. We further formalize the
problem of multi-tenant FL as follows.

In multi-tenant FL, a server coordinates a set of clients C to execute a set of n FL training activities
A = {α1, α2, . . . , αn}. It obtain a set of parameters of models W = {ω1, ω2, . . . , ωn}, where
each model ωi is for activity αi. By defining M(αi;ωi) as performance measurement of each
training activity αi, multi-tenant FL aims to maximize the performance of all training activities∑n
i=1M(αi;ωi), under the constraint that each client k has limited memory budget and computation

budget. These budgets constrain the number of concurrent training actvitities nk on client k. Besides,
as devices have limited battery life, we would like to minimize the energy consumption and training
time to obtainW from training activities A.

3.2 MULTI-TENANT FL SCENARIOS

We classify multi-tenant FL into four different scenarios based on variances in two aspects: 1) whether
all training activities in A are the same type of application, e.g., computer vision (CV) applications
or natural language processing (NLP) applications; 2) whether all clients in C support all training
activities in A. We depict these four scenarios in Figure 6 in Appendix A and describe them below.

Scenario 1 ∀αi ∈ A, αi is the same type of application; ∀αi ∈ A, ∀ck ∈ C supports αi. For
example, autonomous vehicles (clients) support the same sets of CV applications, such as object
detection and semantic segmentation. Thus, they support training activities of these applications.

Scenario 2 ∃αi ∈ A, αi is a different type of application; ∀αi ∈ A, ∀ck ∈ C supports αi. For
example, Google Keyboard has different types of applications, including recommendation (query
suggestion (Yang et al., 2018)) and NLP (next-world prediction (Hard et al., 2018)). Mobile phones
(clients) with Google Keyboard support these applications together with all related training activities.

3



Under review as a conference paper at ICLR 2023

Training Activities

Server

1. Scheduling

2. Training

Client Pool

New training activity Scheduled Trained
Status

Participants

...

2.1 Execution 2.2 Aggregation

(a) Vanilla Multi-tenant FL

Server

1. Activity Consolidation

3. Training

Training Activities

2.Scheduling

4. Activity Splitting

All-in-one GroupedOne by one

Training 
types

Client Pool
Participants

...
3.2 Aggregation3.1 Execution

(b) Smart Multi-tenant FL

Figure 1: The architectures of proposed multi-tenant federated learning (FL) systems. The vanilla
multi-tenant FL system (a) employs a scheduler to queue simultaneous training activities and exe-
cute them one by one. The smart multi-tenant FL system (b) proposes activity consolidation and
activity splitting to consider both synergies and differences among training activities, which elevates
performance and reduces resource consumption.

Scenario 3 ∀αi ∈ A, αi is the same type of application; ∀αi ∈ A, ∃ck ∈ C does not support αi. For
example, survelliance cameras (clients) in parking lots could support CV applications, but cameras in
different locations may support different applications, e.g., counting open-parking spots, tracking
parking duration, or recording fender benders.

Scenario 4 ∃αi ∈ A, αi is a different type of application; ∀αi ∈ A, ∃ck ∈ C does not support αi.
For example, browsers (clients) could leverage users’ browsing history to support ranking (Hartmann
et al., 2019) and news recommendation (Minto et al., 2021), which are different applications. Users
may opt-out of recommendations, resulting in not all browsers supporting all training activities.

The application determines the multi-tenant FL scenario. We next introduce a vanilla multi-tenant FL
that supports all these scenarios as our baseline.

3.3 VANILLA MULTI-TENANT FL

Figure 1a presents the architecture of a vanilla multi-tenant FL system. It prevents overloading and
congestion of multiple simultaneous training activities by scheduling them to execute one by one.
Particularly, we use a scheduler to queue training activities in the server (e.g., First in, First out). In
each round, the server selects K clients from the client pool to participate in training. The number
of simultaneous training activities depend on the computational resources of the selected clients. In
this study, we assume that each client can execute one training activity at a time (nk = 1). This is a
realistic assumption for the majority of current edge devices. 1 As a result, the vanilla multi-tenant
FL system executes training activities sequentially.

The vanilla multi-tenant FL system supports the four multi-tenant FL scenarios. From the perspective
of the type of application, it can handle different application types of training activities as each
training activity is executed independently. From the perspective of whether clients support all
training activities, each training activity can select clients that support the activity to participate
in training. Despite its comprehensiveness, it only considers differences among training activities,
neglecting their potential synergies. In contrast, our proposed MuFL considers both synergies and
differences among training activities to further optimize the Scenario 1.

1Edges devices, e.g., NVIDIA Jetson TX2 and AGX Xavier, have only one GPU; GPU virtualization (Hong
et al., 2017) that enables concurrent training on the same GPU currently are mainly for the cloud stack.
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4 SMART MULTI-TENANT FL

In this section, we introduce the smart multi-tenant FL system, MuFL. We start by providing an
overview of MuFL. Then, we present two important components of MuFL, activity consolidation and
activity splitting, to consider both synergies and differences among simultaneous training activities.

Figure 1b depicts the architecture and training processes of MuFL. It contains a server to coordinate
training activities and a pool of clients to execute training. MuFL optimizes the Scenario 1 discussed
previously with the following steps: 1) The server receives training activities A = {α1, α2, . . . , αn}
to train modelsW = {ω1, ω2, . . . , ωn} and consolidates these activities into an all-in-one training
activity α0; 2) The server schedules α0 to train; 3) The server select K clients from the client pool to
execute α0 iteratively through FL process for R0 rounds; 4) The server splits the all-in-one activity
α0 into multiple training activity groups {A1,A2, . . . }, where each group trains nonoverlapping
subset ofW; the number of groups can be determined by the inference budget for the number of
concurrent models. 5) The server iterates step 2 and 3 to trainAj . We summarize MuFL in Algorithm
1 in Appendix D and introduce the details of activity consolidation and activity splitting next.

