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Abstract001

Podcasts are lengthy audio conversations which002
require a significantly large context input for ac-003
curate summarization via computational mod-004
els. Despite recent advancements in Large Lan-005
guage Models (LLMs), it is challenging to sum-006
marize a transcribed podcast conversation us-007
ing LLMs, due to input context length, long-008
range dependencies, noisy data and attention009
mismatch. In this paper, we propose an agen-010
tic framework for LLM-based summarization011
of Hindi Podcasts (AF-HPSum) which leverages012
multiple strategies, including a rule-based dele-013
tion strategy for compressive summarization.014
Using multiple LLMs, both open-weighted and015
closed-source, we evaluate the performance016
of our framework and observe that an itera-017
tive strategy helps preserve long-range depen-018
dencies and produce relevant summaries. We019
also conducted a preliminary human evaluation,020
which elicits model selection and helps build021
a comprehensive pipeline for podcast summa-022
rization. Through parameter-efficient training023
of open-weighted models and our iterative ap-024
proach, we achieved a significant performance025
improvement over closed-weight and larger026
models by a significant margin. We will re-027
lease our framework codebase, prompts, data028
and output with this paper here.029

1 Introduction030

Automatic summarization as a field has made rapid031

progress in recent times since the Transformer ar-032

chitecture (Vaswani et al., 2017) and Large Lan-033

guage Models (Raffel et al., 2019) have been de-034

veloped. Since then, numerous models for general035

tasks as well as some finetuned for summarization036

have been developed. While a lot of work has037

already been done to enhance the capabilities of038

these models in the English language, Indian lan-039

guages like Hindi, Marathi, Bengali and various040

others are lagging behind in terms of understand-041

ing of the languages themselves. In this paper, we042

will specifically discuss approaches to summarize 043

text in Hindi language, taking Podcast data as an 044

example. 045

Podcasts (Karbalaee, 2023) are a form of digital 046

audio entertainment that cover a variety of topics 047

like stories, debates, interviews, narratives covering 048

various genres, etc. The number of such podcasts 049

online is huge, with new ones arriving daily in the 050

dozens. Podcast descriptors or summaries are a 051

way of getting a brief idea of the content of a pod- 052

cast and to draw viewership. Such podcast descrip- 053

tors are usually written by the authors themselves 054

or by the hosting platforms and are quite unreliable, 055

they may sometimes exaggerate or are completely 056

unrelated to the main topic of the podcast. Through 057

our research we will show that such summaries are 058

less liked by readers compared to LLM-generated 059

summaries. 060

Podcast data is known to have a lot of noise 061

mixed in (Beltagy et al., 2020), with multiple speak- 062

ers, pauses, background voices, and other forms of 063

noise that affect the quality of the final transcripts 064

when audio data are converted to textual formats. 065

The affected transcripts may have incorrect punctu- 066

ation, wrongly interpreted or unrecognizable words 067

due to multiple speakers and background music or 068

voices, and some sentences might not even have an 069

end-of-sentence punctuation mark. Textual podcast 070

data (Shah et al., 2023) are also quite large, with 071

our dataset having an average of 7000 tokens for 072

each data instance, further amplifying the effects 073

on operations performed on such data. Any text 074

summarization performed on such data is bound 075

to face issues when using conventional extractive 076

summarization techniques. However, with LLMs it 077

becomes noticeably easier, since they understand 078

the meaning of the text and generate tokens based 079

on what they understood from the input. They 080

have higher capability of coping with such issues 081

and as the size of LLMs increases, this advantage 082

is further highlighted. Larger models also have 083
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the ability to perform more complex tasks like ig-084

