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ABSTRACT

Neural networks can learn relevant features from data, but their predictive accu-
racy and propensity to overfit are sensitive to the values of the discrete hyperpa-
rameters that specify the network architecture (number of hidden layers, number
of units per layer, etc.). Previous work optimized these hyperparmeters via grid
search, random search, and black box optimization techniques such as Bayesian
optimization. Bolstered by recent advances in gradient-based optimization of dis-
crete stochastic objectives, we instead propose to directly model a distribution over
possible architectures and use variational optimization to jointly optimize the net-
work architecture and weights in one training pass. We discuss an implementation
of this approach that estimates gradients via the Concrete relaxation, and show
that it finds compact and accurate architectures for convolutional neural networks
applied to the CIFAR10 and CIFAR100 datasets.

1 INTRODUCTION

Neural networks are a composition of many simple components that form a very powerful function
approximator. The structure of this composition is typically called an “architecture.” While simple to
describe at a high level, the space of neural network architectures is prohibitively large to search over.
The performance of a neural network on a given task is very sensitive to the choice of architecture.
Moreover, because the architecture hyperparmeters (e.g., width, depth) are discrete, they cannot be
optimized along with the weights of the model using backpropagation.

Our aim is to automatically incorporate architecture search into the neural network optimization
pipeline. Previous work in this space treats architecture as a hyperparameter akin to learning rate
and regularization strength, which can be optimized by grid search or random search (Bergstra &
Bengio, 2012). Snoek et al. (2012) fits a Gaussian process to (hyperparameter, validation loss) pairs
and seeks to optimize this unknown function constrained to an exploration budget.

We instead treat the architecture as a parameter similar to the weights of the network and use
gradient-based optimization to learn both simultaneously, thus removing architecture from the set of
hyperparameters which must be searched over.

2 VARIATIONAL MODEL OPTIMIZATION

We phrase this problem within the framework of variational optimization (Staines & Barber, 2012).
Consider a supervised learning setup where we are given dataset D of input-label pairs (x, y). We
wish to predict the labels y with a flexible classifier (e.g., neural network). We seek to find weights
w which minimize

L(w) = E
x,y∼D

[
`(f(x,w), y) + λ||w||22

]
, (1)

where `(·, ·) is a suitable loss function and λ is a hyperparameter specifying the amount of weight
decay added to the objective. Assuming a fixed architecture, standard neural network training pro-
ceeds via gradient-decent on w.

∗The first 3 authors contributed equally to this work.
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Letting A denote the discrete specifications of the network architecture (depth, width), we seek to
find A and w which minimize

L(w,A) = E
x,y∼D

[
`(g(x,w,A), y) + λ||w||22 + γr(A)

]
, (2)

where r(A) is a regularization function, weighted by γ, that penalizes the complexity of a model
architecture. Note that the prediction g(x,w,A) takes into account the choice of architecture, and is
therefore only defined for a discrete set of points.

Variational Optimization The global minimum of an objective L over a set of parameters θ is
upper bounded by the expectation of that objective under a distribution q on θ with suitable support:

min
θ
L(θ) ≤ E

θ∼q(θ)
[L(θ)] (3)

Given this fact, the variational optimization (VO) framework seeks to minimize L(θ) by optimizing
the distribution q in order to minimize the expectation on the RHS of the above inequality.

VO is directly applicable to our optimization problem: Whereas directly solving Equation 2 involves
a discrete optimization over A, we can instead place a parametric distribution qφ over architecture
choices A and optimize the right hand side of

min
w,A
L(w,A) ≤ E

A∼qφ(A)
[L(w,A)] , U(w, φ). (4)

As (w, φ) approach their optimal values (w∗, φ∗), the approximation gap closes and qφ places nearly
all of its probability mass on the globally optimal A∗.

We refer to this optimization problem as variational model optimization (VMO) and use gradient-
based optimization to minimize the objective U(w, φ). Deriving a gradient-based VMO algorithm
involves specifying a regularization function r(A) over architectures, a sufficiently expressive dis-
tribution qφ(A), and an estimator for the gradients of U(w, φ).