4.1 ACTIVITY CONSOLIDATION

Focusing on optimizing the Scenario 1 of multi-tenant FL, we first propose activity consolidation to
consolidate multiple training activities into an all-in-one training activity, as illustrated in the first
step of Figure 1b. In Scenario 1, all training activities are the same type of application and all clients
support all training activities. Since training activities A = {α1, α2, . . . , αn} are of the same type,
e.g., CV or NLP, modelsW = {ω1, ω2, . . . , ωn} could share the same backbone (they share the same
encoder but could have different decoders). Thus, we can consolidate A into an all-in-one training
activity α0 that trains a multi-task model ν = {θs} ∪ {θαi

|αi ∈ A}, where θs is the shared model
parameters and θαi

is the specific parameters for training activity αi ∈ A. The loss function for
all-in-one training is L(X , θs, {θαi

}) =
∑
αi∈A Lαi

(X , θs, {θαi
}).

Activity consolidation leverages synergies among training activities and effectively reduces the
computation cost of multi-tenant FL from multiple trainings into a single training. However, simply
employing activity consolidation is another extreme of multi-tenant FL that only considers synergies
among activities. As shown in Figure 2, all-in-one method is efficient in energy consumption, but it
leads to unsatisfactory performance. Consequently, we further propose activity splitting to consider
both synergies and differences among training activities.

4.2 ACTIVITY SPLITTING

We propose activity splitting to divide the all-in-one activity α0 into multiple groups after it is trained
for certain rounds. Essentially, we aim to split A = {α1, α2, . . . , αn} into multiple nonoverlapping
groups such that training activities within a group have better synergy. Let {A1,A2, . . . ,Am} be
subsets ofA, we aim to find a disjoint set I ofA, where I ⊆ {1, 2, . . . ,m}, |I| ≤ |A|,

⋃
j∈I Aj = A,

and
⋂
j∈I Aj = ∅. Each group Aj trains a model νj = {θjs} ∪ {θαi |αi ∈ Aj}, which is a multi-task

network when Aj contains more than one training activity, where θjs is the shared model parameters
and θαi is the specific parameters for training activity αi ∈ Aj . The core question is how to determine
set I to split these activities considering their synergies and differences.

Inspired by TAG (Fifty et al., 2021) that measures task affinites for task grouping, we employ affinities
between training activities for activity splitting via three stages: 1) we measure affinities among
activities during all-in-one training; 2) we select the best combination of splitted training activities
based on affinity scores; 3) we continue training each split with its model initialized with parameters
obtained from all-in-one training. Particularly, during training of all-in-one activity α0, we measure
the affinity of training activity αi onto αj at time step t in each client k with the following equation:

Sk,tαi→αj
= 1−

Lαj
(X k,t, θk,t+1

s,αi
, θk,tαj

)

Lαj
(X k,t, θk,ts , θk,tαj )

, (2)

where Lαj
is the loss function of αj , X k,t is a batch of training data, and θk,ts and θk,t+1

s,αi
are the

shared model parameters before and after updated by αi, respectively. Positive value of Sk,tαi→αj
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Figure 2: Comparison of test loss and energy consumption on two training activity sets: (a) sdnkt
and (b) sdnkterca, where each character represents an activity. Compared with all-in-one methods,
our method achieves much better performance with slight increases in computation. Moreover, our
method achieves the best performance while consuming less energy than the other methods.

means that activity αi helps reduce the loss of αj . This equation measures the affinity of one time-
step of one client. We approximate affinity scores for each round by averaging the values over T
time-steps in E local epochs and K selected clients: Ŝαi→αj

= 1
KET

∑K
k=1

∑E
e=1

∑T
t=1 Sk,tαi→αj

,
where T is total time steps determined by the frequency f of calculating Equation 2, e.g., f = 5
means measuring the affinity in each client in every five batches.

These affinity scores measure pair-wise affinities between traininig activities. We next use them
to calculate total affinity scores of a grouping with

∑n
i=1 Ŝαi , where Ŝαi is the averaged affinity

score onto each training activity. For example, in a grouping of two splits of five training activities
{{α1, α2}, {α3, α4, α5}}, where {α1, α2} is one split and {α3, α4, α5} is another split. The affinity
score onto α1 is Ŝα1

= Ŝα2→α1
and the affinity score onto α3 is Ŝα3

= (Ŝα4→α3
+ Ŝα5→α3

)/2.
Consequently, we can find the set I with |I| elements for subsets of A that maximize

∑n
i=1 Ŝαi

,
where |I| defines the number of elements.

We would like to further highlight the differences between our method and TAG (Fifty et al., 2021).
Firstly, TAG focuses on inference efficiency, thus it allows overlapping task grouping that could
train one task multiple times. In contrast, our focus is fundamentally different; we focus on training
efficiency and consider only nonoverlapping activity splitting. Secondly, TAG is computation-
intensive for higher numbers of splits, e.g., it fails to produce results of five splits of nine tasks in a
week, whereas we only need seconds of computation. Thirdly, TAG rules out the possibility that a
group contains only one task as it sets Ŝαi→αi = 1e−6, which is much smaller than scores of other
groupings. Besides, Ŝαi→αi calculated from Equation 2 is also not desirable; it always results in a
group containing only one task as its value is much larger (could be 10x larger) than scores of other
groupings. To overcome these issues, we propose a new method to calculate this value:

Ŝαi→αi =
∑

j∈N\{i}

(Ŝαi→αj
+ Ŝαj→αi

)

2n− 2
, (3)

where N = {1, 2, . . . , n}. The intuition is that it measures the normalized affinity of activity αi to
other activities and other activities to αi. Fourthly, we focus on multi-tenant FL, thus, we further
aggregate affinity scores over K selected clients. Fifthly, TAG trains each set Aj from scratch,
whereas we initialize their models with the parameters obtained from all-in-one training.

5 EXPERIMENTS

We evaluate the performance and resource usage of MuFL and design our experiments to answer the
following questions: 1) How effective is our activity splitting approach? 2) When to split the training
activities? 3) Is it beneficial to iteratively split the training activities? 4) What is the impact of local
epoch and scaling up the number of selected clients in each training round?
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Table 1: Performance (test loss) comparison of our method with the optimal and worst splits. Our
method achieves the best performance, indicating the effectiveness of our activity splitting method.

