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Abstract

Podcasts are lengthy audio conversations which
require a significantly large context input for ac-
curate summarization via computational mod-
els. Despite recent advancements in Large Lan-
guage Models (LLMs), it is challenging to sum-
marize a transcribed podcast conversation us-
ing LLMs, due to input context length, long-
range dependencies, noisy data and attention
mismatch. In this paper, we propose an agen-
tic framework for LLM-based summarization
of Hindi Podcasts (AF-HPSum) which leverages
multiple strategies, including a rule-based dele-
tion strategy for compressive summarization.
Using multiple LLMs, both open-weighted and
closed-source, we evaluate the performance
of our framework and observe that an itera-
tive strategy helps preserve long-range depen-
dencies and produce relevant summaries. We
also conducted a preliminary human evaluation,
which elicits model selection and helps build
a comprehensive pipeline for podcast summa-
rization. Through parameter-efficient training
of open-weighted models and our iterative ap-
proach, we achieved a significant performance
improvement over closed-weight and larger
models by a significant margin. We will re-
lease our framework codebase, prompts, data
and output with this paper here.

1 Introduction

Automatic summarization as a field has made rapid
progress in recent times since the Transformer ar-
chitecture (Vaswani et al., 2017) and Large Lan-
guage Models (Raffel et al., 2019) have been de-
veloped. Since then, numerous models for general
tasks as well as some finetuned for summarization
have been developed. While a lot of work has
already been done to enhance the capabilities of
these models in the English language, Indian lan-
guages like Hindi, Marathi, Bengali and various
others are lagging behind in terms of understand-
ing of the languages themselves. In this paper, we

will specifically discuss approaches to summarize
text in Hindi language, taking Podcast data as an
example.

Podcasts (Karbalaee, 2023) are a form of digital
audio entertainment that cover a variety of topics
like stories, debates, interviews, narratives covering
various genres, etc. The number of such podcasts
online is huge, with new ones arriving daily in the
dozens. Podcast descriptors or summaries are a
way of getting a brief idea of the content of a pod-
cast and to draw viewership. Such podcast descrip-
tors are usually written by the authors themselves
or by the hosting platforms and are quite unreliable,
they may sometimes exaggerate or are completely
unrelated to the main topic of the podcast. Through
our research we will show that such summaries are
less liked by readers compared to LLM-generated
summaries.

Podcast data is known to have a lot of noise
mixed in (Beltagy et al., 2020), with multiple speak-
ers, pauses, background voices, and other forms of
noise that affect the quality of the final transcripts
when audio data are converted to textual formats.
The affected transcripts may have incorrect punctu-
ation, wrongly interpreted or unrecognizable words
due to multiple speakers and background music or
voices, and some sentences might not even have an
end-of-sentence punctuation mark. Textual podcast
data (Shah et al., 2023) are also quite large, with
our dataset having an average of 7000 tokens for
each data instance, further amplifying the effects
on operations performed on such data. Any text
summarization performed on such data is bound
to face issues when using conventional extractive
summarization techniques. However, with LLMs it
becomes noticeably easier, since they understand
the meaning of the text and generate tokens based
on what they understood from the input. They
have higher capability of coping with such issues
and as the size of LLMs increases, this advantage
is further highlighted. Larger models also have
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the ability to perform more complex tasks like ig-
noring advertisements, generating summaries with
various conditions like generating specific number
of words and following certain writing patterns.

For our research, we have used podcast tran-
scripts generated by Audio-to-Text conversion ap-
proaches (Elakkiya et al., 2022), for multiple rea-
sons. On one hand, compared to audio, there is a
larger amount of Hindi text data, so various LLMs
can easily recognize pattens in textual data more ef-
fectively. Secondly, there are fewer models that rec-
ognize Hindi audio that are being used for summa-
rization purposes (Gonzélez-Gallardo et al., 2020).
We also found that besides being rare, such au-
dio recognition models show worse results when
compared to their textual counterparts.

Zero-shot LLM-based summarization applied to
podcast data depends on the quality of a model
and finetuning, which requires a lot of resources.
They might also have insufficient reasoning capa-
bilities which may cause them to miss out on rel-
evant details discussed in the podcast. Podcasts
transcripts can also be pretty long so LLMs might
forget some earlier details during processing, which
also reduces the quality of the generated summary.
Different LLMs compared in this study show that
these traditional approaches are unable to show
great results in one pass, with some models even
failing to understand the instructions provided by
the user (Tie et al., 2024). Our study showed that
LLMs lack a clear understanding of the original
text, even though the summaries were preferred by
humans. Some summaries were factually incorrect,
while others were too large or small even though
explicitly the number of words was clearly speci-
fied in the prompts. We also found LLMs repeating
previous ideas repeatedly even after introducing
repetition penalties. All these show that LLMs
still lag behind humans in their understanding of
instructions given.

