Self-consistent deep approximation of retinal
traits for robust and highly efficient vascular
phenotyping of retinal colour fundus images
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Abstract. Retinal colour fundus images are a fast, low-cost, non-invasive
way of imaging the retinal vasculature which could provide information
about non-ocular, systemic health. Traditional approaches for retinal
vascular phenotyping use handcrafted, multi-step pipelines that are com-
putationally expensive and not robust to common quality issues. Recently,
Deep Approximation of Retinal Traits (DART) was proposed which trains
a neural network to mimic an existing pipeline in a more efficient and ro-
bust way. DART is orders of magnitude faster, more robust and repeatable.
However, the original DART was not explicitly trained for repeatabil-
ity, only provides a single retinal trait, Fractal Dimension (FD), and
uses a limited set of augmentations. We propose DARTv2 that increases
repeatability with a self-consistency loss, robustness with additional aug-
mentations such as imaging overlays, and utility by adding Vessel Density
(VD) as a second retinal trait in addition to FD. DARTv2 shows very high
agreement (Pearson 0.9392 for FD and 0.9612 for VD, both p << 0.05)
with AutoMorph, the pipeline it is based on. DARTv2 is far more robust
than AutoMorph and also more robust than the original DART. Finally,
DARTvV2 is 200 times faster than AutoMorph and 4 times faster than
the original DART, while taking up less storage space. DARTv2 will be
made available to researchers upon publication.
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1 Introduction

Retinal colour fundus images are pictures of the retina, a layer of tissue at the
back of our eyes that allows us to see. These images can be taken non-invasively
in a few seconds with low-cost devices. They are crucial in ophthalmology for
retinal disease screening, but also show the retinal vasculature in detail. The
retinal blood vessels, in turn, could provide information about general vascular
health and serve as a proxy for vascular changes elsewhere in the body, like the
heart or the brain [11], a field of study also known as “oculomics” [16]. A common
research paradigm is to extract retinal traits that summarise some aspect of
the vasculature in a single number, e.g. Fractal Dimension (FD) which captures
branching complexity of the blood vessels. Less complex retinal vasculature could
indicate poorer vascular health, and indeed lower FD has been associated with
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cardiovascular [15, 6, 18] and neurovascular [13, 10] disease. Vessel Density (VD),
which captures how dense the vasculature is, likewise has shown associations
with cardiovascular disease [18].

Retinal traits are traditionally extracted with handcrafted, multi-step pipelines
that require high image quality like VAMPIRE [14] or AutoMorph [19]. In practice,
a large share of images is excluded due to insufficient quality. In UK Biobank,
a dataset collected specifically for research, 25-45% of the images are typically
excluded [15,12,18]. These exclusions come at great cost: First, substantially
reduced sample sizes and lower statistical power. Second, considerable selection
bias as older, non-White, male, and less healthy subjects are more likely to be
excluded [3], which exacerbates existing inequalities in healthcare research. Third,
using these pipelines in clinical practice is virtually impossible if they fail in a
quarter to half of the cases, and doubly so if they systematically fail more often
for some subgroups.

Recently, Deep Approximation of Retinal Traits (DART) [4] was proposed
to provide a more robust way of computing retinal traits. Follow-up work found
DART to be substantially more repeatable than AutoMorph [1], surprisingly
at any level of image quality exclusions, including in exclusively high-quality
images. Thus, the DART paradigm does not only increase robustness but also
repeatability in the absence of quality. A secondary, yet also important benefit is
that DART is substantially faster than traditional pipelines, allowing to process
images on low-end laptops.

However, the original version of DART had many drawbacks which we address
in this work. First, the improved repeatability is only a lucky by-product of
the increased robustness. Here, we propose a self-consistency loss to explicitly
encourage repeatability. Second, DART used a limited set of data augmentations,
and we also extend DART to VD in addition to FD.

2 Methods

2.1 Deep approximation of retinal traits

Briefly, DART approximates an existing pipeline with a neural network, which is
trained to give the same output on high-quality images. However, during training,
the model receives either original images or augmented versions that have their
image quality synthetically degraded. Either way, DART needs to output the
same number as the traditional pipeline did for the original, un-degraded image.
This forces the model to ignore variations in image quality and instead extract
all the available information about the retinal trait of interest. For example,
shadows or pathology could obscure parts of the vessels. AutoMorph segments
and skeletonises the vasculature, and then computes FD with box counting or
VD with averaging, and would give a very low number if part of the vasculature
is not segmented. A human clinician, on the other hand, would not be confused
by the shadow and instead assess the part of the vasculature that is visible,
which is what DART is designed to mimic. The original DART used VAMPIRE
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Fig. 1. Randomly sampled augmentations for each of the four levels of severity, using
the same original image for illustration purposes.

