
Workshop track - ICLR 2018

COMMUNITY DETECTION WITH THE TRIPLET LOSS

Marc Lelarge
INRIA
École normale supérieure, CNRS, PSL Research University
75005 Paris, France
marc.lelarge@inria.fr

ABSTRACT

We present a scalable approach for unsupervised learning on graph-structured data
based on a simple graph embedding learned via the triplet loss. For the community
detection problem on the stochastic block model, our algorithm is optimal, with
the same performance as the spectral technique based on the Bethe Hessian. On
synthetic low-dimensional datasets, our algorithm generalizes well, having state
of the art performances. In a semi-supervised learning framework, our algorithm
extends naturally and incorporates the additional information with a great increase
in performances.

Figure 1: Illustrative 2D examples showing the result of our clustering algorithm to be compared
with scikit-learn clustering algorithms http://scikit-learn.org/stable/modules/
clustering.html

1 INTRODUCTION

Clustering and community detection is a fundamental unsupervised data analysis task. Efficient al-
gorithms work by first embedding the data in a low dimensional space and then applying a standard
clustering algorithm (like k-means) on this representation to obtain the clusters. Spectral cluster-
ing (Von Luxburg (2007)) is a leading and highly popular clustering algorithm. It constructs the
embedding from the leading eigenvectors of appropriate operators defined on the similarity graph.
However, to ensure good performances, the operator needs to be carefully chosen depending on the
characteristics of the similarity graph. In this paper, we develop a generic approach and propose a
simple algorithm to learn an embedding of a graph by using the triplet loss (Schroff et al. (2015)).
Each edge of the graph is interpreted as a suggestion to put both endpoints in the same community
or cluster and the triplet loss will leverage this observation by discriminating edges from non-edges.
Note that a Siamese net architecture has been recently proposed by (Shaham et al. (2018)) in order to
learn similarities between data points which is then used in learning the spectral embedding. Here,
we use a contrastive loss to learn directly the embedding. A triplet network was used in (Hoffer &
Ailon (2015)) to learn metric in a supervised setting (sampling of positive and negative pairs is done
thanks to the labels). In our case, we only use the graph structure as a noisy pairing of positive pairs
(most edges connect positive pairs but there is a positive fraction of errors). Our algorithm can be
seen as a denoiser to recover positive pairs, i.e. the structure of clusters hidden in the graph.

Our algorithm is highly scalable as it takes as input a stream of incoming edges, it only requires
a constant memory per node to store the low dimensional representation of each node. For each
incoming edge, our algorithm needs to sample a node at random in the network. We use a muticlass
hinge loss and SGD to learn the embedding of the nodes. A standard clustering algorithm is then

1

http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html


Workshop track - ICLR 2018

used directly on these embeddings. Figure 1 illustrates results obtained by our algorithm on some
2D examples. In the rest of the paper, we will concentrate on the stochastic block model (SBM), a
popular generative model for random graphs with community structure. We will consider very sparse
SBMs for which recent spectral algorithms have been designed and shown to be optimal (Saade
et al. (2014)). Sparse graphs are much more difficult to cluster but very relevant from a practical
perspective, in particular when dealing with very large datasets. Indeed, as shown in (Saade et al.
(2016)), with our clustering algorithm on sparse graphs, we need to compute a number of pairwise
similarities scaling only linearly with the number of data points.

2 DESCRIPTION OF THE ALGORITHM

In order to motivate our algorithm, we present a standard semidefinite relaxation of our partition
problem. Given a (undirected) graph G = (V,E) with n = |V | vertices, we denote by A its
(symmetric) adjacency matrix, i.e. Aij = 1 whenever (i, j) ∈ E. The minimum bisection problem
consists in finding a cut of the set of vertices V in two sets of equal size as to minimize the number
of edges across the partition. Formally:

σ∗ = arg max
σ∈{±1}n

 ∑
(i,j)∈E

σiσj :
∑
i

σi = 0

 .

This problem is hard to approximate (Khot (2006)) which motivates the following SDP relaxation:

max
σ

∑
(i,j)∈E

〈σi,σj〉, (1)

where σ = (σ1, . . . ,σn) and σi ∈ Rn is the vector associated to node i and must satisfy the
constraints ‖σi‖2 = 1 and

∑n
i=1 σi = 0 for all i ∈ [n]. In order to obtain a low embedding of the

graph, we will consider the case where each σi ∈ Rm with m < n, indeed we fixed m = 32 in our
experiments.

At each time, our algorithm stores a vector σi for each node i ∈ V . Consider a setting, where
edges arrive in a stream in random order and suppose edge (i, j) ∈ E arrives. Then our algorithm
increments its current loss by:

`(i,j) = max (〈σi,σk〉 − 〈σi,σj〉+ α; 0) , (2)

where k is a node chosen uniformly at random in V and α is a fixed parameter. Typically, in a sparse
graph, we will have (i, k) /∈ E. Also, if there are 2 communities of the same size, then i and k are in
the same community with probability 1/2 and in different communities with the same probability.
By symmetry, we expect that on average 〈σi,σk〉 ≈ 0. Now, note that the loss `(i,j) is zero as soon
as 〈σi,σk〉 + α ≤ 〈σi,σj〉. Once our algorithm received a batch of edges, it will update all the
embeddings σi in order to minimize its loss using backpropagation. Replacing 〈σi,σk〉 ≈ 0 in the
expression above, we see that our algorithm will try to enforce 〈σi,σj〉 ≥ α for all (i, j) ∈ E.
We want to keep the variations of the random 〈σi,σk〉 of the order of the dimension m of the
embedding, so that we chose α ≈ m. This will ensure that our algorithm almost maximizes (1).