3 VARIATIONAL MODEL OPTIMIZATION FOR NEURAL NETWORKS

We restrict our attention to optimizing for the depth and width of a discriminative neural network
with cross entropy loss. In standard approaches to classification, the final layer’s activations zD
parameterize a categorical distribution over predictions as p(ci|x) ∝ exp zDi .

Depth Optimization When optimizing the depth of a model, we set a maximum allowable depth
D and seek to find the optimal depth d∗ during training (1 ≤ d∗ ≤ D). To do so, we construct
a neural network with D layers and build a classification layer on top of each intermediate layer’s
activations ad. A classification layer at layer d is a linear projection mapping ad to logits zd. The
variational distribution over model depth is taken to be a categorical distribution qφ(d) with parame-
ters φ, and we represent samples d ∼ qφ by one-hot vectors one hot(d). When depth d is sampled
from qφ, the model’s output logits are

ẑ =

D∑
i=1

one hot(d)i · zi (5)

We define the regularization function over depth to be r(d) = d.

Width Optimization To optimize the width of a neural network’s layers, we consider models with
{1, . . . ,Kl} features in each layer l. The model is implemented as a neural network withKl features
in the lth layer. Models with kl < Kl features are generated by multiplying the layer’s activations
al with a binary mask, ml = [1, . . . , 1︸ ︷︷ ︸

kl

, 0, . . . , 0︸ ︷︷ ︸
Kl−kl

] and passing the result ml · al as input to the next

layer.

We place a categorical distribution qψd over the width of each layer, and represent the joint distri-
bution over all layers using a fully factorized distribution qψ(k1, . . . , kD) =

∏D
l=1 qψl(kl). Samples

from qψl(kl) are encoded as 1-hot vectors one hot(kl) and ml can be produced as

(ml)i =
∑
j≥i

one hot(kl)j . (6)
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Dataset Model Accuracy Depth Width
Cifar10 WRN-28-10 96.00% 28 layers 100%
Cifar10 Depth 96.01% 26 layers 100%
Cifar10 Width 95.22% 28 layers 81.89% ± 12.51%
Cifar10 Joint 95.00% 28 layers 77.14% ± 12.72%

Cifar100 WRN-28-10 80.75% 28 layers 100%
Cifar100 Depth 80.21% 26 layers 100%
Cifar100 Width 77.15% 28 layers 75.98% ±17.58%
Cifar100 Joint 76.23% 28 layers 77.83% ±17.03%

Table 1: Results on Cifar10 and Cifar100. Median accuracy over 5 runs.

We define our regularization function to be r(k1, . . . , kD) =
∑D
l=1 kl.

Joint Optimization To optimize width and depth we combine both of the above models. We place
a distribution over depth and width as q(φ,ψ)(d, k1, . . . , kD) = qφ(d) ·

∏D
l=1 qψl(kl) and proceed as

defined above. We define the regularization function as r(d, k1, . . . , kD) = d+
∑D
l=1 kl.

Concrete Gradient Estimation The Concrete relaxation replaces the discrete categorical distri-
bution with a continuous distribution that admits the reparameterization gradient estimator (Kingma
& Welling, 2013). Samples from the Concrete relaxation of a multinomial distribution with param-
eter φ can be generated as softmax((log φ − log(− log u))/t), where u ∼ uniform[0, 1]|φ|. t is a
“temperature” parameter which controls the bias-variance trade-off of the estimator. Samples from
this distribution can replace any 1-hot samples and then the reparameterization estimator can be used
to estimate the gradients of the samples with respect to φ. We replace the 1-hot samples in Equations
5 and 6 with samples from the Concrete relaxation.

