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ABSTRACT

We propose a novel neural network architecture to learn the task of clustering
end-to-end: salient features for any similarity criterion specified through weakly
labeled training data are extracted with an embedding network; during evaluation,
the network groups similar data of any modality together, by assigning a proba-
balistic cluster index, and further gives a probabilistic estimate of the number of
clusters. The method is evaluated on 2D point data, speaker data from the TIMIT
corpus, and images from the COIL-100 dataset, reaching promising results.

1 INTRODUCTION

Classic clustering algorithms like k-Means (MacQueen et al., 1967), EM (Dempster et al., 1977),
or DBSCAN (Ester et al., 1996) depend crucially on an implicit measure of the semantic similarity
between examples. However, for modalities like images (Liu et al., 2007), speakers (Stadelmann &
Freisleben, 2009), or text (Aggarwal & Zhai, 2012), the similarity is not well known or ambiguous
(even for 2D points, one has to know if clusters are defined by density or distance to a centroid).

Recently, clustering of high-dimensional data with complex similarity structure has been approached
with good success using neural nets to extract well-suited features for clustering called embeddings,
which are then subject to a subsequent offline clustering process (Mikolov et al., 2013; Schroff et al.,
2015; Lukic et al., 2017). However, training to create embeddings is done on a surrogate task (e.g.,
classification) instead of being optimizable and applicable end-to-end as done in our method.

Related work by Makhzani et al. (2015) goes beyond mere metric learning (Xing et al., 2003; Hoffer
& Ailon, 2015) and finally predicts the cluster index for specific groups of data seen during training.
Instead, our method does neither require that the training data contains any of the clusters expected
during evaluation, nor to know the real number of clusters k. Yang et al. (2016) present an end-
to-end neural clustering approach and evaluate it on COIL-100 (Nayar et al., 1996). They interpret
agglomerative hierarchical clustering as a recurrent process that is optimizable through the complete
network. However, our method generalizes to different modalities besides images; moreover, it is
not bound to a static predefined clustering scheme, but learns the complete “algorithm”.

Our contribution in this paper is a method able to learn salient features and to group examples, by
means of a novel neural net architecture. The network input is a set of examples, the output a proba-
bilistic clustering (including the predicted number of clusters k). It is trained in a supervised fashion
using weakly labeled data, and afterwards applicable to unlabeled data from the same distribution,
but different and unknown numbers of clusters. For example, we train on a specific set of voices, and
use the resulting model to cluster completely different sets of speakers. We evaluate our approach
on different datasets, showing promising performance and a high degree of generality for data types
from 2D points to audio snippets and images.

2 A MODEL FOR END-TO-END CLUSTERING OF ARBITRARY EXAMPLES

Our method learns to cluster end-to-end purely ab initio, without the need to explicitly specify a
notion of similarity, only providing the information whether two examples belong together. It uses
as input n ≥ 1 examples xi, where nmay be different during training and evaluation. The network’s
output is two-fold: a distribution P (k) over the cluster count k; and a distribution P (· | xi, k)
over the cluster index for each input example xi and for each k. The network architecture (see
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Figure 1: Our complete model, consisting of (a) the embedding network, (b) clustering network, (c)
cluster-assignment network and (d) cluster-count estimating network.

Fig. 1) allows the flexible use of different input types, e.g. images, audio or 2D points. An input
xi is first processed by an embedding network (a) that produces a lower-dimensional representation
zi = z(xi). The dimension of zi may vary depending on the used data type. For example, 2D
points do not require any embedding network. A fully connected layer (FC) at the beginning of
the clustering network (b) with 288 units and LeakyReLU activation (α = 0.3) is then used to
bring all embeddings to the same size. The goal of this sub-network is to compare each input with
all others, in order to suggest a grouping. To process an arbitrary number of examples n, we use
stacked (m = 14) residual bi-directional versions (RBDLSTM) of the cells described by Wu et al.
(2016).

The first of two outputs is modeled by the cluster assignment network (c). It contains a softmax-
layer P (` | xi, k) which assigns a cluster index ` to each input xi, given k clusters (i.e., we get
a distribution over possible cluster assignments for each input and every possible number of clus-
ters). The second output, produced by the cluster-count estimating network (d), is built from one
BDLSTM-layer with 128 units. We concatenate its first and the last output vector into a fully con-
nected layer (256 units) using again LeakyReLUs (α = 0.3). The subsequent softmax-activation
models the distribution P (k) (1 ≤ k ≤ kmax). Given P (k), the most probable cluster of the cluster-
assignment network can be chosen for each input xi.