[14] to generate ground-truths. In this work, we use AutoMorph [19] which is
open-source and fully-automatic.

2.2 Augmentations

We define four levels of augmentation strength as shown in Fig. 1. These include
horizontal flips, changing the brightness (lowest level +5%, highest +20%),
contrast (£5% to +60%), adding Gaussian blur and simulated imaging noise.
We also include simple artefacts that remove multiple small parts of the image to
simulate issues like dust or eyelashes, or parts of the images to simulate eyelids
and partial shadows. These simulate common imaging issues. However, issues
can also occur during the image export. Thus, we additionally simulate text
overlays for laterality (left or right), dates and names, and grids indicating where
an optical coherence tomography scan is taken. Finally, we simulate images
being screenshots rather than proper exports by downsizing to a lower resolution
and then back to our target resolution. While theoretically avoidable, in our
experience, these are quite common in practice, and thus being robust to them is
highly desirable.

2.3 Self-consistency loss

We explicitly encourage repeatability through a self-consistency loss which pe-
nalises poor repeatability across different augmentations. Concretely, during
training in each mini-batch, we sample four augmented versions of each image
- one of each level of severity - and obtain our model’s predictions for each of
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them. We then use normal mean squared error to penalise deviation from the
value to original pipeline provided for the un-augmented image, but additionally
also compute the standard deviation across the four versions of each image and
add this to our loss. Thus, the model is trained to not only match the original
pipeline but to output values that are self-consistent across different levels of
image quality which should lead to increased robustness and repeatability in
practice.

2.4 Increasing robustness through data filtering

For the original version of DART, despite 40% of UK Biobank having already been
rejected by VAMPIRE, some poor quality images remained that provided noisy
“ground-truths”. For DARTV2, we thus aim to avoid these so the model does not
replicate undesirable edge cases of the original pipeline. Thus, we filter using
QuickQual’s “Mega Minified Estimator” [2] which provides a one-dimensional,
continuous quality score. QuickQual uses the same EyeQ image quality dataset
[5] that AutoMorph’s quality algorithm is trained on, but achieves state-of-the-
art performance. Recent work found that the repeatability decreases beyond a
QuickQual score of 0.8 [1], which indicates a 80% chance of being a bad image.
This is about 2.5% of the training data, which we filter out. Note, we do not
remove these images from the validation or test sets. Exploration of the training
set revealed that there are still some extremely low values, presumably due to
failures in the vessel segmentation. We thus clip the lower values of the targets in
the training by setting the lowest one-thousandth of values to the 0.1-percentile.

2.5 DARTv2

We use a ConvNeXt [7], specifically the “femto” variant with an overlapping stem
from the timm library [17], that was pre-trained on ImageNet. We add a small,
perceptron as head with a single hidden layer with 512 hidden units and GELU
activations. We normalize images using 0.5 as the mean and standard deviation
parameters and resize to 256 x 256. The model is trained to minimise the sum
of the mean squared error with the ground truth targets and consistency loss
for 10 epochs with the AdamW [9] optimiser using mini-batches of 256 samples.
Prior to the computation of the loss, predictions and targets are normalized to
zero mean and unit variance using the training set statistics. We use a cosine
learning rate schedule [8] with a linear warmup for the first two epochs and a
single cosine cycle, a peak learning rate of 1073, a weight decay of 10~2, clipping
the maximum gradient norm to 0.1. We do not apply weight decay to the biases
and initialise the final output layer to use the training set mean targets as output
biases and zero weights.

2.6 Data

We use the EyePACS Diabetic Retinopathy dataset on Kaggle, which is openly
available and consists of 88,702 colour fundus images acquired with a variety of
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scanners, and use AutoMorph’s FD and VD as ground-truths for training our
model. We divided the dataset into train, validation, and test sets, allocating
76.5%, 8.5%, and 15% of the data, respectively. To ensure that each subject
appeared only in one of the three sets, we split the data at the subject level.
AutoMorph rejected 15.06% of the images due to insufficient image quality, and
these images were excluded from further analysis. Thus, our training, validation
and test sets contained 56,198, 6,245, and 10,952 images, respectively.

2.7 Evaluation

We quantify the agreement between AutoMorph and DARTv2 using the Pearson
and Spearman correlation coefficients. Pearson is the most commonly used
correlation and a linear measure. Spearman is a robust measure of correlation
and is equivalent to computing the Pearson correlation of the ranks. Furthermore,
we also fit a linear regression and report the best regression fit.

