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ABSTRACT

Graph measures can be used for graph node clustering using metric clustering al-
gorithms. There are multiple measures applicable to this task, and which one per-
forms better is an open question. We study the performance of 25 graph measures
on generated graphs with different parameters. While usually measure compar-
isons are limited to general measure ranking on a particular dataset, we aim to
explore the performance of various measures depending on graph features. Using
an LFR graph generator, we create a dataset of ∼7500 graphs covering the whole
LFR parameter space. For each graph, we assess the quality of clustering with
k-means algorithm for every considered measure. We determine the best measure
for every area of the parameter space. We find that the parameter space consists of
distinct zones where one particular measure is the best. We analyze the geometry
of the resulting zones and describe it with simple criteria. Given particular graph
parameters, this allows us to choose the best measure to use for clustering.

1 INTRODUCTION

Graph node clustering is one of the central tasks in graph structure analysis. It provides a partition
of nodes into disjoint clusters, which are groups of nodes that are characterized by strong mutual
connections. It can be of practical use for graphs representing real-life systems, such as social
networks or industrial processes. Clustering allows to infer some information about the system: the
nodes of the same cluster are highly similar, while the nodes of different clusters are dissimilar. The
technique can be applied without any labeled data to extract important insights about a network.

There are different approaches to clustering, including ones based on modularity optimization (New-
man & Girvan, 2004; Blondel et al., 2008), label propagation algorithm (Raghavan et al., 2007; Bar-
ber & Clark, 2009), Markov cluster process (Van Dongen, 2000; Enright et al., 2002), and spectral
clustering (Von Luxburg, 2007). In this work, we use a different approach based on choosing a
closeness measure on a graph, which allows one to use any metric clustering algorithm (e.g., Yen
et al., 2009).

The choice of the measure significantly affects the quality of clustering. Classical measures are the
Shortest Path (Buckley & Harary, 1990) and the Commute Time (Göbel & Jagers, 1974) distances.
The former is the minimum number of edges in a path between a given pair of nodes. The latter is
the expected number of steps from one node to the other and back in a random walk on the graph.
There is a number of other measures, including recent ones (e.g., Estrada & Silver, 2017; Jacobsen
& Tien, 2018), many of them are parametric. Despite the fact that graph measures are compatible
with any metric algorithm, in this paper we restrict ourselves to the kernel k-means algorithm (e.g.,
Fouss et al., 2016).

We base our research on a generated set of graphs. There are various algorithms to generate
graphs with community structures. The well-known ones are the Stochastic Block Model (Holland
et al., 1983) and Lancichinetti–Fortunato–Radicchi benchmark (Lancichinetti et al., 2008) (here-
after, LFR). The first one is an extension of the Erdős–Rényi model with different intra- and in-
tercluster probabilities of edge creation. The second one involves power law distributions of node
degrees and community sizes. There are other generation models, e.g., Naive Scale-free Cluster-
ing (Pasta & Zaidi, 2017). We choose the LFR model: although it misses some key properties of
real graphs, like diameter or the clustering coefficient, this model has been proven to be effective in
meta-learning (Prokhorenkova, 2019).
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There are a lot of measure benchmarking studies considering node classification and clustering
for both generated graphs and real-world datasets (Fouss et al., 2012; Sommer et al., 2016; 2017;
Avrachenkov et al., 2017; Ivashkin & Chebotarev, 2016; Guex et al., 2018; 2019; Aynulin, 2019a;b;
Courtain et al., 2020; Leleux et al., 2020), etc. Despite a large number of experimental results, theo-
retical results are still a matter of the future. One of the most interesting theoretical results on graph
measures is the work by Luxburg et al. (2010), where some unattractive features of the Commute
Time distance on large graphs were explained theoretically, and a reasonable amendment was pro-
posed to fix the problem. Beyond the complexity of such proofs, there is still very little empirical
understanding of what effects need to be proven. Our empirical work has two main differences from
the previous ones. First, we consider a large number of graph measures, which for the first time
gives a fairly complete picture. Second, unlike these studies concluding with a global leaderboard,
we are looking for the leading measures for each set of the LFR parameters.

We aim to explore the performance of of the 25 most popular measures in the graph clustering prob-
lem on a set of generated graphs with various parameters. We assess the quality of clustering with
every considered measure and determine the best measure for every region of the graph parameter
space.