Practical considerations: the graph is encoded as a list of edges. Note that the loss (2) is not
symmetric in i and j, hence each edge will appear twice in the list, as the ordered pairs (i, j)
and (j, i). We used stochastic gradient descent with batch sizes of 256 edges. We also used a L2
regularization. One epoch corresponds to two passes on each edge (one in each direction). After k
epochs, the embedding of a node will incorporate the information from nodes at graph-distance at
most k from it. In order to get good performances, the number of epochs needs to scale with the
diameter of the graph to ensure propagation of the information over the graph. Given an embedding
σi of each node, the partition can be done by a standard spectral clustering in Rm. In our case, we
use the singular-value decomposition of the matrix σ = (σ1, . . . ,σn) ∈ Rm×n and then clusters
are assigned according to the sign of the components of the first right singular vector. In order
to improve the performance of the algorithm, the size of the cut resulting from such a clustering
can be computed every few epochs, if the cut size increases, we can roll-back to the more efficient
embedding.

2



Workshop track - ICLR 2018

Semi-supervised setting: when some nodes are known to belong to cluster one or two, we
modify the algorithm by simply fixing their embedding to the (properly normalized) vectors
(+1, . . . ,+1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

) and (−1, . . . ,−1︸ ︷︷ ︸
n/2

,+1, . . . ,+1︸ ︷︷ ︸
n/2

) respectively.

3 RESULTS

We now give some theoretical justifications in the case of the SBM with two communities (for
the sake of simplicity), i.e. a random graph generated as follows: we partition V = V+ ∪ V−
in two equal size communities (this is the planted partition); conditional on the partition, edges
are independently drawn between each pair of nodes (i, j) with probability a/n if i and j belong
to the same community and with probability b/n if they are in different community. This model
has a long history and results in (Decelle et al. (2011)) have triggered a renewed interest in the
regime where n → ∞ while a and b are kept fixed. The signal to noise ratio turned out to be
SNR = (a−b)2

2(a+b) , in the sense that if SNR < 1 then no signal can be detected in the graph, while as
soon as SNR > 1 then a partition with a positive overlap with the planted partition can be found (in
polynomial time (Massoulié (2014))). If V̂+ and V̂− is a partition of V , then its overlap is defined
as: overlap = 2 |V̂+∩V+|+|V̂−∩V−|

n − 1. The overlap measures the quality of the reconstruction of
the planted partition from zero for a pure random guess to one for exact recovery.

It turns out that our algorithm returns a partition with a positive overlap as soon as it is possible.
To be more precise, previous results are theoretical results valid in the limit n → ∞ and based on
this asymptotic analysis, (Saade et al. (2014)) proposed a spectral embedding based on the so-called
Bethe Hessian operator given by BH(r) = (r2 − 1)ID − rA + D where r is the average degree
in the graph. They showed that its performance is optimal in the sense that: in the large n limit,
the overlap is the same as the one achieved by a Bayes optimal estimator. More rigorous results (in
particular in the unbalanced case) are provided in (Lelarge & Miolane (2016)).

Figure 2: Left: comparison of our algorithm based on the triplet loss (TL) with the Bethe Hessian
(BH). Right: semi-supervised version of our algorithm with 1% and 10% of labeled data compared
to Bethe Hessian (BH). Note that the ranges of SNRs are not the same in both figures. The average
degree in the graph is fixed to 4 and its size is n = 1000. Each point corresponds to an average over
20 graphs.

Figure 2 (left) shows that our algorithm is almost optimal for SBMs in the whole range of SNR as it
almost matches the performance of the spectral algorithm based on the Bethe Hessian. Note that the
SDP (1) with an additional constraint on σ being of rank one is the maximum likelihood estimator
in the case of the SBM. Robustness to perturbations of the SDP relaxation even with m < n was
already observed in (Javanmard et al. (2016)). Our results show that it is actually possible to obtain
state of the art results in streaming, with SGD and the triplet loss.

Figure 2 (right) shows the performances of our algorithm in a semi-supervised setting with respec-
tively 1% and 10% of labeled data (corresponding to an initial overlap of 0.04 and 0.2 resp.). The
performance of the spectral algorithm based on the Bethe Hessian is given as a point of compari-
son. To the best of our knowledge, there is no solution to integrate the labeled data into a spectral
algorithm. At SNR = 1.6, with only on average 4 similarities per data point and with 20% of these
similarities being erroneous, our algorithm achieves 80% (resp. 85% and 90%) of true positives with
0% (resp. 1% and 10%) of labeled data.

3



Workshop track - ICLR 2018

REFERENCES

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis
of the stochastic block model for modular networks and its algorithmic applications. Physical
Review E, 84(6):066106, 2011.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International Workshop
on Similarity-Based Pattern Recognition, pp. 84–92. Springer, 2015.

Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi. Phase transitions in semidefinite
relaxations. Proceedings of the National Academy of Sciences, 113(16):E2218–E2223, 2016.

Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM Journal on Computing, 36(4):1025–1071, 2006.

Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix estimation. arXiv
preprint arXiv:1611.03888, 2016.

Laurent Massoulié. Community detection thresholds and the weak ramanujan property. In Pro-
ceedings of the forty-sixth annual ACM symposium on Theory of computing, pp. 694–703. ACM,
2014.

Alaa Saade, Florent Krzakala, and Lenka Zdeborová. Spectral clustering of graphs with the bethe
hessian. In Advances in Neural Information Processing Systems, pp. 406–414, 2014.

Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Clustering from sparse pairwise
measurements. In Information Theory (ISIT), 2016 IEEE International Symposium on, pp. 780–
784. IEEE, 2016.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, and Yuval Kluger. Spectralnet:
Spectral clustering using deep neural networks. arXiv preprint arXiv:1801.01587, 2018.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

4


	Introduction
	Description of the algorithm
	Results