noring advertisements, generating summaries with085

various conditions like generating specific number086

of words and following certain writing patterns.087

For our research, we have used podcast tran-088

scripts generated by Audio-to-Text conversion ap-089

proaches (Elakkiya et al., 2022), for multiple rea-090

sons. On one hand, compared to audio, there is a091

larger amount of Hindi text data, so various LLMs092

can easily recognize pattens in textual data more ef-093

fectively. Secondly, there are fewer models that rec-094

ognize Hindi audio that are being used for summa-095

rization purposes (González-Gallardo et al., 2020).096

We also found that besides being rare, such au-097

dio recognition models show worse results when098

compared to their textual counterparts.099

Zero-shot LLM-based summarization applied to100

podcast data depends on the quality of a model101

and finetuning, which requires a lot of resources.102

They might also have insufficient reasoning capa-103

bilities which may cause them to miss out on rel-104

evant details discussed in the podcast. Podcasts105

transcripts can also be pretty long so LLMs might106

forget some earlier details during processing, which107

also reduces the quality of the generated summary.108

Different LLMs compared in this study show that109

these traditional approaches are unable to show110

great results in one pass, with some models even111

failing to understand the instructions provided by112

the user (Tie et al., 2024). Our study showed that113

LLMs lack a clear understanding of the original114

text, even though the summaries were preferred by115

humans. Some summaries were factually incorrect,116

while others were too large or small even though117

explicitly the number of words was clearly speci-118

fied in the prompts. We also found LLMs repeating119

previous ideas repeatedly even after introducing120

repetition penalties. All these show that LLMs121

still lag behind humans in their understanding of122

instructions given.123

In this paper, we have come up with a framework124

to further optimize the current LLMs for Hindi125

Podcast summarization by using compressions and126

repeated prompts with changes to boost the factual127

accuracy of the final summaries, while correcting128

the existing issues. We also aim to reduce redun-129

dant words in the summaries through our approach,130

which has been a major drawback of small and131

medium-sized models. We have also added meth-132

ods to summarize using multiple LLMs and select-133

ing the best output, to maximize the potential of134

existing LLMs and our resources.135

2 Related Work 136

Automated summarization of podcast transcripts 137

has primarily focused on English. The TREC 138

Podcasts tracks (2020–2021) spurred several ap- 139

proaches that address the unique challenges of spo- 140

ken content (noisy ASR transcripts, conversational 141

structure, very long inputs). For example, (Karl- 142

bom and Clifton, 2020) tackle the length issue by 143

replacing BART’s self-attention with Longformer’s 144

sparse attention, enabling input of thousands of 145

tokens (Tanaka et al., 2021). (Zheng et al., 2020) 146

propose a two-phase abstractive pipeline: they first 147

extract important sentences from the transcript and 148

then feed those to a pretrained encoder–decoder 149

(e.g. BART) to generate the summary. Similarly, 150

(Manakul and Gales, 2020) use a hierarchical fil- 151

tering model to remove redundant sentences be- 152

fore fine-tuning a BART model (with a sequence- 153

level reinforcement objective) on the remaining 154

transcript. 155

Most existing work, however, has assumed En- 156

glish data. To extend summarization to other lan- 157

guages, (Tanaka et al., 2021) explore multilingual 158

podcast summarization (English and Portuguese) 159

using the Spotify dataset (Karbalaee, 2023). They 160

fine-tune mBART-50 (a 50-language BART model) 161

on bilingual podcast (and news) data and find that 162

a single multilingual model performs on par with 163

language-specific models. They also adapt mBART 164

to a Longformer version (increasing the token limit 165

from 512 to 4096) to better handle long transcripts 166

(Tanaka et al., 2021) (Beltagy et al., 2020), al- 167

though their Longformer variant did not outperform 168

the base mBART in practice. These studies high- 169

light that long-input architectures (like Longformer 170

(Tanaka et al., 2021)) and multi-phase pipelines are 171

crucial for podcast summarization, but they have 172

not been evaluated on Hindi data. In short, while 173

several systems address English podcast summa- 174

rization (using Longformer attention (Beltagy et al., 175

2020) or multi-stage extraction-abstraction (Zheng 176

et al., 2020)), none target Hindi episodes. This gap 177

motivates our focus on summarizing Hindi podcast 178

transcripts. 179

Compressing sentences (deleting non-essential 180

spans) offers a middle ground between extractive 181

and abstractive summaries. Earlier pipeline meth- 182

ods combined sentence selection with syntactic 183

compression rules (e.g. ILP-based trimming of 184

parse trees (Li et al., 2014)). More recently, neu- 185

ral approaches learn what spans to delete. (Desai 186
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et al., 2020) introduce a data-driven compressive187