Our contributions are as follows:

• We generate a dataset of ∼7500 graphs covering all parameter space of LFR generator;

• We consider a broad set of measures and rank measures by clustering performance on this
dataset;

• We find the regions of certain measure leadership in the graph parameter space;

• We determine the graph features that are responsible for measure leadership;

• We check the applicability of the results on real-world graphs.

Our framework for clustering with graph measures as well as a collected dataset are available
on link_is_not_available_during_blind_review.

2 DEFINITIONS

2.1 KERNEL k-MEANS

The original k-means algorithm (Lloyd, 1982; MacQueen et al., 1967) clusters objects in Euclidean
space. It requires coordinates of the objects to determine the distances between them and centroids.
The algorithm can be generalized to use the degree of closeness between the objects without defining
a particular space. This technique is called the kernel trick, usually it is used to bring non-linearity
to linear algorithms. The algorithm that uses the kernel trick is called kernel k-means (see, e.g.,
Fouss et al., 2016). For graph node clustering scenario, we can use graph measures as kernels for
the kernel k-means.

Initially, the number of clusters is known and we need to set initial state of centroids. The results of
the clustering with k-means are very sensitive to it. Usually, the algorithm runs several times with
different initial states (trials) and chooses the best trial. There are different approaches to the initial-
ization; we consider three of them: random data points, k-means++ (Arthur & Vassilvitskii, 2006),
and random partition. We combine all these strategies to reduce the impact of the initialization
strategy on the result.

2.2 CLOSENESS MEASURES

For a given graph G, V (G) is the set of its vertices and A is its adjacency matrix. A measure on G
is a function κ : V (G) × V (G) → R, which gets two nodes and returns closeness (bigger means
closer) or distance (bigger means farther).

A kernel on a graph is a graph nodes’ closeness measure that has an inner product representation.
Any symmetric positive semidefinite matrix is an inner product matrix (also called Gram matrix). A
kernel matrix K is a square matrix that contains similarities for all pairs of nodes in a graph.
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To use kernel k-means, we need kernels. Despite that not all closeness measures we consider are
Gram matrices, we treat them as kernels. The applicability of this approach was confirmed in Fouss
et al. (2016). For the list of measures bellow, we use the word “kernel” only for the measures that
satisfy the strict definition of kernel.

Classical measures are Shortest Path distance (Buckley & Harary, 1990) (SP) and Commute Time
distance (Göbel & Jagers, 1974) (CT). SP is the minimum number of edges in a path between a
given pair of nodes. CT is the expected lengths of random walks between two nodes. SP and CT
are defined as distances, so we need to transform them into similarities to use as kernels. We apply
the following distance to closeness transformation (Chebotarev & Shamis, 1998a; Borg & Groenen,
2005):

K = −HDH; H = I − E/n, (1)
where D is a distance matrix, E is the matrix of ones, I is the identity matrix, and n is the number
of nodes.

In this paper, we examine 25 graph measures (or, more exactly, 25 parametric families of measures).
We present these measures grouped by type similarly to (Avrachenkov et al., 2017):

• Adjacency Matrix A based kernels and measures.
– Katz kernel: KKatz

α = (I − αA)−1, 0 < α < ρ−1, where ρ is the spectral radius of
A. (Katz, 1953) (also known as Walk proximity (Chebotarev & Shamis, 1998b) or
von Neumann diffusion kernel (Kandola et al., 2003; Shawe-Taylor & Cristianini et
al., 2004)).

– Communicability kernel KComm
t = expm(tA), t > 0, where expm means matrix

exponential (Fouss et al., 2006; Estrada & Hatano, 2007; 2008).

– Double Factorial closeness: KDF
t =

∑inf
k=0

tk

k!!A
k, t > 0 (Estrada & Silver, 2017).

• Laplacian Matrix L = D − A based kernels and measures, where D = Diag(A · 1) is the
degree matrix of G, Diag(x) is the diagonal matrix with vector x on the main diagonal.

– Forest kernel: KFor
t = (I + tL)−1, t > 0 (also known as Regularized Laplacian

kernel) (Chebotarev & Shamis, 1995).
– Heat kernel: KHeat

t = expm(−tL), t > 0 (Chung & Yau, 1998).
– Normalized Heat kernel: KNHeat

t = expm(−tL), L = D− 1
2LD− 1

2 , t > 0 (Chung,
1997).