Activity Splits Ours Train from Scratch Train from Initialization
Set Optimal Worst Optimal Worst

sdnkt
2 0.578 ± 0.015 0.622 ± 0.007 0.685 ± 0.010 0.595 ± 0.008 0.595 ± 0.004
3 0.555 ± 0.008 0.585 ± 0.026 0.674 ± 0.022 0.560 ± 0.006 0.578 ± 0.006

erckt
2 1.039 ± 0.024 1.070 ± 0.013 1.312 ± 0.065 1.048 ± 0.024 1.068 ± 0.037
3 1.015 ± 0.018 1.058 ± 0.029 1.243 ± 0.099 1.020 ± 0.012 1.052 ± 0.026

Experiment Setup We construct the Scenario 1 of multi-tenant FL scenarios using Taskonomy
dataset (Zamir et al., 2018), which is a large computer vision dataset of indoor scenes of buildings.
We run experiments with N = 32 clients, where each client contains a dataset of a building to
simulate the statistical heterogeneity in FL. Three sets of training activities are used to evaluate the
robustness of MuFL: sdnkt, erckt, and sdnkterca; each character represents an activity, e.g.,
s represents semantic segmentation. We measure the statistical performance of an activity set using
the sum of test losses of individual activities. By default, we use K = 4 selected clients and E = 1
local epoch for each round of training. More experimental details are provided in Appendix B.

5.1 PERFORMANCE EVALUATION

We compare the performance, in terms of test loss and energy consumption, among the following
methods: 1) one by one training of activities (i.e., the vanilla multi-tenant FL); 2) all-in-one training
of activities (i.e., using only activity consolidation); 3) all-in-one training with multi-task optimization
(GradNorm (Chen et al., 2018)) and federated optimization (FedProx (Li et al., 2020)); 4) estimating
higher-order of activity groupings from pair-wise activities performance (HOA (Standley et al.,
2020)); 5) grouping training activities with only task affinity grouping method (TAG (Fifty et al.,
2021)); 6) MuFL with both activity consolidation and activity splitting. Carbontracker (Anthony
et al., 2020) is used to measure energy consumption and carbon footprint (provided in Appendix C).

Figure 2 compares performance of the above methods on activity sets sdnkt and sdnkterca.
The methods that achieve lower test loss and lower energy consumption are better. At the one
extreme, all-in-one methods (including GradNorm) consumes the least energy, but their test losses
are the highest. Simply applying federated optimization, FedProx, can hardly improve performance,
especially on sdnkterca. At the other extreme, HOA achieves comparable test losses on three
or four splits of sdnkt, but it demands high energy consumption (∼ 4− 6× of ours) to compute
pair-wise activities for higher-order estimation. Although training activities one by one and TAG
present a good balance between test loss and energy consumption, MuFL is superior in both aspects;
it achieves the best test loss with ∼40% and ∼50% less energy consumption on activity set sdnkt
and sdnkterca, respectively. Additionally, more splits of activity in the activity splitting lead to
higher energy consumption, but it could help further reduce test losses. We do not report HOA for
activity set sdnkterca due to computation constraints.2 We omit to report the running time as it is
hidden under the metric of energy consumption; higher energy consumption implies longer training
time. We provide more details of these experiments and results of activity set erckt in Appendix C.

5.2 HOW EFFECTIVE IS OUR ACTIVITY SPLITTING APPROACH?

We demonstrate the effectiveness of our activity splitting approach by comparing it with the possible
optimal and worst splits. The optimal and worst splits are obtained with two steps: 1) we measure the
performance over all combinations of two splits and three splits of an activity set by training them
from scratch;3 2) we select the combination that yields the best performance as the optimal split and
the worst performance as the worst split.

Table 1 compares the test loss of MuFL with the optimal and worst splits trained in two ways:
1) training each split from scratch; 2) training each split the same way as our activity splitting —
initializing models with the parameters obtained from all-in-one training. On the one hand, training

2HOA computes at least 36 pairs of activities (∼720 GPU hours), consuming ∼12× more energy than MuFL.
3There are fifteen and twenty-five combinations of two and three splits, respectively, for a set of five activities.
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Figure 3: Changes of affinity scores of one activity to the other on activity set sdnkterca. Activities
d and r have high inter-activity scores. The trends of affinities emerge at the early stage of training.
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(b) Training activity set: erckt
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(c) Activity set: sdnkterca

Figure 4: Performance comparison of training all-in-one activities for different R0 rounds. Fixing the
total training rounds R = 100, our method achieves the best performance when R0 ∈ {20, 30, 40}.

from initialization outperforms training from scratch in all settings. It suggests that initializing each
split with all-in-one training model parameters can significantly improve the performance. On the
other hand, our activity splitting method achieves the best performance in all settings, even though
training from initialization reduces the gaps of different splits (the optimal and worst splits). These
results indicate the effectiveness of our activity splitting approach.

5.3 WHEN TO SPLIT TRAINING ACTIVITIES?

We further answer the question that how many R0 rounds should we train the all-in-one activity
before activity splitting. It is determined by two factors: 1) the rounds needed to obtain affinity scores
for a reasonable activity splitting; 2) the rounds that yield the best overall performance.

Affinity Analysis We analyze changes in affinity scores over the course of training to show that
early-stage affinity scores are acceptable for activity splitting. Figure 3 presents the affinity scores of
different activities to one activity on activity set sdnkterca. Figure 3a and 3b indicate that activity
d and activity r have high inter-activity affinity scores; they are divided into the same group as a
result. In contrast, both d and r have high affinity score to activity s in Figure 3c, but not vice versa.
These trends emerge in the early stage of training, thus, we employ the affinity scores of the tenth
round for activity splitting by default; they are effective in achieving promising results as shown in
Figure 2 and Table 1. We provide more affinity scores of other activities in Appendix C.

The Impact of R0 Rounds Figure 4 compares the performance of training R0 for 10 to 90 rounds
before activity splitting. Fixing the total training round R = 100, we train each split of activities
for R1 = R − R0 rounds. The results indicate that MuFL achieves the best performance when
R0 = {20, 30, 40} rounds. Training the all-in-one activity for enough rounds helps utilize the benefits
and synergies of training together, but training for too many rounds almost suppresses the benefits
of considering differences among activities. We suggest training R0 for [20, 40] that strikes a good
balance between these two extremes and consider other mechanisms to determine R0 in future works.

