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ABSTRACT

Inverse problems are typically solved by first defining a model and then choosing
an inference procedure. With this separation of modeling from inference, inverse
problems can be framed in a modular way. For example, variational inference
can be applied to a broad class of models. The modularity, however, typically
goes away after model parameters have been trained under a chosen inference
procedure. During training, model and inference often interact in a way that the
model parameters will ultimately be adapted to the chosen inference procedure,
posing the two components inseparable after training. But if model and inference
become inseperable after training, why separate them in the first place?
We propose a novel learning framework which abandons the dichotomy between
model and inference. Instead, we introduce Recurrent Inference Machines (RIM),
a class of recurrent neural networks (RNN), that directly learn to solve inverse
problems.
We demonstrate the effectiveness of RIMs in experiments on various image recon-
struction tasks. We show empirically that RIMs exhibit the desirable convergence
behavior of classical inference procedures, and that they can outperform state-of-
the-art methods when trained on specialized inference tasks.
Our approach bridges the gap between inverse problems and deep learning, pro-
viding a framework for fast progression in the field of inverse problems.

1 INTRODUCTION

Inverse Problems are a broad class of problems which can be encountered in all scientific disciplines,
from the natural sciences to engineering. The task in inverse problems is to reconstruct a signal
from observations that are subject to a known (or inferred) corruption process known as the forward
model. A typical example of an inverse problem is the linear measurement problem

y = Ax + n, (1)

where x is the signal of interest, A is an m × d corruption matrix, n is an additive noise vector,
and y is the actual measurement. If A is a wide matrix such that m � d, this problem is typically
ill-posed. Many signal reconstruction problems can be phrased in terms of the linear measurement
problem such as image denoising, super-resolution, deconvolution and so on. The general form of
A typically defines the problem class. If A is an identity matrix the problem is a denoising problem,
while in tomography A represents a Fourier transform and a consecutive sub-sampling of the Fourier
coefficients.

Inverse problems are often formulated as an optimization problem of the form

min
x
d(y,Ax) + λR(x), (2)

where d(y,Ax) is the data fidelity term that enforces x to satisfy the observations y, and R(x) is a
regularization term which restricts the solution to comply with a predefined model over x.

The difficulties that arise in this framework are two-fold: (1) it is difficult to choose R(x) such that
it is an appropriate model for complex signals such as natural images, and (2) even under a well
chosen R(x) the optimization procedure might become difficult.
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Compressed sensing approaches give up on a versatileR(x) in order to define a convex optimization
procedure. The idea is that the signal x has a sparse representation in some basis Ψ such that x = Ψu
and that the optimization problem can be rephrased as

min
u
d(y,AΨu) + λ ‖u‖1 , (3)

where ‖·‖1 is the sparsity inducing L1-norm (Donoho, 2006a). Under certain classes of d(y,AΨu)
such as quadratic errors the optimization problem becomes convex. Results from the compressed
sensing literature offer provable bounds on the reconstruction performance for sparse signals of this
form (Candès et al., 2006; Donoho, 2006b). The basis Ψ can also be learned from data (Aharon
et al., 2006; Elad & Aharon, 2006).

Other approaches interpret equation (2) in terms of probabilities such that finding the solution is a
matter of performing maximum a posteriori (MAP) estimation (Figueiredo et al., 2007). In those
cases d(y,AΨu) takes the form of a log-likelihood and R(x) takes the form of a parametric log-
prior log pθ(x) over variable x such that the minimization becomes:

max
x

log p(y|A,x) + log pθ(x). (4)

This allows for more expressiveness of R(x) and for the possibility of learning the prior pθ(x) from
data. However, with more expressive priors optimization will become more difficult as well. In fact,
only for a few trivial prior-likelihood pairs will inference remain convex. In practice one often has
to resort to approximations of the objective and to approximate double-loop algorithms in order to
allow for scalable inference (Nickisch & Seeger, 2009; Zoran & Weiss, 2011).