model that scores each candidate deletion by two188

learned criteria: plausibility and salience. A dele-189

tion is plausible if it preserves grammaticality and190

factuality, and it is salient if it removes important191

information. Only spans that are plausible to delete192

and not highly salient are removed (Desai et al.,193

2020). Integrated into an extract-then-compress194

pipeline, this approach yields fluent, informative195

summaries and generalizes across domains. Such196

compressive models are relevant for our work be-197

cause they can shorten Hindi transcripts (making198

them more manageable for abstractive summariz-199

ers) while maintaining coherence.200

Beyond single-model baselines, recent re-201

searches aim to improve or evaluate summarizer202

outputs. One class of methods uses multi-stage203

or pipeline architectures. For example, Summ$N̂$204

(Zhang et al., 2022) is a multi-stage summarization205

framework for long documents: it splits a long206

input into chunks, generates a coarse summary207

in each stage, and then refines these into a final208

summary. This split-then-summarize strategy can209

handle arbitrarily long inputs with fixed-size LMs210

(Zhang et al., 2022). Similarly, some works itera-211

tively refine summaries. (Wang et al., 2024) pro-212

pose a summarization pipeline for user data where213

an LLM generates an initial summary and then214

applies self-critique and revision steps to reduce215

hallucinations and improve quality. Another direc-216

tion is to use ensembling or multi-agent generation.217

(Fang et al., 2024) introduce a multi-LLM summa-218

rization framework, where multiple large language219

models collaboratively generate and evaluate sum-220

maries. They report that this multi-LLM ensemble221

often outperforms any single-model baseline.222

Summing it all up, prior research has made223

progress on English podcast summarization (us-224

ing long-input models and multi-phase pipelines225

(Karlbom and Clifton, 2020) (Singh et al., 2024)226

), on compressive summarization for general text227

(Desai et al., 2020) , and on multilingual summa-228

rization with mT5/mBART for Indian languages229

(Taunk and Varma, 2023) (Singh et al., 2024). How-230

ever, Hindi podcast summarization remains unstud-231

ied. Our work fills this gap by integrating compres-232

sive summarization with multilingual transformer-233

based summarizers for Hindi audio transcripts, and234

by leveraging compressive summarization to en-235

hance summary faithfulness and relevance.236

3 Dataset 237

Our dataset of Hindi Podcast transcripts and their 238

Podcast Descriptors was collected by crawling the 239

web for podcast audio and their descriptors, se- 240

lecting on Hindi audio for our experiments. We 241

selected podcasts from various genres like chil- 242

dren’s stories, works on religion, astrology, and 243

various others. The audio transcripts for the pod- 244

casts were generated using Azure Speech-to-Text 245

services. The total number of such transcripts is 246

1955, along with their descriptors. These descrip- 247

tors will be used as gold standard summaries for 248

our research. Table 1 describes some of the dataset 249

metrics for reference. 250

Statistic Value
Number of Instances 1955

Total Words in Transcript 1428435
Mean Words in Instance(Transcript) 730
Max Words in Instance(Transcript) 2767

Total Words in PD 97806
Mean Words in Instance(PD) 204
Max Words in Instance(PD) 50

Table 1: Dataset Metrics

4 A Preliminary Study of Hindi Podcast 251

Summarization Using LLMs 252

To study zero-shot summarization capabilities of 253

LLMs for Hindi Podcast summarization, we se- 254

lected different large language models and eval- 255

uated the summaries generated by them for our 256

dataset on different human evaluation metrics in- 257

cluding grammaticality, non-redundancy, referen- 258

tial clarity, focus, structure and coherence. 259

4.1 Selection of Models 260

For our research, we selected the following mod- 261

els. Later, we shall discuss ways to optimize these 262

models for summarization of Hindi Podcasts. 263

• MT5 - XLSum (Hasan et al., 2021): This 264

is an mT5 (Raffel et al., 2019) transformer 265

by Google fine-tuned on the XL-Sum dataset 266

(Hasan et al., 2021). It has approximately 267

580M parameters. We selected this model be- 268

cause it is known to have high summarization 269

scores compared to models in its size range. 270

• Gemma (Team et al., 2024): This lightweight 271

transformer developed by Google built using 272
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the same architecture as Gemini by Google273