To compare the robustness of our model with the original DART and Au-
toMorph, we design a synthetic robustness test where images from the test are
augmented and we then compare the agreement between each methods output
for the original and the augmented image. A robust method should yield very
similar values even in the face of augmentations, which would imply both greater
robustness and repeatability in practice. While DARTVv2 is trained with relatively
strong augmentations, including text and OCT region overlays, it would be
unfair to consider these as AutoMorph is not expected to be robust to those
augmentations. Instead, we consider increasing and decreasing brightness 20%
and contrast by 60%. These values were chosen as they visually change the images
in a realistic way that is slightly but not overly challenging. In other words, in
our opinion, a method for computing retinal traits should be fairly robust in the
fact of these changes.

3 Results

3.1 Agreement on held-out test set

Fig. 2 shows the agreement between DARTv2 and AutoMorph on the original
images from the held out test set. Generally, agreement is very high, with a
Pearson correlation of 0.9392 for FD and 0.9612 for VD (all correlations are
p << 0.05, as sample sizes are large). Spearman correlations are slightly lower but
similar. The best regression fit indicates that the measures are very similar and
can be interpreted in the same way. There are some outliers towards the bottom
of the plot, where AutoMorph provides an extremely low value, whereas DARTv2
provides a low but not extremely low value. Manual inspection of some of these
cases shows that AutoMorph struggles to segment the vasculature in these cases
due to poor image quality or the presence of severe retinal pathology. Yet, these
images had not been rejected by the AutoMorph quality scoring algorithm. We
think that in these cases, AutoMorph outputs erroneously low values and it would
be undesirable if DARTv2 replicated this behaviour.
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Fig. 2. Agreement between DARTv2 and AutoMorph on the held-out test set for A)
Fractal Dimension and B) Vessel Density. The dashed black line indicates the identity
line, the red line the best regression fit.
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Fig. 3. Illustration of the augmentations used in our robustness testing using.

3.2 Robustness

Table 1 shows the results of the robustness evaluation. For both FD and VD, and
for all considered augmentations, DARTv2 was substantially more repeatable
than AutoMorph, demonstrating the advantage of a DART-based approach over
traditional pipelines. DARTvV2 was also more repeatable than the original DART,
indicating that our approach improves the robustness of our model.
AutoMorph was unable to process up to 19% of the images depending on the
type of augmentation due to numerical issues. The reported Pearson correlations
for AutoMorph are excluding these values, which gives a more optimistic estimate
of performance for AutoMorph, as difficult cases are the ones where processing
fails. No cases, including those difficult cases, were excluded for the original

Table 1. Pearson correlation between the measurement on the original and augmented
images for 1,000 randomly selected test set images. Higher is better, best result in bold.
The original version of DART only outputs Fractal Dimension.

Fractal Dimension Vessel Density

+Brightness -Brightness +Contrast -Contrast +Brightness -Brightness +Contrast -Contrast

AutoMorph [19] 0.9731 0.6730 0.8348 0.4613 0.9794 0.7390 0.8714 0.5195
DART (original) [4] 0.9777 0.9335 0.9431  0.8611 - - - -
DARTV2 (ours) 0.9961 0.9407 0.9775  0.8577 0.9971 0.9373 0.9844 0.8673

Automorph fail rate  14.10% 1.50% 1.50% 19.00% 13.90% 0.10% 1.10% 13.60%
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Table 2. Inference speed and file sizes.

AutoMorph DART DARTv2

AutoMorph (our optimisation) (original) (ours)
Images per second 0.36 1.42 77.10 305.81
Required disk space  928MB 928MB 45 MB 20MB

DART or our DARTv2. Thus, it is remarkable that despite this, DART and
DARTv2 show substantially higher repeatability than AutoMorph. Indeed, the
advantage of DARTV2 is smallest when brightness is increased, but this is after
14.1% and 13.9% of the images failed to be processed by AutoMorph.

3.3 Inference speed

Inference speed was measured on a desktop workstation with a last-gen high-
end gaming GPU (Nvidia RTX 3090) and a four-year-old Intel i9 processor
(i9-10900KF). To provide a maximally fair comparison, we measure performance
by naively processing images sequentially rather than in batches, as implementing
batch processing for AutoMorph is non-trivial while it would be easy to do for
DART and DARTv2. Furthermore, we also optimise AutoMorph by removing
all processing for retinal traits not considered in this study and by further
parallelising non-GPU operations across multiple CPU cores where possible. This
allows us to boost the speed of AutoMorph by almost four times.