In this work we take a radically different approach to solving inverse problems. We move away
from the idea that it is beneficial to separate learning a prior (regularizer) from the optimization to
do the reconstruction. The usual thinking is that this separation allows for greater modularity and
the possibility to interchange one of these two complementary components in order to build new
algorithms. In practice however, we observe that the optimization procedure almost always has to
be adapted to the model choice to achieve good performance (Aharon et al., 2006; Elad & Aharon,
2006; Nickisch & Seeger, 2009; Zoran & Weiss, 2011). In fact, it is well known that the optimization
procedure used for training should match the one used during testing because the model has adapted
itself to perform well under that optimization procedure (Kumar et al., 2005; Wainwright, 2006).

What we need is a single framework which allows us to backpropagate through the optimization
procedure when we learn the free parameters. Hence, We propose to look at inverse problems as a
direct mapping from observations to estimated signal,

x̂ = fφ(A,y) (5)

where x̂ is an estimate of signal x from observations (A,y). Here we define φ as a set of learnable
parameters which define the inference algorithm as well as constraints on x. The goal is thus to
define map whose parameters are directly optimized for solving the inverse problem itself. It has the
benefits of both having high expressive power (if the map fφ is complex enough) as well as being
fast at inference time.

This paradigm shift allows us to learn and combine the effect of a prior, the reconstruction fidelity
and an inference method without the need to explicitly define the functional form of all components.
The whole procedure is simply interpreted as a single RNN. As a result, there is no need for sparsity
assumptions, the introduction of model constraints to allow for convexity, or even for double-loop
algorithms (Gregor & LeCun, 2010). In fact the proposed framework allows for use of current deep
learning approaches which have high expressive power without trading off scalability. It further
allows us to move all the manual parameter tuning - which is still common in traditional approaches
(Zoran & Weiss, 2011) - away from the inference phase and into the learning phase. We believe this
framework can be an important asset to introduce deep learning into the domain of inverse problems.
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Figure 1: (A) Graphical illustration of the recurrent structure of MAP estimation (compare equation
(6)). The three boxes represent likelihood model p(y|x) (A omitted), prior pθ(x), and update
function Γ, respectively. In each iteration, likelihood and prior collect the current estimate of x,
to send a gradient to update function Γ (see text). Γ then produces a new estimate of x. Typically,
prior pθ(x) and update function Γ are modeled as two distinct model components. Here they are
both depicted in gray boxes because they each represent model internal information which we wish
to be transferable between different observations, i.e. they are observation independent. Likelihood
term p(y|x) is depicted in blue to emphasize it as a model extrinsic term, some aspects of the
likelihood term can change from one observation to the other (such as matrix A). The likelihood
term is observation-dependent. (B) Model simplification. The central insight of this work is to merge
prior pθ(x) and update function Γ into one model with trainable parameters φ. The model then
iteratively produces new estimates through feedback from likelihood model p(y|x) and previous
updates. (C) A Recurrent Inference Machine unrolled in time. Here we have added an additional
state variable which represents information that is carried over time, but is not directly subjected
to constraints through the likelihood term p(y|x). During training, estimates at each time step are
subject to an error signal from the ground truth signal x (dashed two-sided arrows) in order to
perform backpropagation. The intermittent error signal will force the model to perform well as soon
as possible during iterations. At test time, there is no error signal from x.

2 RECURRENT INFERENCE MACHINES

The goal of this work is to find an inverse model as described in equation (5). Often, however, it
will be intractable to find (5) directly, even with modern non-linear function approximators. For
high-dimensional y and x, which are typically considered in inverse problems, it will simply not
be possible to fit matrix A into memory explicitly, but instead matrix A will be replaced by an
operator that acts on x. An example is the Discrete Fourier Transform (DFT). Instead of using a
Fourier matrix which is quadratic in the size of x, DFTs are typically performed using the Fast
Fourier Transform (FFT) algorithm which reduces computational cost and memory consumption
significantly. The use of operators, however, does not allow us to feed A into (5) anymore, but
instead we will have to resort to an iterative approach that alternates between updates of x and
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evaluation of Ax. This is precisely what is typically done in gradient-based inference methods, and
we will motivate our framework from there.