– Absorption kernel: KAbs
t = (tA+ L)−1, t > 0 (Jacobsen & Tien, 2018).

• Markov Matrix P = D−1A based kernels and measures.
– Personalized PageRank closeness: KPPR

α = (I − αP )−1, 0 < α < 1 (Page et al.,
1999).

– Modified Personalized PageRank: KMPPR
α = (I − αP )−1D−1 = (D − αA)−1,

0 < α < 1 (Kirkland & Neumann, 2012).
– PageRank heat closeness: KHPR

t = expm(−t(I − P )), t > 0 (Chung, 2007).
– Randomized Shortest Path distance. Using P and the matrix of the SP distances C

first get Z (Yen et al., 2008):

W = P ◦ exp(−βC); Z = (I −W )−1. (2)

Then S = (Z(C ◦W )Z)÷Z; C̄ = S−e diag(S)T , and finally,DRSP = (C̄+C̄T )/2.
Here ◦ and ÷ are element-wise multiplication and division. Kernel version KRSP(t)
can be obtained with equation 1.

– Free Energy distance. Using Z from equation 2: Zh = Z Diag(Z)−1; Φ =
−1/β logZh; DFE = (Φ + ΦT )/2 (Kivimäki et al., 2014). Kernel version KFE(t)
can be obtained with equation 1.

• Sigmoid Commute Time kernels.
– Sigmoid Commute Time kernel:

KSCT
t = σ(−tKCT/std(KCT)), t > 0, (3)

where σ is an element-wise sigmoid function σ(x) = 1/(1 + e−x) (Yen et al., 2007).
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Table 1: Short names of considered kernels and other measures.

Short name
Plain Logarithmic

Family measure measure Full name
Adjacency matrix
based kernels

Katz logKatz Katz kernel
Comm logComm Communicability kernel
DF logDF Double Factorial closeness

Laplacian based
kernels

For logFor Forest kernel
Heat logHeat Heat kernel
NHeat logNHeat Normalized Heat kernel
Abs logAbs Absorption kernel

Markov matrix
based kernels and
measures

PPR logPPR Personalized PageRank closeness
MPPR logMPPR Modified Personalized PageRank
HPR logHPR PageRank heat closeness
RSP - Randomized Shortest Path kernel
FE - Free Energy kernel

Sigmoid
Commute Time

SCT - Sigmoid Commute Time kernel
SCCT - Sigmoid Corrected Commute Time kernel
SP-CT - linear combination of SP and CT

– Sigmoid Corrected Commute Time kernel. First of all, we need the Corrected Com-
mute Time kernel (Luxburg et al., 2010):

KCCT = HD− 1
2M(I −M)−1MD− 1

2H; M = D− 1
2

(
A−

~d~d
T

vol(G)

)
D− 1

2

where H is the centering matrix H = I − E/n, ~d is the vector of diagonal elements
of D and vol(G) is the sum of all elements of A. Then, apply equation 3 replacing
KCT with KCCT to obtain KSCCT.

Occasionally, element-wise logarithm is applied to the resulting kernel matrix (Chebotarev, 2013;
Ivashkin & Chebotarev, 2016). We apply it to almost all investigated measures and consider the re-
sulting measures separately from their plain versions (see Table 1). For some measures, like Forest
kernel, this is well-known practice (Chebotarev, 2013), while for others, like Double Factorial close-
ness, this transformation, to the best of our knowledge, is applied for the first time. The considered
measures and their short names are summarized in Table 1.

3 DATASET

We collected a paired dataset of graphs and the corresponding results of clustering with each measure
mentioned in Table 1. In this section, we describe the graph generator, the sampling strategy, the
calculated graph features, and the pipeline for the measure score calculation.