In this paper, we have come up with a framework
to further optimize the current LLMs for Hindi
Podcast summarization by using compressions and
repeated prompts with changes to boost the factual
accuracy of the final summaries, while correcting
the existing issues. We also aim to reduce redun-
dant words in the summaries through our approach,
which has been a major drawback of small and
medium-sized models. We have also added meth-
ods to summarize using multiple LLMs and select-
ing the best output, to maximize the potential of
existing LLMs and our resources.

2 Related Work

Automated summarization of podcast transcripts
has primarily focused on English. The TREC
Podcasts tracks (2020-2021) spurred several ap-
proaches that address the unique challenges of spo-
ken content (noisy ASR transcripts, conversational
structure, very long inputs). For example, (Karl-
bom and Clifton, 2020) tackle the length issue by
replacing BART’s self-attention with Longformer’s
sparse attention, enabling input of thousands of
tokens (Tanaka et al., 2021). (Zheng et al., 2020)
propose a two-phase abstractive pipeline: they first
extract important sentences from the transcript and
then feed those to a pretrained encoder—decoder
(e.g. BART) to generate the summary. Similarly,
(Manakul and Gales, 2020) use a hierarchical fil-
tering model to remove redundant sentences be-
fore fine-tuning a BART model (with a sequence-
level reinforcement objective) on the remaining
transcript.

Most existing work, however, has assumed En-
glish data. To extend summarization to other lan-
guages, (Tanaka et al., 2021) explore multilingual
podcast summarization (English and Portuguese)
using the Spotify dataset (Karbalaee, 2023). They
fine-tune mBART-50 (a 50-language BART model)
on bilingual podcast (and news) data and find that
a single multilingual model performs on par with
language-specific models. They also adapt mBART
to a Longformer version (increasing the token limit
from 512 to 4096) to better handle long transcripts
(Tanaka et al., 2021) (Beltagy et al., 2020), al-
though their Longformer variant did not outperform
the base mBART in practice. These studies high-
light that long-input architectures (like Longformer
(Tanaka et al., 2021)) and multi-phase pipelines are
crucial for podcast summarization, but they have
not been evaluated on Hindi data. In short, while
several systems address English podcast summa-
rization (using Longformer attention (Beltagy et al.,
2020) or multi-stage extraction-abstraction (Zheng
et al., 2020)), none target Hindi episodes. This gap
motivates our focus on summarizing Hindi podcast
transcripts.

Compressing sentences (deleting non-essential
spans) offers a middle ground between extractive
and abstractive summaries. Earlier pipeline meth-
ods combined sentence selection with syntactic
compression rules (e.g. ILP-based trimming of
parse trees (Li et al., 2014)). More recently, neu-
ral approaches learn what spans to delete. (Desai



et al., 2020) introduce a data-driven compressive
model that scores each candidate deletion by two
learned criteria: plausibility and salience. A dele-
tion is plausible if it preserves grammaticality and
factuality, and it is salient if it removes important
information. Only spans that are plausible to delete
and not highly salient are removed (Desai et al.,
2020). Integrated into an extract-then-compress
pipeline, this approach yields fluent, informative
summaries and generalizes across domains. Such
compressive models are relevant for our work be-
cause they can shorten Hindi transcripts (making
them more manageable for abstractive summariz-
ers) while maintaining coherence.

Beyond single-model baselines, recent re-
searches aim to improve or evaluate summarizer
outputs. One class of methods uses multi-stage
or pipeline architectures. For example, Summ$N$
(Zhang et al., 2022) is a multi-stage summarization
framework for long documents: it splits a long
input into chunks, generates a coarse summary
in each stage, and then refines these into a final
summary. This split-then-summarize strategy can
handle arbitrarily long inputs with fixed-size LMs
(Zhang et al., 2022). Similarly, some works itera-
tively refine summaries. (Wang et al., 2024) pro-
pose a summarization pipeline for user data where
an LLM generates an initial summary and then
applies self-critique and revision steps to reduce
hallucinations and improve quality. Another direc-
tion is to use ensembling or multi-agent generation.
(Fang et al., 2024) introduce a multi-LLM summa-
rization framework, where multiple large language
models collaboratively generate and evaluate sum-
maries. They report that this multi-LLM ensemble
often outperforms any single-model baseline.