2.1 GRADIENT-BASED INFERENCE

Recall from equation (4) that inverse problems can be interpreted in terms of probability such that
optimization is an iterative approach to MAP inference. In its most simple form each consecutive
estimate of x is then computed through a recursive function of the form

xt+1 = xt + γt∇
(

log p (y|A,x) + log pθ (x)
)

(xt) (6)

where we make use of the fact that p(x|A,y) ∝ p(y|A,x)pθ(x) and γt is the step size or learning
rate at iteration t. Further, A is a (partially-)observable covariate, p(y|A,x) is the likelihood func-
tion for a given inference problem, and pθ (x) is a prior over signal x. In many cases where either
the likelihood term or the prior term deviate from standard models, optimization will not be convex.
In constrast, the approach presented in this work is completely freed from ideas about convexity, as
will be shown in the next section.

2.2 RECURRENT FUNCTION DEFINITION

The central insight of this work is that update equation (6) can be generalized such that
xt+1 = xt + gφ(∇y|x,xt) (7)

where we denote∇ log p(y|A,x)(xt) by∇y|x for readability and φ is a set of learnable parameters
that govern the updates of x. In this representation, prior parameters θ and learning rate parameters
γ have been merged into one set of trainable parameters φ.

To recover the original update equation (6), gφ(∇y|x,xt) is written as

gφ(∇y|x,xt) = γt
(
∇y|x +∇x

)
(8)

where we make use of ∇x to denote ∇ log pθ(x)(xt). It will be useful to dissect the terms on the
right-hand side of (8) to make sense of the usefulness of the modification.

First notice, that in equation (6) we never explicitly evaluate the prior, but only evaluate its gradient
in order to perform updates. If never used, learning a prior appears to be unnecessary, and instead
it appears more reasonable to directly learn a gradient function ∇x = fθ(xt) ∈ Rd. The advantage
of working solely with gradients is that they do no require the evaluation of an (often) intractable
normalization constant of pθ(x).

A second observation is that the step sizes γt are usually subject to either a chosen schedule or
chosen through a deterministic algorithm such as a line search. That means the step sizes are always
chosen according to a predefined model Γ. Interestingly, this model is usually not learned. In order
to make inference faster and improve performance we suggest to learn the model Γ as well.

In (7) we have made the prior pθ(x) and the the step size model Γ implicit in function gφ(∇y|x,ηt).
We explicitly keep ∇y|x as an input to (7) because - as opposed to Λ and pθ(x) - it represents
extrinsic information that is injected into the model. It allows for changes in the likelihood model
p(y|x) without the need to retrain parameters φ of the inference model gφ. Figure 1 gives a visual
summary of the insights from this section.

2.3 OUTPUT CONSTRAINTS

In many problem domains the range of values for variable x is naturally constraint. For example,
images typically have pixels with strictly positive values. In order to model this constraint we make
use of nonlinear link functions as they are typically used in neural networks, such that

x = Ψ(η) (9)
where Ψ(·) is any differentiable link function and η is the space in which RIMs iterate such that
update equation (7) is replaced by

ηt+1 = ηt + gφ(∇y|η,ηt) (10)
As a result x can be constraint to a certain range of values through Ψ(·), whereas iterations are
performed in the unconstrained space of η
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2.4 RECURRENT NETWORKS

A useful extension of (7) is to introduce a latent state variable st into the procedure. This latent
variable is typically used as a utility in recurrent neural networks to learn temporal dependencies in
data processing. With an additional latent variable the update equations become

ηt+1 = ηt + hφ
(
∇y|η,ηt, st+1

)
(11)

st+1 = h∗φ
(
∇y|η,ηt, st

)
(12)

where h∗φ(·) is the update model for state variable s. The variable s will allow the procedure to have
memory in order to track progression, curvature, approximate a preconditioning matrix Tt (such
as in BFGS) and determine a stopping criterion among other things. The concept of a temporal
memory is quite limited in classical inference methods, which will allow RIMs to have a potential
advantage over these methods.