We use Lancichinetti–Fortunato–Radicchi (LFR) graph generator. It generates non-weighted graphs
with ground truth non-overlapping communities. The model has mandatory parameters: the number
of nodes n (n > 0), the power law exponent for the degree distribution τ1 (τ1 > 1), the power
law exponent for the community size distribution τ2 (τ2 > 1), the fraction of intra-community
edges incident to each node µ (0 ≤ µ ≤ 1), and either minimum degree (min degree) or average
degree (avg degree). There are also extra parameters: maximum degree (max degree), minimum
community size (min community), maximum community size (max community). Not the whole
LFR parameter space corresponds to common real-world graphs; most of such graphs are described
with τ1 ∈ [1, 4] and µ < 0.5 (e.g., Fotouhi et al., 2019). However, there is also an interesting
case of bipartite/multipartite-like graphs with µ > 0.5. Moreover, many of the datasets studied in
Section 5 have τ1 > 4. Our choice is to consider the entire parameter space to cover all theoretical
and practical cases.

For the generation, we consider 10 < n < 1500. It is impossible to generate a dataset with a uniform
distribution of all LFR parameters, because τ1 and τ2 parameters are located on rays. We transform
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Figure 1: Distribution of graph features in the dataset

τ1 and τ2 to τ̃i = 1 − (1/
√
τi), i = 1, 2 to bring their scope to the [0, 1] interval. In this case,

“realistic” settings with τ1 ∈ [1, 4] take up 50% of the variable range. Also, as avg degree feature is
limited by the n of a particular graph, we decided to replace it with density (avg degree/(n−1)). It is
not dependent on n and belongs to [0, 1]. Using all these considerations, we collected our dataset by
uniformly sampling parameters for LFR generator from the set [n, τ̃1, τ̃2, µ, density] and generating
graphs with these parameters. Additionally, we filter out all disconnected graphs.

In total, we generated 7396 graphs. It is worth noting that the generator fails for some sets of
parameters, so the resulting dataset is not uniform (see Fig. 1). In our study, non-uniformity is not
a very important issue, because we are interested in local effects, not global leadership. Moreover,
true uniformity for LFR parameter space is impossible, due to the unlimited scope of parameters.

For our research, we choose a minimum set of the features that describe particular properties of
graphs and are not interchangeable.

LFR parameters
n, tau1, tau2, mu, etc.

LFR

graph & ground
truth partition

measure parameter
t ∈ [0, 1]

measure
(Katz, Forest etc.)

initialization strategy
(k-means++, etc.)

k-means
(several trials)

trial choosing criteria
(inertia, modularity)

ARI score

A

kclusters

ytrue

K

ypred

Figure 2: Measuring ARI clustering score for a
particular graph, measure, and measure parameter

The LFR parameters can be divided in three
groups by the graph properties they reflect:

• The size of the graph and the com-
munities: n, τ1, min community, max
community;

• The density and uniformity of the
node degrees distribution: τ2, min de-
gree, avg degree, max degree. As
avg degree depends on n, it is dis-
tributed exponentially, so we use
log(avg degree) instead;

• The cluster separability: µ. As µ
parameter considers only the ratio
between the number of inter-cluster
edges and the number of nodes but ig-
nores overall density, we use modu-
larity (Newman & Girvan, 2004) as a
more appropriate measure for cluster
separability.

Thus, the defined set of features [n, τ1, τ2, avg degree, modularity] is enough to consider all graph
properties mentioned above. Although modularity is a widely used measure, it suffers from reso-
lution limit problems (Fortunato & Barthelemy, 2007). We acknowledge that this may cause some
limitations in our approach, which should be the topic of further research.
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Table 2: The overall leaderboard. The win percentage is calculated among all 7396 graphs in the
dataset. The ARI column shows the mean ARI across the dataset.

# Measure Rank Wins, % ARI
1 SCCT 4.7 56.0 0.58
2 NHeat 6.9 25.2 0.40
3 RSP 7.7 22.4 0.42
4 SCT 8.4 19.5 0.40
5 Comm 8.4 15.8 0.36
6 logNHeat 8.8 18.0 0.37
7 SP-CT 9.0 20.4 0.41
8 logHeatPR 9.2 18.0 0.37
9 FE 9.5 19.3 0.39