Summing it all up, prior research has made
progress on English podcast summarization (us-
ing long-input models and multi-phase pipelines
(Karlbom and Clifton, 2020) (Singh et al., 2024)
), on compressive summarization for general text
(Desai et al., 2020) , and on multilingual summa-
rization with mT5/mBART for Indian languages
(Taunk and Varma, 2023) (Singh et al., 2024). How-
ever, Hindi podcast summarization remains unstud-
ied. Our work fills this gap by integrating compres-
sive summarization with multilingual transformer-
based summarizers for Hindi audio transcripts, and
by leveraging compressive summarization to en-
hance summary faithfulness and relevance.

3 Dataset

Our dataset of Hindi Podcast transcripts and their
Podcast Descriptors was collected by crawling the
web for podcast audio and their descriptors, se-
lecting on Hindi audio for our experiments. We
selected podcasts from various genres like chil-
dren’s stories, works on religion, astrology, and
various others. The audio transcripts for the pod-
casts were generated using Azure Speech-to-Text
services. The total number of such transcripts is
1955, along with their descriptors. These descrip-
tors will be used as gold standard summaries for
our research. Table 1 describes some of the dataset
metrics for reference.

Statistic Value
Number of Instances 1955
Total Words in Transcript 1428435

Mean Words in Instance(Transcript) 730

Max Words in Instance(Transcript) 2767

Total Words in PD 97806
Mean Words in Instance(PD) 204
Max Words in Instance(PD) 50

Table 1: Dataset Metrics

4 A Preliminary Study of Hindi Podcast
Summarization Using LLMs

To study zero-shot summarization capabilities of
LLMs for Hindi Podcast summarization, we se-
lected different large language models and eval-
vated the summaries generated by them for our
dataset on different human evaluation metrics in-
cluding grammaticality, non-redundancy, referen-
tial clarity, focus, structure and coherence.

4.1 Selection of Models

For our research, we selected the following mod-
els. Later, we shall discuss ways to optimize these
models for summarization of Hindi Podcasts.

e MT5 - XLSum (Hasan et al., 2021): This
is an mT5 (Raffel et al., 2019) transformer
by Google fine-tuned on the XL-Sum dataset
(Hasan et al., 2021). It has approximately
580M parameters. We selected this model be-
cause it is known to have high summarization
scores compared to models in its size range.

* Gemma (Team et al., 2024): This lightweight
transformer developed by Google built using



the same architecture as Gemini by Google
has 2B parameters. We selected this model
because despite its small size, it showed a
good understanding of Hindi.

* OpenHathi (Mangrulkar et al., 2025): It was
developed by Sarvam Al for Indian languages
and has 7B parameters. This model was de-
veloped by an Indian company on a variety of
Indian language texts, and despite it lacking in
reasoning capabilities, gave fluent summaries.

* GPT-3.5-Turbo (Espejel et al., 2023): Well-
known transformer developed by OpenAl. It is
a state-of-the-art performance, but has limited
reasoning ability. It has approximately 20B
parameters.

e GPT-4o0 (Espejel et al., 2023): Another model
developed by OpenAlI and successor to GPT-
3.5. Itis larger and claims to have better and
faster token generation. It has approximately
200B parameters.

4.2 Human Evaluation of Summaries

The summaries generated by our chosen models
are abstractive in nature, and it is difficult to eval-
uate abstractive summaries with traditional meth-
ods. Hence for our study we have used the human
evaluation approach to grade the models on sum-
marization capabilities in Hindi. The summaries
are annotated on five metrics to study which model
performs the best. Our annotators were asked to
rate the summaries on the following metrics:

e Grammaticality: The summary should be
grammatically correct and easily readable.
This includes capitalization errors, missing
words, fragments, and other issues that make
the summary difficult to read.

* Non-redundancy: There should be no un-
necessary repetition of words, phrases or sen-
tences in the summary.

* Referential Clarity: It should be easy to iden-
tify who or what if being referred to in the
summary. There should be no objects or peo-
ple who don’t have a clear role in the sum-
mary.