2.5 TRAINING

In order to learn a step-wise inference procedure it will be necessary to simulate the inference steps
during training. I.e. during training, an RIM will perform a number of inference steps T . At each
step the model will produce a prediction as depicted in figure Figure 1. Each of those predictions is
then subject to a loss, which encourages the model to produce predictions that improve over time. In
it’s simplest form we can define a loss which is simply a weighted sum of the individual prediction
losses at each time step such that

Ltotal(φ) =

T∑
t=1

wtL(xt(φ),x) (13)

is the total loss. Here, L(·) is a base loss function such as the mean square error, wt is a positive
scalar and xt(φ) is a prediction at time t. In this work we follow Andrychowicz et al. (2016) in
setting wt = 1 for all time steps.

3 RELATED WORK

The RIM framework can be seen as an auto-encoder framework in which only the decoder is trained,
whereas the encoder is given by a known corruption process. In terms of the training procedure this
makes RIMs very similar to denoising auto-encoders (Vincent et al., 2008). Though initially with
the objective of regularization in mind, denoising auto-encoders have been shown to be effectively
used as generative models (Vincent et al., 2010). The difference of RIMs to denoising auto-encoders
and also more recently developed auto-encoders such as Kingma & Welling (2014); Rezende et al.
(2014) is that RIMs enforce coupling between encoder and decoder both, during training and test
time. In it’s typical form, decoder and encoder of an auto-encoder are only coupled during training
time, while there is no information flow during test time (Kingma & Welling, 2014; Rezende et al.,
2014; Vincent et al., 2008; 2010). An exception is the work from Gregor et al. (2016) which is
conceptually strongly related to RIMs. There, an RNN model is used to generate static data by
drawing on a fixed canvas. An error signal is propagated throughout the generation process.

There have been approaches in the past which aim to formulate a framework in which an inference
procedure is learned. One of the best known frameworks is LISTA (Gregor & LeCun, 2010) which
aims to learn a model that reconstructs sparse codes from data. LISTA models try to fit into the
classical framework of doing inference as described in 1, whereas RIMs are completely removed
from assumptions about sparsity. A recent paper by Andrychowicz et al. (2016) aims to train RNNs
as optimizers for non-convex optimization problems. Though introduced with a different intention,
RIMs can be seen as a generalization of this approach, in which the model - in addition to the
gradient information - is aware about the absolute position of a prediction in variable space(see
equation (7)).

4 EXPERIMENTAL RESULTS

We evaluate our method on various kinds of image restoration tasks which can each be formulated in
terms of linear measurement problems as described in equation (1). We first analyze the properties

5



Under review as a conference paper at ICLR 2017

of our proposed method on a set of restoration tasks from random projections. Later we compare
our model on two well known image restoration tasks: image denoising and image super-resolution.

4.1 MODELS

If not specified otherwise we use the same RNN architecture for all experiments presented in this
work. The chosen RNN consists of three convolutional hidden layers and a final convolutional output
layer. All convolutional filters were chosen to be of size 3 x 3 pixels. The first hidden layer consists
of convolutions with stride 2 (64 features), subsequent batch normalization and a tanh nonlinearity.
The second hidden layer represents the RNN part of the model. We chose a gated recurrent unit
(GRU) (Chung et al., 2014) with 256 features. The third hidden layer is a transpose convolution
layer with 64 features which aims to recover the original image dimensions of the signal, followed
again by a batch normalization layer and a tanh nonlinearity. All models have been trained on a
fixed number of iterations of 20 steps. All methods were implemented in Tensorflow1.