has 2B parameters. We selected this model274

because despite its small size, it showed a275

good understanding of Hindi.276

• OpenHathi (Mangrulkar et al., 2025): It was277

developed by Sarvam AI for Indian languages278

and has 7B parameters. This model was de-279

veloped by an Indian company on a variety of280

Indian language texts, and despite it lacking in281

reasoning capabilities, gave fluent summaries.282

• GPT-3.5-Turbo (Espejel et al., 2023): Well-283

known transformer developed by OpenAI. It is284

a state-of-the-art performance, but has limited285

reasoning ability. It has approximately 20B286

parameters.287

• GPT-4o (Espejel et al., 2023): Another model288

developed by OpenAI and successor to GPT-289

3.5. It is larger and claims to have better and290

faster token generation. It has approximately291

200B parameters.292

4.2 Human Evaluation of Summaries293

The summaries generated by our chosen models294

are abstractive in nature, and it is difficult to eval-295

uate abstractive summaries with traditional meth-296

ods. Hence for our study we have used the human297

evaluation approach to grade the models on sum-298

marization capabilities in Hindi. The summaries299

are annotated on five metrics to study which model300

performs the best. Our annotators were asked to301

rate the summaries on the following metrics:302

• Grammaticality: The summary should be303

grammatically correct and easily readable.304

This includes capitalization errors, missing305

words, fragments, and other issues that make306

the summary difficult to read.307

• Non-redundancy: There should be no un-308

necessary repetition of words, phrases or sen-309

tences in the summary.310

• Referential Clarity: It should be easy to iden-311

tify who or what if being referred to in the312

summary. There should be no objects or peo-313

ple who don’t have a clear role in the sum-314

mary.315

• Focus: The sentences in the summary should316

be connected to the topic and be related to the317

rest of the summary.318

• Structure and Coherence: The summary 319

should not be a heap of unconnected but 320

important information. It should be well- 321

structured and well-organized, and the reader 322

should be able to easy connect the dots on 323

reading the summary. 324

4.3 Drawing a Comparison 325

We generated summaries for the same 50 instances 326

from our dataset using all our selected models. We 327

then had those summaries annotated for the metrics 328

for human evaluation discussed before on a Likert 329

scale of 1 to 5. The annotation was performed 330

by 3 annotators who were MS students who were 331

proficient in Hindi pursuing a degree in Computer 332

Science stream. They were given random model- 333

generated summaries and sliders for the metrics to 334

rate. The final scores for all summaries were then 335

averaged over the 50 summaries to get the final 336

rating as an indicator for model performance. 337

As Figure 2 shows, after averaging the scores 338

for all metrics, GPT-3.5 turbo outperforms GPT-4 339

in terms of overall summary quality, and GPT-4 340

still scores higher in terms of grammaticality. For 341

further research, we will draw comparisons from 342

summaries generated by GPT-3.5-Turbo. 343

5 AF-HPSum: Our Proposed Framework 344

Our framework AF-HPSum (Agentic Framework for 345

Multi-Strategy Summarization of Hindi Podcasts) 346

allows users to select different models and ap- 347

proaches, generate summaries and then after scor- 348

ing, decide the best summary which will be pro- 349

vided to the user. There are multiple phases in 350

which our research on this framework was con- 351

ducted. We shall go over these phases in detail in 352

this section. 353

5.1 Deletion-based Compressive 354

Summarization Approaches 355

After going through the summaries generated by 356

the given models, we still found the summaries 357

to be lacking in terms of content, particularly in 358

terms of coherence, readability and deviation from 359

the transcript content. Smaller models lacked clar- 360

ity and focus, reducing the overall quality of the 361

summaries generated. To mitigate these issues, 362

we came up with two approaches with a similar 363

concept, which was deleting certain words from 364

the summary without harming the integrity and 365

meaning of the summary while reducing the over- 366

all number of words. Then, we asked the LLM 367
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to add more words to the summary. We keep re-368

peating these steps this until there are no further369

deletions found by the approach, or after a fixed370

number of re-generations.371

Algorithm 1 Compressive Summarization Pipeline

Require: Original Text, Max Loops, Threshold
Ensure: Final Summary

1: Summary← LLM(Original Text)
2: Compressed Summary← Summary
3: Loops← 0
4: while Words(Compressive Summariza-

tion Pipeline(Compressed Summary)) -
Words(Compressed Summary) ≤ Threshold
&& Loops ≤Max Loops do