* Focus: The sentences in the summary should
be connected to the topic and be related to the
rest of the summary.

* Structure and Coherence: The summary
should not be a heap of unconnected but
important information. It should be well-
structured and well-organized, and the reader
should be able to easy connect the dots on
reading the summary.

4.3 Drawing a Comparison

We generated summaries for the same 50 instances
from our dataset using all our selected models. We
then had those summaries annotated for the metrics
for human evaluation discussed before on a Likert
scale of 1 to 5. The annotation was performed
by 3 annotators who were MS students who were
proficient in Hindi pursuing a degree in Computer
Science stream. They were given random model-
generated summaries and sliders for the metrics to
rate. The final scores for all summaries were then
averaged over the 50 summaries to get the final
rating as an indicator for model performance.

As Figure 2 shows, after averaging the scores
for all metrics, GPT-3.5 turbo outperforms GPT-4
in terms of overall summary quality, and GPT-4
still scores higher in terms of grammaticality. For
further research, we will draw comparisons from
summaries generated by GPT-3.5-Turbo.

S AF-HPSum: Our Proposed Framework

Our framework AF-HPSum (Agentic Framework for
Multi-Strategy Summarization of Hindi Podcasts)
allows users to select different models and ap-
proaches, generate summaries and then after scor-
ing, decide the best summary which will be pro-
vided to the user. There are multiple phases in
which our research on this framework was con-
ducted. We shall go over these phases in detail in
this section.

5.1 Deletion-based Compressive
Summarization Approaches

After going through the summaries generated by
the given models, we still found the summaries
to be lacking in terms of content, particularly in
terms of coherence, readability and deviation from
the transcript content. Smaller models lacked clar-
ity and focus, reducing the overall quality of the
summaries generated. To mitigate these issues,
we came up with two approaches with a similar
concept, which was deleting certain words from
the summary without harming the integrity and
meaning of the summary while reducing the over-
all number of words. Then, we asked the LLM



to add more words to the summary. We keep re-
peating these steps this until there are no further
deletions found by the approach, or after a fixed
number of re-generations.

Algorithm 1 Compressive Summarization Pipeline

Require: Original Text, Max Loops, Threshold
Ensure: Final Summary
1: Summary < LLM(Original Text)
2: Compressed Summary <— Summary
3: Loops < 0
4: while  Words(Compressive = Summariza-
tion Pipeline(Compressed Summary)) -
Words(Compressed Summary) < Threshold
&& Loops < Max Loops do
5:  Compressed Summary < Compressive
Summarization Pipeline(Compressed Sum-
mary)
Loops < Loops + 1
7: end while
8: Final Summary < Compressed Summary

Algorithm 1 discusses the working of the com-
pression pipeline for the approaches. We came up
with to approaches that follow similar patterns to
delete non-salient phrases:

* Asking LLMs themselves to find deletions
and delete them: We can ask the LLMs to
find words in the generated summaries that
can be deleted, which we then delete.

* Deriving a logic for deletions based on
POS(Part-Of-Speech) tags: Certain words or
groups of words in piece of text can be deleted
without affecting the final meaning of a piece
of text, which we can capture and delete.

The following headings will discuss these ap-
proaches in detail.

5.2 Prompts for Compressive Summarization

Before we discuss the approaches we have intro-
duced with our framework, we shall discuss the
prompts that we will be using in conjunction with
our approaches:

5.2.1 Primary Summary Prompt

We used the following prompt to ask the LLM to
generate an initial summary of a piece of Hindi text:

Generate a summary of the following piece
of text in Hindi Language in {number_of _words}

words. Do not use any words from any other
language. Be concise and informative. Do not
generate any text other than the summary. The text
starts from below:

{input_text}

Where:

* target_summary_length = Words in input
text multiplied by some factor (We chose 0.2
in our case)

* input_text = Text in Podcast transcript

5.2.2 Compression Prompt

The following prompt as used to ask the LLM to
delete unneeded words/phrases mentioned in 5.2.5
in a piece of Hindi text summary:

I want to compress the below Hindi text by
removing parts that are not required to get the
complete meaning of the text. Please delete the
words and phrases that can be deleted without
affecting the meaning of the text. Do not generate
words other than the compressed summary. The
summary starts from below:

{current_summary}

Where:

* current_summary = Summary in current
stage

5.2.3 Prompt to Add More Words

We used the following prompt to ask the LLM to
add more words to the current summary based on a
number of words deleted in the deletion step:

I have a piece of Hindi text below:

{input_text}

Could you please add {difference_of _words} more
words to the following summary so that it becomes
more informative and complete? Do not use any
words other than Hindi language. Generate only
the summary, and no other words. The summary
starts from below:

{current_summary}

Where:
* input_text = Text in Podcast transcript

o dif fernce_of_words = Difference of words
in current and target summary length



* current_summary = Summary in current
stage

5.2.4 LLM-Based Deletions

In this approach, we ask the LLMs themselves to
delete the words or word groups that will not affect
the final meaning of the summary. From algorithm
1, Our original summary generated using prompt
5.2.1 is fed to the LLM along with the compression
prompt 5.2.2 to delete non-salient words which
produces an output summary. This summary is
then passed to the LLLM again along with another
prompt 5.2.3 to add more words to the summary
depending on its current size to add more words
to it. This summary is then fed back to the model
again to check the threshold and further possible
deletions. If we can perform further operations to it,
we run operations 5.2.2 and 5.2.3 again, then check
the condition mentioned in Algorithm 1 again, until
we reach the threshold or run out of iterations.

5.2.5 Rule-Based Deletions

In this approach, the summary generated using
prompt 5.2.1 is first parsed to obtain the POS(Part-
Of-Speech) tags for its words. From these words,
we selected certain words/word groups that can be
deleted without affecting the meaning of the initial
summary. We identified that the following can be
deleted without changing the meaning of the final
text:

* Adjectives/Adjectival Phrases

* Adverbs/Adverbial Phrases

* Prepositions/Prepositional Phrases
* Fragments

¢ Parentheticals

After deleting the mentioned word groups from
the summary, we ask the LLM to add more words
to it using prompt 5.2.3, completing the loop struc-
ture. After termination conditions discussed in
Algorithm 1 have been met, the pipeline returns the
output summary to the user.

5.3 Framework Architecture

We noticed that the summaries generated by these
approaches is sometimes better than summaries
with just one pass, and these chances become no-
tably higher in the case of smaller models which
struggle to understand the text in just one pass.
To efficiently tackle summarization tasks, we are

introducing a new framework that tackles summa-
rization tasks more efficiently, by giving the user
a choice of the models and the approaches to be
used to generate the summary. Our framework, as
shown in Figure 1 shall then select the best sum-
mary out of all approaches, which will be the final
summary, using the model we will discuss in 7.3.

Input: Compression
Approach

Input: Base Model

J

Summary
Generation

Add More
Information

Lower than
Required

Check

Summary

Comparable
to Required

Output:
Best Sumary

Not the best summary

Discard

Figure 1: Framework Architecture

6 Experimental Setup

We have 2 experimental setups for our research. We
shall go through the setup in detail. The following
are the hardware we used for our experiments:

* For summary generation using our pipeline,
we used Nvidia A100 GPUs on Google Colab.
For normal pipeline runs using models that
are not hosted by OpenAl like Gemma, MT5-
XLSum and OpenHathi, we will use this setup

e For models like GPT-3.5-Turbo and GPT-4o,
we will be using the OpenAlI API for summary
generation in tandem with Google Colab for
our summary selection model

* For training our summary selection model, we
used an Nvidia RTX 2080 Super

7 Results and Discussion

In this section we shall discuss the results for the
Human Evaluation done on the base models, com-
pare our approaches with the base architectures and



discuss the results of the training of our Summary
Selection model.

7.1 Single-Pass Zero-Shot Summarization

While comparing zero-shot summarization using
our chosen LLMs, we noticed some interesting
facts. We found that a larger number of model
parameters greatly affects the summarization capa-
bility of an LLM, and also the capability to execute
instructions in general. We can see from the human
evaluation results that bigger models have a ten-
dency to give a better impression, though this is not
always the case which we found while comparing
GPT-3.5 Turbo and GPT-40. Although possessing
a higher number of parameters, it still underper-
formed when compared to its predecessor because
it had a tendency to exaggerate facts. This caused it
to have higher grammaticality scores while lagging

behind in others.