4.2 DATA

All experiments were run on the BSD-300 data set (Martin et al., 2001)2. For training we extracted
patches of size 32 x 32 pixels with stride 4 from the 200 training images available in the data
set. In total this amounts to a data set of about 400 thousand image patches with highly redundant
information. All models were trained over only two epochs, i.e. each unique image patch was seen
by a model only twice during training. Validation was performed on a held-out data set of 1000
image patches.

For testing we either used the whole test set of 100 images from BSDS-300 or we used only a subset
of 68 images which was introduced by Roth & Black (2005) and which is commonly used in the
image restoration community 3.

4.3 IMAGE RESTORATION

All tasks addressed in this work assume a linear measurement problem of the form as described in
equation (1) with additive (isotropic) Gaussian noise. In this case the gradient of the likelihood takes
the form

∇y|x =
1

σ2
AT (y −Ax) (14)

where σ2 is the noise variance. For very small σ this gradient diverges. In order to make the gradient
more stable also for small σ we chose to rewrite it as

∇y|x =
1

σ2 + ε
AT (y −Ax) (15)

where ε = softplus(φε) and φε is a trainable parameter. As a link function Ψ (see (9)) we chose the
logistic sigmoid nonlinearity4 and we used the mean square error as training loss.

4.4 MULTI-TASK LEARNING WITH RANDOM PROJECTIONS

To analyze the properties of our proposed framework in terms of convergence and to test whether all
components of the model are useful, we first trained the model to reconstruct image patches from
noisy random projections of grayscale image patches. We consider three types of random projection
matrices: (1) Gaussian ensembles with elements drawn from a standard normal distribution, (2)
binary ensembles with entries of values {−1, 1} drawn from a Bernulli distribution with p = 0.5,
and (3) Fourier ensembles with randomly sampled rows from a Fourier matrix (see Donoho (2006b)).

We trained three models on these tasks: (1) a Recurrent Inference Machine (RIM) as described in 2,
(2) a gradient-descent network (GDN) which does not use the current estimate as an input (compare

1https://www.tensorflow.org
2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
3http://www.visinf.tu-darmstadt.de/vi research/code/foe.en.jsp
4All training data was rescaled to be in the range [0, 1]
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Figure 2: Reconstruction performance over time on random projections. Shown are results of the
three reconstruction tasks from random projections (see text) on 5000 random patches from the
BSD-300 test set. Value of p represent the the reduction in dimensionality through the random pro-
jection. Noise standard deviation was chosen to be σ = 1. Solid lines correspond to the mean peak
signal-to-noise-ration (PSNR) over time, and shaded areas correspond to one standard deviation
around the mean. Vertical dashed lines mark the last time step that was used during training.

Andrychowicz et al. (2016)), and (3) a feed-forward network (FFN) which uses the same inputs as
the RIM but where we replaced the GRU unit with a ReLu layer in order to remove state-dependence.
Model (2) and (3) are simplifications of RIM in order to test the influence of each of the removed
model components on prediction performance.

Figure 2 shows the reconstruction performance of all three models on random projections. In all
tasks the RIM clearly outperforms both other models, showing overall consistent convergence be-
havior. The FFN performs well on easier tasks but starts to show degrading performance over time
on more difficult tasks. This suggests that the state information of RIM plays an important role
on the convergence behavior as well as overall performance. The GDN shows worst performance
among all three models. For all tasks, the performance of GDN starts to degrade clearly after the 20
time steps that were used during training. We hypothesize that the model is able to compensate some
of the missing information about the current estimate of x through state variable s during training,
but the model is not able to transfer this ability to episodes with more iterations.

These results suggests that both the current estimate as well as the recurrent state carry useful in-
formation for performing inference. We will therefor only consider fully fledged RIMs from here
on.