5: Compressed Summary ← Compressive
Summarization Pipeline(Compressed Sum-
mary)

6: Loops← Loops + 1
7: end while
8: Final Summary← Compressed Summary

Algorithm 1 discusses the working of the com-372

pression pipeline for the approaches. We came up373

with to approaches that follow similar patterns to374

delete non-salient phrases:375

• Asking LLMs themselves to find deletions376

and delete them: We can ask the LLMs to377

find words in the generated summaries that378

can be deleted, which we then delete.379

• Deriving a logic for deletions based on380

POS(Part-Of-Speech) tags: Certain words or381

groups of words in piece of text can be deleted382

without affecting the final meaning of a piece383

of text, which we can capture and delete.384

The following headings will discuss these ap-385

proaches in detail.386

5.2 Prompts for Compressive Summarization387

Before we discuss the approaches we have intro-388

duced with our framework, we shall discuss the389

prompts that we will be using in conjunction with390

our approaches:391

5.2.1 Primary Summary Prompt392

We used the following prompt to ask the LLM to393

generate an initial summary of a piece of Hindi text:394

395

Generate a summary of the following piece396

of text in Hindi Language in {number_of_words}397

words. Do not use any words from any other 398

language. Be concise and informative. Do not 399

generate any text other than the summary. The text 400

starts from below: 401

{input_text} 402

403

Where: 404

• target_summary_length = Words in input 405

text multiplied by some factor (We chose 0.2 406

in our case) 407

• input_text = Text in Podcast transcript 408

5.2.2 Compression Prompt 409

The following prompt as used to ask the LLM to 410

delete unneeded words/phrases mentioned in 5.2.5 411

in a piece of Hindi text summary: 412

413

I want to compress the below Hindi text by 414

removing parts that are not required to get the 415

complete meaning of the text. Please delete the 416

words and phrases that can be deleted without 417

affecting the meaning of the text. Do not generate 418

words other than the compressed summary. The 419

summary starts from below: 420

{current_summary} 421

422

Where: 423

• current_summary = Summary in current 424

stage 425

5.2.3 Prompt to Add More Words 426

We used the following prompt to ask the LLM to 427

add more words to the current summary based on a 428

number of words deleted in the deletion step: 429

430

I have a piece of Hindi text below: 431

{input_text} 432

Could you please add {difference_of_words} more 433

words to the following summary so that it becomes 434

more informative and complete? Do not use any 435

words other than Hindi language. Generate only 436

the summary, and no other words. The summary 437

starts from below: 438

{current_summary} 439

440

Where: 441

• input_text = Text in Podcast transcript 442

• differnce_of_words = Difference of words 443

in current and target summary length 444
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• current_summary = Summary in current445