In order to define a suitable loss-function, we first approximate (assuming independence) the prob-
ability that xi and xj are assigned to the same cluster for a given k as

Pij(k) =

k∑
`=1

P (` | xi, k)P (` | xj , k).

By marginalizing over k, we obtain Pij for the probability that xi and xj belong to the same cluster:

Pij =

kmax∑
k=1

P (k)

k∑
`=1

P (` | xi, k)P (` | xj , k).

Let yij = 1 if xi and xj are from the same cluster (e.g., have the same label) and 0 otherwise. The
loss component for cluster assignments, Lca, is then given by the weighted binary cross entropy as

Lca =
−2

n(n− 1)

∑
i<j

(ϕ1yij log(Pij) + ϕ2(1− yij) log(1− Pij))

where ϕ1 = c
√
1− ϕ and ϕ2 = c

√
ϕ, with ϕ the expected value of yij . We use c to normalize the

sum of ϕ1 and ϕ2 to 2. Intuitively, we thus account for permutations in the sequence of examples by
checking rather for pairwise correctness (probability of same/different cluster) than specific indices.

The second loss term, Lcc, penalizes the numbers of clusters and is given by the categorical cross
entropy of P (k). The complete loss is given by Ltot = Lcc + λLca. During training we prepare N
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batches of size n with k = 1 . . . kmax clusters chosen uniformly. Note that this training procedure
requires only the knowledge of yij and is thus also possible for weakly labeled data.

3 EXPERIMENTAL RESULTS

We evaluate our method on datasets of different modalities recently used in clustering experiments.
To compare to related work we measure the performance with the misclassification rate (MR) (Liu
& Kubala, 2003) and normalized mutual information (NMI) (McDaid et al., 2011) .

Table 1: NMI ∈ [0, 1] and MR ∈ [0, 1] averaged over 300 evaluations of a trained network.

2D Points (self generated) TIMIT COIL-100
MR NMI MR NMI MR NMI

Our method 0.004 0.993 0.060 0.928 0.116 0.867
Random cluster assignment 0.485 0.232 0.435 0.346 0.435 0.346

Baselines (related work) k-Means: MR = 0.178, NMI = 0.796
DBSCAN: MR = 0.265, NMI = 0.676

Lukic et al. (2017): MR = 0 Yang et al. (2016): NMI = 0.985

We conducted evaluations (see Tab. 1) on 2D point data with a high variety of shapes, TIMIT
(Garofolo et al., 1993) for speaker clustering and COIL-100 for image clustering. We set kmax = 5
and λ = 5. For the 2D point data we use n = 72 network inputs and a batch-size of 200. For
TIMIT, the network input consists of n = 20 audio snippets with a length of 1.28 seconds, encoded
as mel-spectrograms with 128× 128 pixels (see Lukic et al. (2017) for details). For COIL-100, we
use n = 20 inputs with a dimension of 128×128×3. For TIMIT and COIL-100, a simple CNN with
3 conv/max-pooling layers is used as sub-network (a). For TIMIT, we use 430 of the 630 available
classes for training (100 for validation, 100 for evaluation). We train on COIL-100 using 80 of the
100 classes (10 for validation, 10 for evaluation). Example clusterings are shown on Fig. 2.

The results on 2D data as present in Fig. 2a suggest that our method is able to learn specific char-
acteristics of intuitive groupings, giving better results than the traditional methods. Although Lukic
et al. (2017) reach better scores for the speaker clustering task and Yang et al. (2016) reach a superior
NMI for COIL-100, our method finds reasonable clusterings, is more flexible and can be applied to
all data sets. The used code and more details for these and more tests are fully available online1.

(a) (b) (c)

Figure 2: Clustering results for (a) 2D point data, (b) COIL-100 objects, and (c) faces from Face-
Scrub (Ng & Winkler, 2014). The colored borders of images depict true cluster membership.

4 DISCUSSION & CONCLUSIONS

We have shown that our novel method is able to cluster different data types with promising results.
It is a complete end-to-end approach to clustering, that learns both the relevant features and the “al-
gorithm” by which to produce the clustering itself, as well as the number of clusters in the data. The
learning phase only requires pairwise labels between examples, and no explicit similarity measure
needs to be provided. Promising results are achieved on a variety of modalities.

We observe that the final clustering accuracy depends on the availability of a large number of dif-
ferent classes during training. We attribute this to the fact that the network needs to learn intra-class
distances, a task inherently more difficult than just to distinguish between objects of a fixed amount
of classes like in classification problems.

1https://github.com/kutoga/learning2cluster
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