4.5 IMAGE DENOISING

After evaluating our model on 32 x 32 pixel image patches we wanted to see how reconstruc-
tion performance generalizes to full sized images and to an out of domain problem. We chose
to reuse the RIM that was trained on the random projections task to perform image denoising. In
this section we will call this model RIM-3task. To test the hypothesis that inference should be
trained task specific, we further trained a model RIM-denoise solely on the denoising task. Ta-
ble 2 shows the denoising performance through the mean PSNR on the BSD-300 test set for both
models as compared to state-of-the-art methods in image denoising. The RIM-3task model shows
very competitive results with other methods on all noise levels. This exemplifies that the model
indeed has learned something reminiscent of a prior, as it was never directly trained on this task.
The RIM-denoise model further improves upon the performance of RIM-3task and it outperforms
most other methods on all noise levels. This is to say that the same RIM was used to perform
denoising on different noise levels, and this model does not require any hand tuning after training.
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(a) Ground truth (b) Noisy image, 14.88dB

(c) EPLL, 25.68dB (d) RIM, 25.91dB

Figure 3: Denoising performance on example image use in Zoran & Weiss (2011). σ = 50. Noisy
image was 8-bit quantized before reconstruction.

Method PSNR

CBM3D 30.18
RTF-5 30.57
RIM (ours) 30.84(30.67)

Table 1: Color denoising. Denoising
performance on the 68 images for σ =
25 after 8-bit quantization. Results
for RTF-5 (Schmidt et al., 2016) and
CBM3D (Dabov et al., 2007b) adopted
from Schmidt et al. (2016). In paren-
thesis are results for the full 100 test
images.

Table 2 shows denoising perfomance on image that have
been 8-bit quantized after adding noise(see Schmidt et al.
(2016)). In this case performance slightly deteriorates for
both models, though still making competitive with state-
of-the-art methods. This effect could possibly be accom-
modated through further training, or by adjusting the for-
ward model. Figure 3 gives some qualitative results on
the denoising performance for one of the test images from
BSD-300 as compared to the method from Zoran & Weiss
(2011). RIM is able to produce more naturalistic images
with less visible artifacts. The state variable in our RIM
model allows for a growing receptive field size over time,
which could explain the good long range interactions that
the model shows.

Many denoising algorithms are solely tested on gray-scale
images. Sometimes this is due to additional difficulties
that multi-channel problems bring for some inference approaches. To show that it is straightforward
to apply RIMs to multi-channel problems we trained a model to denoise RGB images. The denoising
performance can be seen in table 1. The model is able to exploit correlations across color channels
which allows for an additional boost in reconstruction performance.

4.6 IMAGE SUPER-RESOLUTION

We further tested our approach on the well known image super-resolution task. We trained a single
RIM 5 on 36 x 36 pixel image patches from the BSD-300 training set to perform image super-

5The architecture of this model was slightly simplified in comparison to the previous problems. Instead of
strided convolutions, we chose a trous convolutions. This model is more flexible and used only about 500.000
parameters. Previous experiments will be updated with the same model architecture.
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Not Quantized 8-bit Quantized
σ 15 25 50 15 25 50

KSVD 30.87 28.28 25.17

5x5 FoE 30.99 28.40 25.35 28.22

BM3D 31.08 28.56(28.35) 25.62(25.45) 28.31

LSSC 31.27 28.70 25.72 28.23

EPLL 31.19 28.68(28.47) 25.67(25.50)

opt-MRF 31.18 28.66 25.70

MLP 28.85(28.75) (25.83)

RTF-5 28.75 28.74

RIM-3task 31.19(30.98) 28.67(28.45) 25.78(25.59) 31.06(30.88) 28.41(28.24) 24.86(24.73)

RIM-denoise 31.31(31.10) 28.91(28.72) 26.06(25.88) 31.25(31.05) 28.76(28.58) 25.27(25.14)