stage446

5.2.4 LLM-Based Deletions447

In this approach, we ask the LLMs themselves to448

delete the words or word groups that will not affect449

the final meaning of the summary. From algorithm450

1, Our original summary generated using prompt451

5.2.1 is fed to the LLM along with the compression452

prompt 5.2.2 to delete non-salient words which453

produces an output summary. This summary is454

then passed to the LLM again along with another455

prompt 5.2.3 to add more words to the summary456

depending on its current size to add more words457

to it. This summary is then fed back to the model458

again to check the threshold and further possible459

deletions. If we can perform further operations to it,460

we run operations 5.2.2 and 5.2.3 again, then check461

the condition mentioned in Algorithm 1 again, until462

we reach the threshold or run out of iterations.463

5.2.5 Rule-Based Deletions464

In this approach, the summary generated using465

prompt 5.2.1 is first parsed to obtain the POS(Part-466

Of-Speech) tags for its words. From these words,467

we selected certain words/word groups that can be468

deleted without affecting the meaning of the initial469

summary. We identified that the following can be470

deleted without changing the meaning of the final471

text:472

• Adjectives/Adjectival Phrases473

• Adverbs/Adverbial Phrases474

• Prepositions/Prepositional Phrases475

• Fragments476

• Parentheticals477

After deleting the mentioned word groups from478

the summary, we ask the LLM to add more words479

to it using prompt 5.2.3, completing the loop struc-480

ture. After termination conditions discussed in481

Algorithm 1 have been met, the pipeline returns the482

output summary to the user.483

5.3 Framework Architecture484

We noticed that the summaries generated by these485

approaches is sometimes better than summaries486

with just one pass, and these chances become no-487

tably higher in the case of smaller models which488

struggle to understand the text in just one pass.489

To efficiently tackle summarization tasks, we are490

introducing a new framework that tackles summa- 491

rization tasks more efficiently, by giving the user 492

a choice of the models and the approaches to be 493

used to generate the summary. Our framework, as 494

shown in Figure 1 shall then select the best sum- 495

mary out of all approaches, which will be the final 496

summary, using the model we will discuss in 7.3. 497

Start

Input: Base Model

Summary
Generation

Input: Compression
Approach

Compression 
Stage

Check
Summary

Length
i <= n

Add More 
Information

End

Output: 
SummaryCompareOutput: 

Best Sumary

Discard

Not the best summary

Best

False

True

 Lower than 
Required

Comparable 
to Required

Figure 1: Framework Architecture

6 Experimental Setup 498

We have 2 experimental setups for our research. We 499

shall go through the setup in detail. The following 500

are the hardware we used for our experiments: 501

• For summary generation using our pipeline, 502

we used Nvidia A100 GPUs on Google Colab. 503

For normal pipeline runs using models that 504

are not hosted by OpenAI like Gemma, MT5- 505

XLSum and OpenHathi, we will use this setup 506

• For models like GPT-3.5-Turbo and GPT-4o, 507

we will be using the OpenAI API for summary 508

generation in tandem with Google Colab for 509

our summary selection model 510

• For training our summary selection model, we 511

used an Nvidia RTX 2080 Super 512

7 Results and Discussion 513

In this section we shall discuss the results for the 514

Human Evaluation done on the base models, com- 515

pare our approaches with the base architectures and 516
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discuss the results of the training of our Summary517