5.4 HIERARCHICAL SPLITTING

This section evaluates an alternative activity splitting strategy. In activity splitting, we can divide the
all-in-one training activity into {2, 3, . . . } splits. As shown in Figure 2, more splits lead to better
performance with slightly higher energy consumption in the five-activity set, but the trend is not
straightforward in the nine-activity set. Apart from setting the number of splits directly, MuFL can
split the training activity into more splits adaptively via two steps: 1) dividing the all-in-one activity
into two splits and training each one for R1 rounds; 2) further dividing one of them to two splits and
train these three activities for R2 rounds. We term the adaptive process as hierarchical splitting.

8
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Table 2: Performance of hierarchical splitting on three activity sets sdnkt, erckt, and
sdnkterca. Hierarchical splitting outperforms two splits and achieves similar performance to three
splits with less energy (kWh) consumption.

Method sdnkt erckt sdnkterca

Energy Test Loss Energy Test Loss Energy Test Loss

Two Splits 4.9 ± 0.3 0.578 ± 0.015 6.7 ± 0.2 1.039 ± 0.024 6.0 ± 0.1 1.445 ± 0.021
Three Splits 5.4 ± 0.7 0.555 ± 0.008 7.2 ± 0.2 1.015 ± 0.018 6.6 ± 0.4 1.391 ± 0.030
Hierarchical 5.3 ± 0.4 0.563 ± 0.007 6.9 ± 0.2 1.022 ± 0.020 6.5 ± 0.3 1.403 ± 0.024

Table 2 compares the performance of hierarchical splitting (3 splits) with directly splitting to multiple
splits on three activity sets. We use R0 = 30, R1 = 40, and R2 = 30 for activity sets sdnkt and
erckt, and R0 = 30, R1 = 20, and R2 = 50 for sdnkterca. Hierarchical splitting effectively
reduces test losses of two splits and achieves comparable performance to three splits with less
energy consumption. These results suggest that hierarchical splitting can be an alternative method of
activity splitting. Additionally, these results also demonstrate the possibility of other activity splitting
strategies to be considered in future works.

5.5 ADDITIONAL ANALYSIS
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Figure 5: Analysis of the impact of (a)
local epoch E and (b) the number of se-
lected clients K on activity set sdnkt.
Larger E and K could reduce losses
with more computation, but the benefit
decreases as computation increases.

This section analyzes the impact of local epoch E and
the number of selected clients K in FL using all-in-one
training. We report the results of activity set sdnkt here
and provide more results in Appendix C.

Impact of Local Epoch E Local epoch defines the num-
ber of epochs each client trains before uploading training
updates to the server. Figure 5a compares test losses of
local epochs E = {1, 2, 5, 10}. Larger E could lead to
better performance with higher computation (fixed train-
ing roundR = 100), but it is not effective when increasing
E = 5 to E = 10. It suggests the limitation of simply
increasing computation with larger E in improving perfor-
mance. Note that MuFL (Table 1) achieves better results
than E = 5 with ∼ 5× less computation.

Impact of The Number of Selected Clients K Figure 5b compares test losses of the number
of selected clients K = {2, 4, 6, 8, 16} in each round. Increasing the number of selected clients
improves the performance, but the effect becomes marginal as K increases. Larger K can also be
considered as using more computation in each round. Similar to the results of the impact of E,
simply increasing computation can only improve performance to a certain extent. It also shows the
significance of MuFL that increases performance with slightly more computation. We use K = 4 by
default for experiments and demonstrate that MuFL is also effective on K = 8 in Appendix C.

6 CONCLUSIONS

In this work, we propose a smart multi-tenant federated learning system to effectively coordinate and
execute multiple simultaneous FL training activities. In particular, we introduce activity consolidation
and activity splitting to consider both synergies and differences among training activities. Extensive
empirical studies demonstrate that our method is effective in elevating performance and significant in
reducing energy consumption and carbon footprint by more than 40%, which are important metrics to
our society. We believe that multi-tenant FL will emerge and empower many real-world applications
with the fast development of FL. We hope this research will inspire the community to further work
on algorithm and system optimizations of multi-tenant FL. Future work involves designing better
scheduling mechanisms to coordinate training activities. Client selection strategies can also be
considered to optimize resource and training allocation, and extend our optimization approaches to
other multi-tenant FL scenarios.

9
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7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide basic experimental setups in Section 5 and include more
details about the dataset, implementation details, and hyperparameters in Appendix B. We also provide
the algorithm of MuFL in Algorithm 1. Besides, the implementation codes will be open-sourced in
the future.
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A MULTI-TENANT FL SCENARIOS

We introduce four multi-tenant federated learning scenarios in Section 3. Figure 6 depicts these
four scenarios with variances in two aspects: 1) whether all training activities are the same type of
application, e.g., CV applications; 2) whether all clients support all training activities.

Example: Google Keyboard

Same Type of
Applications

Clients support
all activities

Not all clients
support all activities

Different Types
of Applications

Clients: Cars
Type: Computer vision 
Training activities: e.g., object
detection, semantic segmentation

Clients: Cameras 
Type: Computer vision 
Training activities: e.g., open spots
counting, duration tracking

Clients: Smartphones 
Type: Recommendation, NLP 
Training activities: e.g., query
suggestion, next-word prediction

Example: Autonomous Vehicle

Example: Surveillance Cameras
in Parking Lots

Example:  Browsers

Clients: Browsers 
Type: Recommendation, Ranking 
Training activities: e.g., news/ads
recommendation, rank history

Figure 6: Illustration of the four multi-tenant FL scenarios.

Our proposed approach, MuFL, focuses on optimizing the performance on Scenario 1. Optimizing
Scenario 1 can potentially empower plenty of real-world applications. For example, autonomous
vehicles relate to multiple computer vision (CV) tasks (Janai et al., 2020), including object detection,
tracking, and semantic segmentation; smart city surveillance cameras associate with various CV
tasks, such as crowd counting, object detection, and person re-identification (Zhuang et al., 2020);
voice assistant applications like Apple Siri and Google Assistant need multiple automatic speech
recognition (ASR) tasks, including word confidence, word deletion, and utterance confidence (Qiu
et al., 2021); household robots like Amazon Astro need to perform multiple CV tasks such as
visual odometry tracking, loop-closure detection, and object detection (Ye & Sen, 2022); smart-
manufacturing robots need several CV tasks such as object detection, object grasp point detection,
and object pose estimation (FLAIROP, 2022).