4 EXPERIMENTS

We experiment with VMO on the challenging task of training Wide Resnets (Zagoruyko & Ko-
modakis, 2016) on Cifar10 and Cifar100 (Krizhevsky et al.). Our models have the same base ar-
chitecture as WRN-28-10. The depth model optimizes the number of blocks and the width model
optimizes the width of each block1. We anneal the temperature t of the Concrete relaxation from
0.1 to 0 throughout training on a log-scale. We use a regularization penalty of 10−3 for depth and
10−8 for width. These hyperparameter values were chosen via cross-validation. All other experi-
mental details are as in Zagoruyko & Komodakis (2016). Cf. Table 1 for a summary of our learned
architectures and their performances. On both Cifar10 and Cifar100, the depth model chose an ar-
chitecture 1 block smaller than that of the baseline WRN model and on Cifar10 this resulted in a
slight increase in accuracy with an ∼ 8% reduction in parameters. While we noticed a decrease in
performance with the width a and joint models, we observed a considerable reduction in the number
of parameters while maintaining near state-of-the-art accuracy.

5 CONCLUSION

We have presented a method to jointly optimize a neural network’s architecture along with its
weights. This method utilizes variational optimization to accomplish this task and introduces min-
imal computation overhead compared to standard neural network training. While we feel the ap-
proach is promising there are a number of issues that must be dealt with for it to achieve greater
success. We believe that most of these issues are due to the bias introduced by the Concrete relax-
ation. Empirically, the biased estimators increase the size of the generalization gap. We also believe
that the exploration caused by the variational distribution slows convergence of the weights. We
believe better results could be obtained by training the VMO models longer after the VO procedure
has approximately made its architecture choice.

1 Blocks are as is defined as in Zagoruyko & Komodakis (2016).
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6 APPENDIX

6.1 ALTERNATIVE GRADIENT ESTIMATORS

The variational objective U(w, φ) (Equation 4) consists of an expectation over discrete model
choices A. Hence, the variational distribution parameters (φ, ψ) cannot be optimized directly with
backpropagation and we must estimate the gradients with respect to these parameters. The score
function estimator (Williams, 1992) could be used, but it is known to have prohibitively high vari-
ance. To remedy this, we could utilize the lower-variance, unbiased estimators of Tucker et al.
(2017) and Grathwohl et al. (2017) which utilize control variates to reduce the variance of the score
function estimator. We initially experimented with these methods but found them difficult to scale
to state of the art convolutional neural networks due to memory and computational constraints.

For that reason we have decided to utilize the low-variance, but biased Concrete relaxation (Mad-
dison et al., 2016; Jang et al., 2016) to estimate the gradients of our objective. We believe that the
bias these estimators add is responsible for most of the decrease in performance we observe when
compared to the baseline WRN models.

We believe improvements could be achieved with unbiased gradient estimators or a different tem-
perature annealing strategy.
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(a) During depth optimization sampling a model cor-
responds to deciding the depth at which to classify.

x

ŷ

(b) During width optimization sampling a model cor-
responds to sampling a number of active neurons per
layer.

Figure 1: In variational model optimization we minimize the expected loss over a distribution of
models. 1a and 1b show single samples from the distributions over models in depth and width
optimization, respectively.
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(b) t = 0.1
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(c) t = 0.01

Figure 2: Concrete sampling procedure for width prediction within one layer of the network for
temperature t ∈ {1.0, 0.1, 0.01}. The first row shows the Categorical distribution over the width
to choose for the layer. The fourth and fifth row corresponds to samples and masks m from the
Categorical distribution as described in Equation 6, which we use at test time. The second and third
row corresponds to samples and masks m from the Concrete relaxation with temperature t, which
we use during training. The soft masks approaches the hard masks in the limit of t→ 0.
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7 CONTINUOUS RELAXATION FOR CHOICE OF WIDTH

In training width models, we make use of concrete gradient estimation and a continuous relaxation
of Equation 6. Denoting the activations at layer l by [a1, ..., aKl ], the continuous approximation
for choosing a certain width is given as follows: Given a multinomial distribution over the width to
choose, we take a sample ν using the concrete relaxation with temperature parameter t. The final
output of this layer is formed to be [m1 ·a1, ...,mKl ·aKl ] wheremi =

∑
j≤i νj . As the t approaches

0, mi approach the hard values from Equation 6. Samples of mi for different temperatures are
presented in 2.

6


	Introduction
	Variational Model Optimization
	Variational Model Optimization for Neural Networks
	Experiments
	Conclusion
	Appendix
	Alternative Gradient Estimators

	Continuous Relaxation for Choice of Width