Table 2: Denoising performance on gray-scale images from BSD-300 test set. Shown are mean
PSNR values for different noise values. Number outside of parenthesis correspond to test perfor-
mance on the 68 test images from Roth & Black (2005), and numbers in parenthesis correspond
to performance on all 100 test images from BSD-300. 68 image performance for KSVD (Elad &
Aharon, 2006), FoE (Roth & Black, 2005), BM3D (Dabov et al., 2007a), LSSC (Mairal et al., 2009),
EPLL (Zoran & Weiss, 2011), and opt-MRF (Chen et al., 2013) adopted from Chen et al. (2013).
Performances on 100 images adopted from Burger et al. (2013). 68 image performance on MLP
(Burger et al., 2012), RTF-5 (Schmidt et al., 2016) and all quantized results adopted from Schmidt
et al. (2016).

(a) Original Image (b) Bicubic: 30.43/0.8326 (c) SRCNN: 31.34/0.8660

(d) A+: 31.43/0.8676 (e) SelfExSR: 31.18/0.8656 (f) RIM: 31.59/0.8712

Figure 4: Super-resolution example with factor 3. Comparison with the same methods as in table 3.
Reported numbers are PSNR/SSIM. Best results in bold.

resolution for factors 2, 3, and 46. We followed the same testing protocol as in Huang et al. (2015),
and we used the test images that were retrieved from their website 7. Table 3 shows a comparison
with some state-of-the-art methods on super-resolution for the BSD-300 test set. Figure 4 shows a
qualitative example of super-resolution performance. The other deep learning method in this com-
parison, SRCNN Dong et al. (2014), is outperformed by RIM on all scales. Interestingly SRCNN
was trained for each scale independently whereas we only trained one RIM for all scales. The cho-
sen RIM has only about 500.000 parameters which amounts to about 2MB of disk space, which
makes this architecture very attractive also for mobile computing.

6We reimplemented MATLABs bicubic interpolation kernel in order to apply a forward model (sub-
sampling) in TensorFlow which agrees with the forward model in Huang et al. (2015).

7https://sites.google.com/site/jbhuang0604/publications/struct sr
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Metric Scale Bicubic SRCNN A+ SelfExSR RIM (Ours)

PSNR
2x 29.55± 0.35 31.11± 0.39 31.22± 0.40 31.18± 0.39 31.39± 0.39

3x 27.20± 0.33 28.20± 0.36 28.30± 0.37 28.30± 0.37 28.51± 0.37

4x 25.96± 0.33 26.70± 0.34 26.82± 0.35 26.85± 0.36 27.01± 0.35

SSIM
2x 0.8425± 0.0078 0.8835± 0.0062 0.8862± 0.0063 0.8855± 0.0064 0.8885± 0.0062

3x 0.7382± 0.0114 0.7794± 0.0102 0.7836± 0.0104 0.7843± 0.0104 0.7888± 0.0101

4x 0.6672± 0.0131 0.7018± 0.0125 0.7089± 0.0125 0.7108± 0.0124 0.7156± 0.0125

Table 3: Image super-resolution performance on RGB images from BSD-300 test set. Mean and
standard deviation (of the mean) of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) Wan (2004). Standard deviation of the mean was estimated from 10.000 boostrap
samples. Test protocol and images taken from Huang et al. (2015). Only the three best performing
methods from Huang et al. (2015) were chosen for comparison: SRCNN Dong et al. (2014), A+
Timofte et al. (2015), SelfExSR Huang et al. (2015). Best mean values in bold.

5 DISCUSSION

In this work, we introduce a general learning framework for solving inverse problems with deep
learning approaches. We establish this framework by abandoning the traditional separation between
model and inference. Instead, we propose to learn both components jointly without the need to
define their explicit functional form. This paradigm shift enables us to bridge the gap between the
fields of deep learning and inverse problems. We believe that this framework can have a major
impact on many inverse problems, for example in medical imaging and radio astronomy. Although
we have focused on linear image reconstruction tasks in this work, the framework can be applied to
inverse problems of all kinds, such as non-linear inverse problems.
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