10 Katz 9.8 7.7 0.32
11 logKatz 9.9 18.1 0.35
12 logPPR 10.0 17.5 0.35
13 logModifPPR 10.5 17.3 0.35

# Measure Rank Wins, % ARI
14 DF 11.0 8.1 0.28
15 logAbs 12.1 15.9 0.33
16 logComm 12.6 15.5 0.23
17 logFor 13.0 12.7 0.22
18 HeatPR 13.4 12.5 0.22
19 logHeat 13.6 11.9 0.21
20 Heat 14.7 11.2 0.19
21 logDF 14.8 11.1 0.18
22 PPR 16.7 4.0 0.13
23 Abs 18.6 3.7 0.08
24 For 19.3 2.8 0.07
25 ModifPPR 20.5 1.7 0.05

For every generated graph, we calculate the top ARI score for every measure (Hubert & Arabie,
1985). We choose ARI as a clustering score which is both popular and unbiased (Gösgens et al.,
2019). As soon as every measure has a parameter, we perform clustering for a range of parameter
values (we transform the parameter to become in the [0, 1] interval and then choose 16 values
linearly spaced from 0 to 1). For each value, we run 6 + 6 + 6 trials of k-means (6 trials for each of
three initialization methods).

Fig. 2 shows the pipeline we use to calculate ARI score for a given LFR parameter set, a measure,
and a measure parameter. Measure parameters are not the subject of our experiments, so for every
measure we just take the result of the measure with the value of the parameter that gives the best
ARI score.

Because of the need to iterate over graphs, measures, parameter values, and initializations, the task
is computationally difficult. The total computation time was 20 days on 18 CPU cores and 6 GPUs.

4 RESULTS

4.1 GLOBAL LEADERSHIP IN LFR SPACE

We rank the measures by their ARI score on every graph of the dataset. The rank is defined as
the position of the measure in this list, averaged over the dataset (see Table 2). It is important to
note that the global leadership does not give a comprehensive advice on which measure is better to
use, because for a particular graph, the global leader can perform worse than the others. Here we
consider the entire LFR space, not just its zone corresponding to common real-world graphs, so the
ranking may differ from those obtained for restricted settings.

As SCCT is the winner for both ranking and percentage of wins, we can say for sure that it is the
global winner for the LFR space graphs. Other measures still can be leaders in some zones of the
feature space.

4.2 FEATURE IMPORTANCE STUDY

First of all, we find out which graph features are important for the choice of the best measure and
which are not. To do that, we use Linear Discriminant Analysis (Mika et al., 1999) (LDA). This
method finds a new basis in the feature space to classify a dataset in the best way. It also shows how
many components of basis are required to fit the majority of data.

Fig. 3a shows that the first two components take about 90% of the explained variance. Fig. 3b shows
that these components include only τ1, avg degree, and modularity. The fact that n is not used means
that the size of the graph as well as the density are not of primary importance for choosing the best
measure. So is not τ2 measuring the diversity of cluster sizes.
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Figure 3: The results of LDA components.

Fig. 4 shows the point cloud projected on the space of the two main components of LDA. We see a
confirmation that the measures are indeed zoned, but the areas are quite noisy. To detect the zones
of measure leadership, we need to know the leadership on average in every area of space, rather than
the wins in particular points. To define the local measure leadership in the whole space, we need
to introduce a filtering algorithm that for every point of the space returns the measure leadership
depending on the closest data points. As the choice of measure is actually dependent only on three
features, we can limit our feature space to [τ1, avg degree, modularity].
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Figure 4: The dataset projected on the two main components of LDA; the point color represents the
winning measure for each graph

4.3 GAUSSIAN FILTER IN FEATURE SPACE

Using a filter in the feature space, we can suppress the noise and find actual zones of leadership for
the measures. We use the Gaussian filter with a scale parameter σ. For every given point of the
space, it takes the data points that are closer than 3σ and averages ARIs of the chosen points with
a weight e−dist2/2σ2

. This allows to give larger weights to closer points. If there are less than three
data points inside the sphere with a 3σ radius, the filter returns nothing, allowing to ignore the points
with insufficient data.

Before applying the filter, we prepare the dataset. First, we only take the points with only one
winning measure, because multiple winners can confuse the filter. Then we normalize the standard
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deviation of every feature distribution to one. Finally, we cut off the long tail of distant data points.
The resulting number of graphs is 5201.

To choose σ, we apply the filter with different σ and look at the number of connected components
in the feature space. The needed σ should be large enough to suppress the noise, however, it should
not suppress small zones. Guided by this heuristic, we choose σ = 0.5.