Table 2 shows the results. DARTvV2 is more than 800 times faster than
AutoMorph and still 200 times faster than our optimised version. DARTV2 is
also 4 times faster than the original DART, primarily due to using a smaller and
more efficient model. In terms of filesize, DARTv2 is almost 50 times smaller
than AutoMorph and less than half the size of the original DART. While even
close to a GB of storage is not unreasonable nowadays, the smaller file sizes also
mean faster downloads which will be especially beneficial for researchers without
high-speed internet connections.

3.4 Effectiveness of our robustness-enhancing strategies

To evaluate the effectiveness of our robustness-enhancing strategies, we trained
another DARTv2 model in the same way, except for removing the self-consistency
loss and our augmentations. Fig. 4 shows the agreement of non-robust DARTv2
with AutoMorph on the test set. As expected, agreement is substantially higher
when not encouraging robustness as the model is able to learn the behaviour of
the original pipeline in edge cases as well, leading to better agreement. However,
our goal is not to match the original pipeline perfectly but instead only learn
the mimic its consistent behaviour that captures a meaningful aspect of the
vasculature. When comparing the robustness of the proposed DARTv2 and the
non-robust version (Table 3), we indeed find that DARTV2 is more robust for each
of the eight comparisons, indicating the effectiveness of our robustness strategies.
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Fig. 4. Agreement between the non-robust version of DARTv2 and AutoMorph on the
held-out test set for A) Fractal Dimension and B) Vessel Density. The dashed black
line indicates the identity line, the red line the best regression fit.

Table 3. Pearson correlation between the measurement on the original and augmented
images for 1,000 randomly selected test set images for our proposed DARTv2 and the
non-robust version of DARTv2. Higher is better, best result in bold.

Fractal Dimension Vessel Density

+Brightness -Brightness +Contrast -Contrast +Brightness -Brightness +Contrast -Contrast

DARTV2 (ours) 0.9961 0.9407 0.9775 0.8577 0.9971 0.9373 0.9844 0.8673
DARTvV2 - no robustness  0.9750 0.9182 0.9587 0.8251 0.9801 0.9202 0.9660 0.8472

4 Conclusion

We presented DARTvV2, an improved model for deep approximation of retinal
traits with increased robustness and self-consistency. Our experiments show that
DARTV2 not only has very good agreement with AutoMorph on the original
images while being substantially more robust, but it is also more robust than
the original DART model. Furthermore, DARTv2 is more than 800 times faster
than AutoMorph and 4 times faster than the original DART. Our experiments
show that our self-consistency loss and augmentation strategies indeed improve
robustness. We hope that DARTv2’s robustness will allow researchers to exclude
fewer images, which would also partially alleviate the selection bias and unfairness
introduced by these exclusions. The increased efficiency of DARTv2 could help
democratise retinal image analysis.

Future work should expand on the self-consistency loss proposed here and
investigate additional strategies for encouraging DART-style models to learn
desirable properties. While we expanded on the augmentations used in the original
DART, additional augmentations such as simulating the magnification effect due
to variations in refractive error should be investigated. Finally, in the future
additional retinal traits like tortuosity could be added as well as image quality
scoring, so researchers can use a single model instead of using DARTv2 and
QuickQual separately.



Self-consistent deep approximation of retinal traits 9

References

10.

11.

12.

Engelmann, J., Moukaddem, D., Gago, L., Strang, N., Bernabeu, M.: Applicability
of oculomics for individual risk prediction: Repeatability and robustness of retinal
fractal dimension using dart and automorph. arXiv preprint (2024)

Engelmann, J., Storkey, A., Bernabeu, M.O.: QuickQual: Lightweight, Convenient
Retinal Image Quality Scoring with Off-the-Shelf Pretrained Models. In: Antony,
B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds.) Ophthalmic Medical
Image Analysis. pp. 32—41. Lecture Notes in Computer Science, Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-44013-74
Engelmann, J., Storkey, A., LLinares, M.B.: Exclusion of poor quality fundus images
biases health research linking retinal traits and systemic health. Investigative Oph-
thalmology & Visual Science 64(8), 2922-2922 (2023), iSBN: 1552-5783 Publisher:
The Association for Research in Vision and Ophthalmology

Engelmann, J., Villaplana-Velasco, A., Storkey, A., Bernabeu, M.O.: Robust and
efficient computation of retinal fractal dimension through deep approximation.
In: International Workshop on Ophthalmic Medical Image Analysis. pp. 84-93.
Springer (2022)