Selection model.518

7.1 Single-Pass Zero-Shot Summarization519

While comparing zero-shot summarization using520

our chosen LLMs, we noticed some interesting521

facts. We found that a larger number of model522

parameters greatly affects the summarization capa-523

bility of an LLM, and also the capability to execute524

instructions in general. We can see from the human525

evaluation results that bigger models have a ten-526

dency to give a better impression, though this is not527

always the case which we found while comparing528

GPT-3.5 Turbo and GPT-4o. Although possessing529

a higher number of parameters, it still underper-530

formed when compared to its predecessor because531

it had a tendency to exaggerate facts. This caused it532

to have higher grammaticality scores while lagging533

behind in others.534

Figure 2: Human Evaluation Results for Generated Sum-
maries

7.2 Comparison of Deletion-based535

Summarization Approaches536

In this part, We shall go over the comparison of537

BERTScores for our approaches with their base538

models. This is different from our previous com-539

parison of scores for Human Evaluation, the pri-540

mary reasons being that we have already judged541

the capabilities of the base models and only need542

to compare them with our new approaches, so the543

differences might not be observable in Human Eval-544

uation. Computed metrics like BERTScore, which545

check for semantic similarity shows the minute dif-546

ferences between the approaches better. In Table547

2 we clearly see improvements over the scores of548

the base models in many cases. It must be kept549

in mind that these results reflect one run of our550

pipeline, since finding the mean would take a lot551

of time and computational power. We noticed that552

LLM-based deletions tend to give better scores in553

Precision while Logic-based deletions give better 554

scores in Recall, in many cases. 555

Model Precision Recall F1-Score
GPT 3.5 0.623 0.641 0.632
LLM Deletions GPT 3.5 0.602 0.653 0.626
Logic Deletions GPT 3.5 0.585 0.631 0.607
GPT- 4o 0.616 0.668 0.641
LLM Deletions GPT- 4o 0.625 0.690 0.656
Logic Deletions GPT- 4o 0.608 0.645 0.626
Openhathi 0.605 0.634 0.619
LLM Deletions Openhathi 0.624 0.577 0.599
Logic Deletions Openhathi 0.556 0.645 0.597
Gemma - 2B 0.612 0.653 0.6323
LLM Deletions Gemma - 2B 0.638 0.589 0.612
Logic Deletions Gemma - 2B 0.628 0.634 0.631

Table 2: BERTScore Comparison vs Podcast Descriptor

7.3 Selection of Final Summary 556

After the generation of summaries from our vari- 557

ous approaches has concluded, the framework will 558

proceed with the selection of the best summary. 559

For this, we have trained a model on generated 560

summaries for our dataset. We used various LLMs 561

for generating the embeddings of our summaries, 562

then finally selected IndicBERTv2-SS (278M pa- 563

rameters) (Doddapaneni et al., 2023) as the final 564

model, since it gave vastly better results for our 565

dataset during our comparisons. The embeddings 566

generated by this model will be concatenated and 567

be used as inputs for our model. The outputs for 568

training the model will be decided by the summary 569

scores of the individual models, where the output 570

best summary will be set to 1 and the rest will be 571

set to 0. The summary scores are decided by a 572

weighted average of BERTScore, BleuScore and 573

ROUGE-Scores, with their contribution to the fi- 574

nal scores being 50%, 25% and 25%. Currently, 575

AF-HPSum supports only one such model with 4 576

input summaries, but we plan to introduce more 577

such models later with 5 or more model-approach 578

combinations to further enhance our framework. 579

We allocated 768 tokens for each summary so the 580

number of input neurons for this model are 768×4 581

and the number of outputs are 4. There are 2 hid- 582

den layers with 1024 and 512 neurons respectively. 583

We used gumble-softmax as the activation function 584

for the output layer. 585

Figure 3 show the results of tuning the hyperpa- 586

rameters of the model with 4 input summaries and 587

their scores. The final results of the tuning showed 588

an mean accuracy of 87.18% and loss of 0.3347 589

after testing the best model. 590
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Figure 3: Hyperparameter Tuning for Selection Model -
Accuracy and Loss vs Epochs

8 Conclusion and Future Work591

Our research shows that there are still ways to op-592

timize summarization, even with advanced LLMs,593

since they might miss key points which may be594

overlooked during automation. Prompt engineering595

can help in most cases, but for regional languages596

where the data is scarcer, LLMs may still fail to597

produce desirable results. Hence, they still require598

experts to fix issues to get the maximum benefit. To599

mitigate these issues we propose a framework for600

the generation of Podcast summaries, with options601

to select the model and multiple approaches that602

can further optimize the quality of the summaries.603

We also proposed two approaches to increase sum-604

mary focus using deletion based summarization605

which proved to be better for smaller models.606

We found it better to use multiple LLMs and607

then comparing the summaries using smaller mod-608

els to judge their quality to get the best results. In609

future, we can enhance our framework by introduc-610

ing more approaches, support for more models, and611

even languages.612

9 Limitations613

In this section, we would like to clarify some limi-614

tations associated with our paper.615

• Computational Power: Even though we aim616

to enhance the quality of summaries of smaller617

models, some degree of computational power618

is required to inference using the models.619

• Time: The time to reach the output stage is620

way higher than if we just use the base models.621

• Dataset: We have only tested our models for622

one language, i.e. Hindi, which we later plan623

to rectify.624

• Summary Selection Model: Currently we 625

only have one summary selection model, 626

which can accommodate at most 4 model- 627

approach selections. 628

• Advancements in Base Models: Our cur- 629

rent approaches may degrade in a cost- 630

performance analysis with more advanced 631

models. 632

• Text Summarization: We are not summa- 633

rizing Podcast audios directly. A medium is 634

necessary to transcribe the audio. 635
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