B EXPERIMENTAL DETAILS

This section provides more experimental information, including dataset, implementation details, and
computation resources used.
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Figure 7: The data amount distribution
of each training activity over 32 clients.

Dataset We run experiments using Taskonomy dataset
(Zamir et al., 2018), which is a large computer vision
(CV) dataset of indoor scenes of buildings. To facili-
tate reproducibility and mitigate computational require-
ments, we use the tiny split of Taskonomy dataset,4 whose
size is around 445GB. We select nine CV applications
to form three sets of training activities: sdnkt, erckt,
sdnkterca. These nine actvities are also used in (Stan-
dley et al., 2020). Figure 8 provides sample images of
these nine training activities, as well as the representation
of each character.5 In particular, we employ indoor images

4Taskonomy dataset is released under MIT license and can be downloaded from their official repository
https://github.com/StanfordVL/taskonomy.

5The meaning of each character in sdnkterca are as follows; s: semantic segmentation, d: depth
estimation, n: normals, k: keypoint, t: edge texture, e: edge occlusion, r: reshaping, c: principle curvature, a:
auto-encoder.
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(a) Input Image (b) s: Segmentation (c) d: Depth Estimation (d) n: Surface Normals (e) k: Keypoint

(f) t: Edge Texture (g) e: Edge Occlusion (h) r: Reshasing (i) c: Principle Curvature (j) a: Auto-encoder

Figure 8: Sample images of nine training activities corresponding to the input image.

Figure 9: Sample images of five clients, where each client contains indoor scenes of a building. These
indoor images differ in design, layout, objects, and illumination.

of 32 buildings 6 as the total number of clients N = 32; each client contains images of a building to
simulate the statistical heterogeneity. On the one hand, clients have different sizes of data. Figure 7
shows the distribution of dataset sizes of an activity of clients. On the other hand, Figure 9 shows
sample images of five clients; their indoor scenes vary in design, layout, objects, and illumination.

Implementation Details We implement multi-tenant FL systems in Python using PyTorch (Paszke
et al., 2017). We simulate the FL training on a cluster of NVIDIA Tesla V100 GPUs, where each
node in the cluster contains 8 GPUs. In each round, each selected client is allocated to a GPU to
conduct training; these clients communicate via the NCCL backend. Besides, we employ FedAvg
(McMahan et al., 2017) for the server aggregation. By default, we randomly select K = 4 clients to
train for E = 1 local epochs in each round and train for R = 100 rounds.

We reference the implementation of multi-task learning from (Standley et al., 2020)’s official reposi-
tory 7 for all-in-one training and training of each split after activity splitting. Particularly, the network
architecture contains an encoder θs and multiple decoders θαi

; one decoder for a training activity
αi. Figure 10 illustrates the network architectures of training activities before and after activity
consolidation and activity splitting. We use the modified Xception Network (Chollet, 2017) as the
encoder for activity sets sdnkt and erckt and half size of the network (half amount of parameters)
for activity set sdnkterca. The decoders contain four deconvolution layers and four convolution
layers. Each training activity contains a loss function. Specifically, semnatic segmentation s uses
Cross Entropy loss; surface normals and depth estimation use rotation loss based on L1 loss; keypoint
detection, edge occlusion, edge texture, auto encoder, and principle curvature use L1 loss. We refer

6The name of the buildings are allensville, beechwood, benevolence, coffeen, collierville, corozal, cosmos,
darden, forkland, hanson, hiteman, ihlen, klickitat, lakeville, leonardo, lindenwood, markleeville, marstons,
mcdade, merom, mifflinburg, muleshoe, newfields, noxapater, onaga, pinesdale, pomaria, ranchester, shelbyville,
stockman, tolstoy, and uvalda.

7https://github.com/tstandley/taskgrouping
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Figure 10: Illustration of network architectures of training activities in MuFL. Initially, each activity
employs an encoder and a decoder. Activity consolidation consolidates these training activities into
an all-in-one activity with multi-task architecture. After activity splitting, MuFL divides the all-in-one
activity into multiple training activities, each contains an encoder and one or multiple decoders.

implementation of loss functions from (Standley et al., 2020) 8. The batch size is B = 64 for sdnkt
and erckt and B = 32 for sdnkterca. These are the maximum batch sizes for one GPU without
out-of-memory issues. In addition, we use polynomial learning rate decay (1 − r

R )
0.9 to update

learning rate in each round with initial learning rate η = 0.1, where r is the number of trained rounds
and R = 100 is the default total training rounds. The optimizer is stochastic gradient descent (SGD),
with momentum of 0.9 and weight decay 1e−4.

Implementation of Compared Methods We tune the hyperparameter µ = 0.004 for the proximal
term in FedProx (Li et al., 2020). GradNorm (Chen et al., 2018) implementation is adopted from
(Standley et al., 2020; Fifty et al., 2021) with default α = 1.5 and TAG (Fifty et al., 2021) implemen-
tation is adopted from their official repository 9. Next, we provide the details of how we compute the
results of HOA (Standley et al., 2020) and TAG (Fifty et al., 2021).

HOA (Standley et al., 2020) needs to compute test losses for individual activities and pair-wise
activity combinations for R = 100 rounds. After that, we use these results to estimate test losses of
higher-order combinations following (Standley et al., 2020). We then compute the actual test losses
for the optimal activity splits that have the lowest test losses by training them from scratch. For
example, for activity set sdnkt, we compute s, d, n, k, t and ten pair-wise activity combinations.
Then, we use these results to estimate test losses of higher-order combinations.

TAG (Fifty et al., 2021) first computes all-in-one training for R = 100 rounds to obtain the pair-wise
affinities. Then, it uses a network selection algorithm to group these activities. After that, we train
each group of activities from scratch for R = 100 rounds to obtain test losses. The best result is
reported for overlapping activities. For example, {sd, dn, kt} is the best result of three splits of
TAG on activity set sdnkt. Then, each split is trained from scratch to obtain test losses.