Fu, H., Wang, B., Shen, J., Cui, S., Xu, Y., Liu, J., Shao, L.: Evaluation of retinal
image quality assessment networks in different color-spaces. In: Medical Image
Computing and Computer Assisted Intervention-MICCAT 2019: 22nd International
Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part I 22. pp.
48-56. Springer (2019)

Ify Mordi, Emanuele Trucco: The eyes as a window to the heart:
looking beyond the horizon. British Journal of Ophthalmology
106(12), 1627 (Dec 2022). https://doi.org/10.1136/bjo-2022-322517,
http://bjo.bmj.com/content,/106/12/1627.abstract

Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11976-11986 (2022)

Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

Luben, R., Wagner, S., Struyven, R., Cortina-Borja, M., Petzold, A., Trucco, E.,
Mookiah, M.R.K., Rahi, J., Denniston, A.K., Keane, P.A.: Retinal fractal dimension
in prevalent dementia: The AlzEye Study. Investigative Ophthalmology & Visual
Science 63(7), 4440-F0119-4440-F0119 (2022), iSBN: 1552-5783 Publisher: The
Association for Research in Vision and Ophthalmology

MacGillivray, T.J., Trucco, E., Cameron, J.R., Dhillon, B., Houston, J.G., Van Beek,
E.J.R.: Retinal imaging as a source of biomarkers for diagnosis, characterization and
prognosis of chronic illness or long-term conditions. The British journal of radiology
87(1040), 20130832 (2014), iSBN: 0007-1285 Publisher: The British Institute of
Radiology.

MacGillivray, T.J., Cameron, J.R., Zhang, Q., El-Medany, A., Mulholland, C.,
Sheng, Z., Dhillon, B., Doubal, F.N., Foster, P.J., Trucco, E.: Suitability of UK
Biobank retinal images for automatic analysis of morphometric properties of the
vasculature. PLoS One 10(5), e0127914 (2015), iSBN: 1932-6203 Publisher: Public
Library of Science San Francisco, CA USA



10

13.

14.

15.

16.

17.

18.

19.

No Author Given

McGrory, S., Ballerini, L., Doubal, F.N., Staals, J., Allerhand, M., Valdes-Hernandez,
M.d.C., Wang, X., MacGillivray, T., Doney, A.S., Dhillon, B.: Retinal microvas-
culature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and
Mild Stroke Study. Scientific reports 9(1), 6320 (2019), iSBN: 2045-2322 Publisher:
Nature Publishing Group UK London

Trucco, E., Ballerini, L., Relan, D., Giachetti, A., MacGillivray, T., Zutis, K.,
Lupascu, C., Tegolo, D., Pellegrini, E., Robertson, G.: Novel VAMPIRE algorithms
for quantitative analysis of the retinal vasculature. In: 2013 ISSNIP Biosignals and
Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC).
pp. 1-4. IEEE (2013)

Villaplana-Velasco, A., Engelmann, J., Rawlik, K., Canela-Xandri, O., Tochel, C.,
Lona-Durazo, F., Krishnan Mookiah, M.R., Doney, A., Parra, E.J., Trucco, E.:
Decreased retinal vascular complexity is an early biomarker of MI supported by a
shared genetic control. medRxiv p. 2021.12. 16.21267446 (2021), publisher: Cold
Spring Harbor Laboratory Press

Wagner, S.K., Fu, D.J., Faes, L., Liu, X., Huemer, J., Khalid, H., Ferraz, D., Korot,
E., Kelly, C., Balaskas, K.: Insights into systemic disease through retinal imaging-
based oculomics. Translational vision science & technology 9(2), 6—6 (2020), iSBN:
2164-2591 Publisher: The Association for Research in Vision and Ophthalmology
Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-
image-models (2019). https://doi.org/10.5281/zenodo.4414861

Zekavat, S.M., Raghu, V.K., Trinder, M., Ye, Y., Koyama, S., Honigberg, M.C.; Yu,
Z., Pampana, A., Urbut, S., Haidermota, S.: Deep learning of the retina enables
phenome-and genome-wide analyses of the microvasculature. Circulation 145(2),
134-150 (2022), iSBN: 0009-7322 Publisher: Am Heart Assoc

Zhou, Y., Wagner, S.K., Chia, M.A., Zhao, A., Woodward-Court, P., Xu, M.,
Struyven, R., Alexander, D.C., Keane, P.A.: AutoMorph: Automated Retinal Vas-
cular Morphology Quantification Via a Deep Learning Pipeline. Translational Vision
Science & Technology 11(7), 12 (Jul 2022). https://doi.org/10.1167/tvst.11.7.12,
https://doi.org/10.1167 /tvst.11.7.12