Table 3: The leaderboard of measure wins after filtering with σ = 0.5

Measure SC
C

T

lo
gC

om
m

N
H

ea
t

C
om

m

lo
gD

F

R
SP

FE A
bs

SC
T

lo
gN

H
ea

t

lo
gF

or

Wins 4283 441 268 78 64 56 3 3 2 1 1

After filtering with σ = 0.5, the leaderboard of measure wins is changed (see Table 3). Only six
measures keep their positions: SCCT, NHeat, logComm, Comm, logDF, and RSP. This means that
these measures do have zones of leadership, otherwise they would be filtered out. We can plot the
entire feature space colored by the leadership zones of the measures (Fig. 5). As the resulting space
is 3D, we show slices of it by each of the three coordinates.
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Figure 5: The feature space [τ1, avg degree, modularity] divided into the leadership zones of six
measures. The yellow points represent the positions of real-world datasets under study in the space.

5 REAL-WORLD DATASETS

Even though LFR lacks some characteristics of real-world graphs, there is evidence that the optimal
parameter of the Louvain clustering for a real graph is close to the parameter for LFR graphs gen-
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erated from the features of a real one (Prokhorenkova, 2019). So, there is a chance that the learned
space might be helpful for choosing measures in the wild.

For evaluation, we use 29 graphs of standard datasets: Dolphins (Lusseau et al., 2003), Foot-
ball (Newman & Girvan, 2004), Karate club (Zachary, 1977), Newsgroups (9 subsets, weights are
binarized with threshold 0.1) (Yen et al., 2007), Political blogs (Adamic & Glance, 2005), Political
books (Newman, 2006), SocioPatterns Primary school day (2 graphs) (Stehlé et al., 2011), Cora (11
subsets) (McCallum et al., 2000), Eu-core (Leskovec et al., 2007), EuroSIS (WebAtlas, 2009). The
parameters of these graphs are marked in Fig. 5. For each graph, we found the best ARI for every
measure (iterating over the measure parameter value). Now we can check the quality of measure
choice, based on the found LFR data. The result of LFR recommendation is the measure that is
chosen for the set of parameters corresponding to the dataset in hand.

Table 4: Mean ARI of the LFR recommended strategies for datasets. Top6 stands for the set of
measures that have their zones in the LFR parameter space.

Strategy Mean ARI
Always take SCCT 0.61
Based on LFR space, top6 measures 0.62
Based on LFR space, all measures 0.62
Upper bound 0.64

The best measures on the considered datasets are SCCT (by the mean ARI) and SCT (by the rank).
This is pretty similar to the results obtained for LFR. Moreover, Spearman correlation between the
ranks of measures for the datasets and for the corresponding LFR recommendations is 0.90.

Let us use “always take SCCT” as our baseline strategy. In Table 4 we compare it with strategies
based on the LFR space. We obtain LFR recommendation using knn as a well-proven method for
meta-learning. Since each graph is unique, the result of 1nn can be very noisy, thus we use 5nn.

Table 4 shows that the recommendation approach slightly beats the baseline. Reducing the number
of measures from 25 to 6 do not drop the quality. However, this quality increase is not enough
to draw confident conclusions about the advantages of the method. Using this fact and the fact
that the ranks on datasets and recommendations are highly correlated, we conclude that the meta-
learning procedure is adequate to give a robust recommendation, but not precise enough to beat the
baseline confidently. This may be due to the fact that that the nodes of real graphs were not labeled
systematically since they were created in the wild. A larger dataset could help separate the signal
from the noise and pinpoint where the limits of the method are. At least, the good news is that the
conclusions made on the LFR basis do not contradict the results obtained on the datasets.

6 CONCLUSIONS

In this work, we have shown that the global leadership of measures does not provide comprehensive
knowledge about graph measures. We demonstrated that among 25 measures, SCCT is the best
measure for the LFR graphs both by winning rate and ranking. However, there are also smaller
confident zones of leadership for NHeat, Comm, logComm, logDF, and RSP.

Our results do not contradict those of other experimental works and rather expand them by pro-
viding new findings. LogComm was first introduced in Ivashkin & Chebotarev (2016) and won
in the competitions on graphs generated with a fixed set of SBM parameters. This study confirms
its leadership, but only for a certain type of graphs. Another interesting finding is logDF, which
unexpectedly shows good performance for the graphs with low modularity and low average degree.