Computation Resources Experiments in this work take approximately 27,765 GPU hours of
NVIDIA Tesla V100 GPU for training. We conduct three independent runs of experiments for the
majority of empirical studies. In each run, activity set sdnkt takes around 2,330 GPU hours, erckt
takes around 3,280 GPU hours, and sdnkterca takes around 3,645 GPU hours. These include
experiments of compared methods and ablation studies, whereas these do not include the GPU hours
for validation and testing. It takes around the same GPU hours as training when we validate the
model after each training round.

C ADDITIONAL EXPERIMENTAL EVALUATION

This section provides more experimental results, including comprehensive results of performance
evaluation and additional ablation studies.

8https://github.com/tstandley/taskgrouping/blob/master/taskonomy_losses.
py

9https://github.com/google-research/google-research/tree/master/tag
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Table 3: Comparison of test loss, energy consumption, and carbon footprint on activity set sdnkt.

Method Splits Energy (kWh) CO2eq (g) Total Loss s d n k t

One by one - 8.4± 0.1 2465± 39 0.603± 0.030 0.086± 0.005 0.261± 0.023 0.107± 0.001 0.107± 0.003 0.043± 0.002
All-in-one - 3.7± 0.1 1086± 28 0.677± 0.018 0.087± 0.002 0.246± 0.010 0.136± 0.001 0.126± 0.019 0.083± 0.008
GradNorm - 4.1± 0.4 1200± 122 0.691± 0.013 0.092± 0.001 0.251± 0.012 0.138± 0.003 0.118± 0.007 0.093± 0.019

HOA 2 31.0± 0.5 9125± 140 0.651± 0.029 0.091± 0.011 0.245± 0.002 0.135± 0.000 0.107± 0.003 0.074± 0.023
TAG 2 9.8± 0.3 2876± 88 0.624± 0.015 0.083± 0.004 0.242± 0.005 0.134± 0.001 0.110± 0.007 0.055± 0.006

MuFL 2 4.9± 0.3 1431± 94 0.578± 0.015 0.069± 0.006 0.231± 0.006 0.124± 0.002 0.102± 0.003 0.052± 0.003

HOA 3 31.0± 0.5 9125± 140 0.598± 0.029 0.083± 0.022 0.239± 0.007 0.127± 0.008 0.107± 0.003 0.043± 0.002
TAG 3 11.3± 0.2 3313± 56 0.613± 0.032 0.094± 0.005 0.233± 0.002 0.122± 0.013 0.110± 0.008 0.055± 0.008

MuFL 3 5.4± 0.3 1589± 94 0.555± 0.015 0.072± 0.006 0.222± 0.006 0.124± 0.002 0.095± 0.003 0.042± 0.003

HOA 4 31.0± 0.5 9125± 140 0.597± 0.015 0.094± 0.009 0.238± 0.002 0.115± 0.014 0.107± 0.003 0.043± 0.002
TAG 4 13.7± 0.3 4016± 80 0.603± 0.027 0.083± 0.005 0.233± 0.002 0.122± 0.013 0.110± 0.008 0.055± 0.008

MuFL 4 6.7± 0.3 1969± 75 0.548± 0.001 0.070± 0.002 0.230± 0.008 0.111± 0.000 0.095± 0.007 0.042± 0.001

Table 4: Comparison of test loss, energy consumption, and carbon footprint on activity set erckt.

Method Splits Energy (kWh) CO2eq (g) Total Loss e r c k t

One by one - 11.1± 2.2 3277± 660 1.055± 0.034 0.148± 0.000 0.371± 0.029 0.386± 0.006 0.107± 0.003 0.043± 0.002
All-in-one - 5.0± 0.3 1478± 84 1.130± 0.022 0.146± 0.001 0.379± 0.019 0.393± 0.002 0.110± 0.003 0.079± 0.013
GradNorm - 5.0± 0.2 1462± 70 1.154± 0.055 0.147± 0.002 0.381± 0.015 0.394± 0.001 0.149± 0.062 0.082± 0.005

HOA 2 38.3± 0.3 11265± 86 1.082± 0.032 0.149± 0.003 0.365± 0.025 0.394± 0.002 0.109± 0.002 0.064± 0.022
TAG 2 14.0± 0.9 4119± 279 1.095± 0.033 0.147± 0.002 0.379± 0.013 0.393± 0.000 0.108± 0.005 0.068± 0.015

MuFL 2 6.7± 0.2 1957± 53 1.039± 0.024 0.143± 0.001 0.343± 0.014 0.393± 0.001 0.104± 0.006 0.056± 0.007

HOA 3 38.3± 0.2 11265± 53 1.062± 0.024 0.149± 0.001 0.365± 0.014 0.394± 0.001 0.109± 0.006 0.046± 0.007
TAG 3 14.4± 0.6 4242± 170 1.091± 0.034 0.147± 0.002 0.388± 0.014 0.396± 0.002 0.109± 0.009 0.050± 0.011

MuFL 3 7.2± 0.2 2108± 50 1.015± 0.018 0.143± 0.000 0.336± 0.005 0.383± 0.001 0.102± 0.008 0.052± 0.009

HOA 4 38.3± 0.3 11265± 86 1.053± 0.034 0.148± 0.002 0.369± 0.028 0.386± 0.006 0.105± 0.001 0.045± 0.003
TAG 4 17.4± 0.5 5114± 159 1.087± 0.028 0.147± 0.002 0.384± 0.011 0.396± 0.002 0.109± 0.009 0.050± 0.011

MuFL 4 7.6± 0.0 2229± 14 1.002± 0.014 0.143± 0.000 0.336± 0.005 0.383± 0.001 0.094± 0.009 0.046± 0.004

C.1 PERFORMANCE EVALUATION
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Figure 11: Compare test loss and energy
consumption on activity set erckt.

Table 3 and 5 provide comprehensive comparison of dif-
ferent methods on test loss and energy consumption on
activity sets sdnkt and sdnkterca, respectively. They
complement the results in Figure 2. Besides, Table 4 and
Figure 11 compares these methods on activity set erckt.
The results on erckt is similar to results on the other ac-
tivity sets; our method achieves the best performance with
around 40% less energy consumption than the one-by-one
method and with slightly more energy consumption than
all-in-one methods.