Figure 2: Human Evaluation Results for Generated Sum-
maries

Gemma GPr4

7.2 Comparison of Deletion-based
Summarization Approaches

In this part, We shall go over the comparison of
BERTScores for our approaches with their base
models. This is different from our previous com-
parison of scores for Human Evaluation, the pri-
mary reasons being that we have already judged
the capabilities of the base models and only need
to compare them with our new approaches, so the
differences might not be observable in Human Eval-
uation. Computed metrics like BERTScore, which
check for semantic similarity shows the minute dif-
ferences between the approaches better. In Table
2 we clearly see improvements over the scores of
the base models in many cases. It must be kept
in mind that these results reflect one run of our
pipeline, since finding the mean would take a lot
of time and computational power. We noticed that
LLM-based deletions tend to give better scores in

Precision while Logic-based deletions give better
scores in Recall, in many cases.

Model Precision Recall F1-Score
GPT 3.5 0.623 0.641 0.632
LLM Deletions GPT 3.5 0.602 0.653 0.626
Logic Deletions GPT 3.5 0.585 0.631 0.607
GPT- 40 0.616 0.668 0.641
LLM Deletions GPT- 40 0.625 0.690 0.656
Logic Deletions GPT- 40 0.608 0.645 0.626
Openhathi 0.605 0.634 0.619
LLM Deletions Openhathi 0.624 0.577 0.599
Logic Deletions Openhathi 0.556 0.645 0.597
Gemma - 2B 0.612 0.653  0.6323
LLM Deletions Gemma - 2B 0.638 0.589 0.612
Logic Deletions Gemma - 2B 0.628 0.634 0.631

Table 2: BERTScore Comparison vs Podcast Descriptor

7.3 Selection of Final Summary

After the generation of summaries from our vari-
ous approaches has concluded, the framework will
proceed with the selection of the best summary.
For this, we have trained a model on generated
summaries for our dataset. We used various LLMs
for generating the embeddings of our summaries,
then finally selected IndicBERTV2-SS (278M pa-
rameters) (Doddapaneni et al., 2023) as the final
model, since it gave vastly better results for our
dataset during our comparisons. The embeddings
generated by this model will be concatenated and
be used as inputs for our model. The outputs for
training the model will be decided by the summary
scores of the individual models, where the output
best summary will be set to 1 and the rest will be
set to 0. The summary scores are decided by a
weighted average of BERTScore, BleuScore and
ROUGE-Scores, with their contribution to the fi-
nal scores being 50%, 25% and 25%. Currently,
AF-HPSum supports only one such model with 4
input summaries, but we plan to introduce more
such models later with 5 or more model-approach
combinations to further enhance our framework.
We allocated 768 tokens for each summary so the
number of input neurons for this model are 768 x 4
and the number of outputs are 4. There are 2 hid-
den layers with 1024 and 512 neurons respectively.
We used gumble-softmax as the activation function
for the output layer.

Figure 3 show the results of tuning the hyperpa-
rameters of the model with 4 input summaries and
their scores. The final results of the tuning showed
an mean accuracy of 87.18% and loss of 0.3347
after testing the best model.
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Figure 3: Hyperparameter Tuning for Selection Model -
Accuracy and Loss vs Epochs

8 Conclusion and Future Work

Our research shows that there are still ways to op-
timize summarization, even with advanced LLMs,
since they might miss key points which may be
overlooked during automation. Prompt engineering
can help in most cases, but for regional languages
where the data is scarcer, LLMs may still fail to
produce desirable results. Hence, they still require
experts to fix issues to get the maximum benefit. To
mitigate these issues we propose a framework for
the generation of Podcast summaries, with options
to select the model and multiple approaches that
can further optimize the quality of the summaries.
We also proposed two approaches to increase sum-
mary focus using deletion based summarization
which proved to be better for smaller models.

We found it better to use multiple LLMs and
then comparing the summaries using smaller mod-
els to judge their quality to get the best results. In
future, we can enhance our framework by introduc-
ing more approaches, support for more models, and
even languages.

9 Limitations

In this section, we would like to clarify some limi-
tations associated with our paper.

* Computational Power: Even though we aim
to enhance the quality of summaries of smaller
models, some degree of computational power
is required to inference using the models.

* Time: The time to reach the output stage is
way higher than if we just use the base models.

» Dataset: We have only tested our models for
one language, i.e. Hindi, which we later plan
to rectify.

* Summary Selection Model: Currently we
only have one summary selection model,
which can accommodate at most 4 model-
approach selections.

* Advancements in Base Models: Our cur-
rent approaches may degrade in a cost-
performance analysis with more advanced
models.

* Text Summarization: We are not summa-
rizing Podcast audios directly. A medium is
necessary to transcribe the audio.
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