This study is based on the LFR benchmark data. An attempt to apply the results to real data gives
the quality slightly above the baseline. However, there is a strong correlation between the ranking
of measures for datasets and the ranking of LFR recommendation, which indicates that the leading
measures are the same, while the recommendations are not precise enough.

It can be noted that our study is insensitive to the non-uniformity of the generated dataset. While
manipulations with this dataset may affect the global leaderboard, they cannot change the local
leadership studied in this work.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided
they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43, 2005.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford University, 2006.

Konstantin Avrachenkov, Pavel Chebotarev, and Dmytro Rubanov. Kernels on graphs as proximity
measures. In International Workshop on Algorithms and Models for the Web-Graph, pp. 27–41.
Springer, 2017.

Rinat Aynulin. Efficiency of transformations of proximity measures for graph clustering. In Inter-
national Workshop on Algorithms and Models for the Web-Graph, pp. 16–29. Springer, 2019a.

Rinat Aynulin. Impact of network topology on efficiency of proximity measures for community
detection. In International Conference on Complex Networks and Their Applications, pp. 188–
197. Springer, 2019b.

Michael J. Barber and John W. Clark. Detecting network communities by propagating labels under
constraints. Physical Review E, 80(2):026129, 2009.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling: Theory and Applications.
Springer Science & Business Media, 2005.

Fred Buckley and Frank Harary. Distance in Graphs. Addison-Wesley, 1990.

Pavel Chebotarev. Studying new classes of graph metrics. In International Conference on Geometric
Science of Information, pp. 207–214. Springer, 2013.

Pavel Chebotarev and Elena Shamis. On the proximity measure for graph vertices provided by the
inverse Laplacian characteristic matrix. In Abstracts of the Conference “Linear Algebra and its
Applications”, pp. 6–7, Manchester, UK, 1995. University of Manchester.

Pavel Chebotarev and Elena Shamis. On a duality between metrics and Σ-proximities. Automation
and Remote Control, 59(4):608–612, 1998a.

Pavel Chebotarev and Elena Shamis. On proximity measures for graph vertices. Automation and
Remote Control, 59(10):1443–1459, 1998b.

Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of
Sciences, 104(50):19735–19740, 2007.

Fan Chung and Shing-Tung Yau. Coverings, heat kernels and spanning trees. Journal of Combina-
torics, 6:163–184, 1998.

Fan R. K. Chung. Spectral Graph Theory, volume 92. American Mathematical Soc., 1997.
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Ilkka Kivimäki, Masashi Shimbo, and Marco Saerens. Developments in the theory of randomized
shortest paths with a comparison of graph node distances. Physica A: Statistical Mechanics and
its Applications, 393:600–616, 2014.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E, 78(4):046110, 2008.

Pierre Leleux, Sylvain Courtain, Guillaume Guex, and Marco Saerens. Sparse randomized shortest
paths routing with tsallis divergence regularization. arXiv preprint arXiv:2007.00419, 2020.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1, Art. 2):1–41,
2007.

11



Under review as a conference paper at ICLR 2021

Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisabeth Slooten, and Steve M.
Dawson. The bottlenose dolphin community of doubtful sound features a large proportion of
long-lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

Ulrike V. Luxburg, Agnes Radl, and Matthias Hein. Getting lost in space: Large sample analysis of
the resistance distance. In Advances in Neural Information Processing Systems, pp. 2622–2630,
2010.

James MacQueen et al. Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol-
ume 14, pp. 281–297. Oakland, CA, USA, 1967.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and Klaus-Robert Mullers.
Fisher discriminant analysis with kernels. In Neural Networks for Signal Processing IX: Proceed-
ings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48. IEEE, 1999.

Mark E. J. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

Mark E. J. Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113, 2004.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

Muhammad Qasim Pasta and Faraz Zaidi. Topology of complex networks and performance limita-
tions of community detection algorithms. IEEE Access, 5:10901–10914, 2017.

Liudmila Prokhorenkova. Using synthetic networks for parameter tuning in community detection.
In International Workshop on Algorithms and Models for the Web-Graph, pp. 1–15. Springer,
2019.
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