Additionally, Table 3, 4 and 5 also provide carbon foot-
prints (CO2eq) of different methods. The carbon footprints are estimated using Carbontracker
(Anthony et al., 2020).10 Our method reduces around 40% on carbon footprints on these three activity
sets compared with one-by-one training; it reduces 1526gCO2eq or equivalent to traveling 12.68km
by car on sdnkterca. The reduction is even more significant when compared with TAG and HOA.
Although we run experiments using Tesla V100 GPU, the relative results of energy and carbon
footprint among different methods should be representative of the scenarios of edge devices.

C.2 ADDITIONAL ANALYSIS AND ABLATION STUDIES

This section presents additional analysis of MuFL and provides additional ablation studies.

10Carbon intensity of a training varies over geographical regions according to (Anthony et al., 2020). We use
the national level (the United Kingdom as the default setting of the tool) of carbon intensity for a fair comparison
across different methods. These carbon footprints serve as a proxy for evaluation of the actual carbon emissions.
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Table 5: Comparison of test loss, energy consumption, and carbon footprint on sdnkterca.

Method Splits Energy CO2eq (g) Total Loss s d n k t e r c a

One by one - 11.9±0.53512±1511.46±0.0110.08±0.0090.24±0.0140.10±0.0010.10±0.0020.04±0.0030.15±0.0010.35±0.0110.38±0.0020.02±0.000
All-in-one - 4.9±0.2 1435±60 1.49±0.0250.09±0.0020.23±0.0090.13±0.0020.10±0.0020.07±0.0050.14±0.0010.33±0.0110.39±0.0010.02±0.001
GradNorm - 5.3±1.3 1561±3771.50±0.0490.08±0.0040.24±0.0140.13±0.0030.10±0.0030.07±0.0110.14±0.0010.34±0.0180.39±0.0010.02±0.001

TAG 2 14.7±0.84317±2291.49±0.0250.09±0.0020.23±0.0080.13±0.0020.10±0.0020.07±0.0050.14±0.0010.33±0.0110.39±0.0010.02±0.001
MuFL 2 6.0±0.1 1986±1081.45±0.0210.08±0.0030.22±0.0080.12±0.0010.10±0.0010.06±0.0040.14±0.0000.32±0.0110.39±0.0010.02±0.001

TAG 3 16.5±2.64854±7511.44±0.0140.09±0.0060.23±0.0090.12±0.0010.10±0.0020.03±0.0040.14±0.0000.33±0.0090.39±0.0010.02±0.000
MuFL 3 6.6±0.4 1955±1041.39±0.0300.07±0.0050.22±0.0080.12±0.0020.08±0.0020.05±0.0030.14±0.0010.32±0.0110.38±0.0010.02±0.000

TAG 4 15.8±2.44639±7171.44±0.0070.07±0.0030.24±0.0020.11±0.0010.10±0.0020.03±0.0040.14±0.0000.35±0.0030.39±0.0010.02±0.000
MuFL 4 7.5±0.3 2201±94 1.40±0.0270.06±0.0040.22±0.0080.12±0.0030.08±0.0020.05±0.0010.14±0.0010.32±0.0110.39±0.0010.02±0.001

MuFL 5 8.3±0.4 2439±1051.40±0.0280.06±0.0040.22±0.0080.12±0.0030.08±0.0020.05±0.0000.14±0.0020.32±0.0110.39±0.0010.02±0.001
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Figure 12: Changes of validation loss over the course of training on activity sets: (a) sdnkt, (b)
erckt, and (c) sdnkterca. Validation loss converges as training proceeds.

Table 6: Activity splitting results of TAG (Fifty et al., 2021) and MuFL on activity sets sdnkt,
erckt, and sdnkterca. Activities of each split is separated by a comma.

Method Activity Set Two Splits Three Splits Four Splits Five Splits

TAG sdnkt sdn,kt sd,dn,kt sd,sdn,dn,kt -
MuFL sdnkt sdn,kt sdn,k,t sd,n,k,t s,d,n,k,t

TAG erckt er,rckt er,kt,rc er,kt,rc,rt -
MuFL erckt er,ckt er,c,kt er,c,k,t e,r,c,k,t

TAG sdnkterca sdnkterca,dr sdnerc,dr,kta sc,dr,ne,kta -
MuFL sdnkterca snkteac,dr snec,dr,kta sn,dr,ka,etc sn,dr,ka,e,tc

Changes of Vadiation Loss Figure 12 presents validation losses over the course of all-in-one
training of three training activity sets sdnkt, erckt, and sdnkterca. It shows that validation
losses converge as training proceeds.

Splitting Results of Various Methods We provide results of activity splitting of TAG (Fifty et al.,
2021) and MuFL in Table 6. For hierarchical splitting, they further split into three splits from the
results of two splits. In particular, the results of hierarchical splitting of erckt and sdnkterca
are the same as their three splits. The hierarchical splitting result of sdnkt is from {sdn,kt} to
{sd,n,kt} as the hierarchical splitting further divides the split with more training activities (sdn).

Besides, Table 7 presents the splitting results of the optimal and worst splits. They are not identical
due to variances in multiple runs of experiments. We report the mean and standard deviation of test
losses of the optimal splits and the worst splits in Table 1. The large variances of the optimal and
worst splits suggest the instability of splitting by measuring the performances of training from scratch
in the FL settings and show the advantage of our methods in obtaining stable splits.

Dataset Size and Performance The dataset size of activity set sdnkt is around 315GB in our
experiments, compared to 2.4TB of dataset used in experiments of TAG (Fifty et al., 2021). The test
loss of ours (0.512 in Table 8), however, is better than the optimal one in TAG (Fifty et al., 2021)
(0.5246). This back-of-the-envelope comparison indicates the potential to extend our approaches to
multi-task learning. Besides, it could also suggest that our data size is sufficient for evaluation.
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Table 7: Results of the optimal and worst splits in three runs of experiments. They are not identical
due to variances in three runs of experiments.

Activity Set Splits Optimal Splits Worst Splits

sdnkt
2 dk,snt sn,dkt nt,sdk st,dnk st,dnk st,dnk
3 t,sn,dk k,t,sdn d,sn,kt d,st,nk d,st,nk s,dt,nk

erckt
2 r,eckt t,erck et,rck rk,ect ek,rct e,rckt
3 r,ec,kt r,t,eck r,ec,kt c,e,rk e,k,rct e,rt,ck
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Figure 13: Changes of affinity scores of one activity to the other over the course of training on activity
set sdnkterca. The trends of affinities emerge at the early stage of training.

Impact of Affinity Computation Frequency f The frequency of computing affinities in Equation
2 determines the amount of extra needed computation. We use f = 5 and compute affinities for the
first ten rounds for all experiments because the trend of affinities emerges in the early stage of training
in Figure 13. It would increase the computation of all-in-one training by around 2%, which is already
factored into the energy consumption computation in previous experiments. The results in Table 3, 4,
and 5 show that MuFL is effective with this setting and the amount of computation is acceptable.

Impact of Local Epoch Figure 14a show the impact of local epoch E on activity sets sdnkt,
erckt, and sdnkterca. They complement results of activity set sdnkt in Figure 5a. Larger
E could lead to better performance with fixed R = 100. It is especially effective when increasing
E = 1 to E = 2, but further increasing E could degrade the performance. It indicates that simply
increasing computation has limited capability to improve performance.

Impact of The Number of Selected Clients Figure 14b compares the performance of differ-
ent numbers of selected clients K = {2, 4, 6, 8, 16} on three activity sets sdnkt, erckt, and
sdnkterca. It complements results in Figure 5b. The results on three activity sets are similar;
increasing K reduces losses, but the marginal benefit decreases as K increases.

The majority of experiments in this study are conducted with K = 4. We next analyze the impact
of K in MuFL with results of two splits on activity set sdnkt in Table 8. The results indicate that
MuFL is still effective with K = 8, which outperforms K = 4 and all-in-one training.

Standalone Training Standalone training refers to training using data of each client independently.
Figure 15a shows the test loss distribution of thirty-two clients used in experiments. The client ID
corresponds to the dataset size distribution in Figure 7. These results suggest that larger data sizes of
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Figure 14: Analysis of the impact of local epoch E and impact of the number of selected clients K.
Larger E (with fixed R = 100) and K requires higher computation. They could reduce losses, but
the marginal benefit decreases as computation increases.

Table 8: Comparison of test loss using different numbers of selected clients K. MuFL achieves even
better performance on K = 8.

K Total Loss s d n k t

All-in-one 4 0.677 0.087 0.246 0.136 0.126 0.083
All-in-one 8 0.618 0.076 0.227 0.130 0.109 0.077

MuFL (two splits) 4 0.578 0.069 0.231 0.124 0.102 0.052
MuFL (two splits) 8 0.512 0.060 0.202 0.117 0.083 0.048
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(a) Test loss distribution of standalone training

Methods Test Loss
Standalone 1.842 ± 0.248
All-in-one 0.677 ± 0.018

MuFL 0.548 ± 0.001

(b) Test loss comparison

Figure 15: Performance (test loss) of standalone training that conducts training using data in each
client independently: (a) shows the test loss distribution of these thirty-two clients. (b) compares test
losses of standalone training and FL methods. We run the experiments on activity set sdnkt.

clients may not lead to higher performance. Figure 15b compares test losses of standalone training
and federated learning methods. Either all-in-one or our MuFL greatly outperforms standalone
training. It suggests the significance of federated learning when data are not sharable among clients.
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D ALGORITHM

Algorithm 1 Our Proposed Smart Multi-tenant FL System (MuFL)

1: Input: training activities A = {α1, α2, . . . , αn}, a set of available clients C, number of selected
clients K, local epoch E, aggregation weight of client k pk, total training rounds R, all-in-one
training rounds R0, the number of splits x, frequency of computing affinities f , batch size B

2: Output: modelsW = {ω1, ω2, . . . , ωn}
3:
4: ServerExecution:
5: Consolidate A into α0 with a multi-task model ν0 = {θs} ∪ {θαi

|αi ∈ A} . Act. consolidation
6: Initialize ν0, i.e. initialize ωi = {θs} ∪ {θαi

} for i ∈ N = {1, 2, . . . , n}
7: for each round r = 0, 1, ..., R0 − 1 do
8: Cr ← (Randomly select K clients from C)
9: for client k ∈ Cr in parallel do

10: νr,k, Ŝr,kαi→αj
← Client(νr, A, f )

11: end for
12: νr+1 ←

∑
k∈Cr

pkν
r,k

13: Ŝrαi→αj
← 1

K

∑
k∈Cr

Ŝr,kαi→αj

14: end for
15: Compute the values of Srαi→αi

, ∀αi ∈ A, using Equation 3 . Compute affinity scores
16: Compute a disjoint partition set I of activities A for x splits {Aj |j ∈ I} that maximizes Srαi

using affinity scores Srαi→αj
, ∀αi ∈ A and ∀αj ∈ A . Activity splitting

17: for each element j ∈ I do . Schedule to train sequentially
18: Initialize νj = {θjs} ∪ {θαi |αi ∈ Aj} with parameters of νR0

19: for each round r = 0, 1, ..., R−R0 − 1 do
20: Cr ← (Random select K from C)
21: for client k ∈ Cr in parallel do
22: νr,kj , ←Client(νrj , Aj , 0)
23: end for
24: νr+1

j ←
∑
k∈Cr

pkν
r,k
j

25: end for
26: end for
27: ReconstructW = {ω1, ω2, . . . , ωn} from {νj |j ∈ I} by matching training activities
28: ReturnW
29:
30: Client (ν, A, f ):
31: T = bBf c if f 6= 0 else 0

32: for local epoch e = 1, ..., E do
33: Update model parameters ν with respect to training activities A
34: for each time-step t = 1, 2, ..., T (every f batches) do
35: ∀αi ∈ A and ∀αj ∈ A, compute affinities of Stαi→αj

using Equation 2
36: end for
37: end for

38: Ŝαi→αj = 1
ET

E∑
e=1

T∑
t=1
Stαi→αj

, ∀αi ∈ A and ∀αj ∈ A

39: Return ν, Ŝαi→αj
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