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ABSTRACT 

Mobile network that millions of people use every day is one of the most 
complex systems in real world. Optimization of mobile network to meet 
exploding customer demand and reduce CAPEX/OPEX poses greater challenges 
than in prior works. Actually, learning to solve complex problems in real world 
to benefit everyone and make the world better has long been ultimate goal of AI. 
However, it still remains an unsolved problem for deep reinforcement learning 
(DRL), given incomplete/imperfect information in real world, huge state/action 
space, lots of data needed for training, associated time/cost, interactions among 
multi-agents, potential negative impact to real world, etc. To bridge this reality 
gap, we proposed a DRL framework to direct transfer optimal policy learned 
from multi-tasks in source domain to unseen similar tasks in target domain 
without any further training in both domains. First, we distilled temporal-spatial 
relationships between cells and mobile users to scalable 3D image-like tensor to 
best characterize partially observed mobile network. Second, inspired by 
AlphaGo, we used a novel self-play mechanism to empower DRL agent to 
gradually improve its intelligence by competing for best record on multiple 
tasks. Third, a decentralized DRL method is proposed to coordinate multi-agents 
to compete and cooperate as a team to maximize global reward and minimize 
potential negative impact. Using 7693 unseen test tasks over 160 unseen 
simulated mobile networks and 6 field trials over 4 commercial mobile networks 
in real world, we demonstrated the capability of our approach to direct transfer 
the learning from one simulator to another simulator, and from simulation to real 
world. This is the first time that a DRL agent successfully transfers its learning 
directly from simulation to very complex real world problems with incomplete 
and imperfect information, huge state/action space and multi-agent interactions.  

 
1 INTRODUCTION 

Using deep neural network (LeCun et al., 2015) for a rich representation of high-dimensional 
visual input and as an universal function approximator, deep reinforcement learning (DRL) have 
achieved unprecedented success in some challenging domains, such as Atari game (Mnih et al., 
2015), Go (Silver et al., 2016; Silver et al., 2017), Poker (Brown & Sandholm 2018). The ultimate 
goal of AI is creating agent that can not only learn like human, but also make the world better by 
solving complex problems in real world. However, application of DRL in complex real world 
problems still remains an unsolved problem due to imperfect information, huge state/action space, 
big gap between simulation and real world (Rusu et al., 2016; Tobin et al., 2017; Bousmalis & 
Levine 2017), multi-agent interactions (Vinyals et al., 2017), time/cost, negative impact, etc. 
In this work, we use DRL for one-shot optimization of real world mobile network that millions 
of people use every day. Coverage & capacity optimization (CCO) of mobile network is crucial 
for mobile carrier to meet exploding customer demand and reduce CAPEX/OPEX (Fan et al., 
2014), e.g., $11B CAPEX for Verizon in 2016 (Celentano, 2016), Cisco acquired Intucell for 
$475M (Marketwired, 2013). However, it poses much more difficult challenges than in prior 
works. First, mobile network is one of the most complex systems in real world since it is a multi-
users, multi-cells (Macro, Small), multi-technologies (3G, 4G, 5G) heterogeneous network, in 
which mobile services (app, video, IOT) are consumed by billions of devices and many resource  
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       Figure 1: DRL framework           Figure 2: Distill tensor        Figure 3: Self play       Figure 4: Cooperate    

management decisions need to be made to provide seamless services. Second, it is critical to take 
actions only once (one-shot) since CCO involves time-consuming (1-3 days) and costly site 
visits to adjust vertical (Tilt) or horizontal (Azimuth) angle of cell antennas. Third, important 
state information is typically missing (e.g., user location, map and material of building) and 
erroneous (e.g., wrong Tilt or Azimuth). Fourth, action space is huge: (11 Tilt*13 Azim.)^50≈ 
5.8e107 possible actions for 50 cells. At last, coordinating actions of multiple cells is crucial 
since cell action has significant impact to coverage of itself and interference to neighbor cells. 

 
2 METHODS 

 
2.1 DRL FRAMEWORK TO TRANSFER LEARNING FROM SOURCE DOMAIN TO TARGET DOMAIN 

As in Figure 1, given the discrepancy between source and target domain, we use the same perception 
PNN as input for DRL agent in both domains, by projecting observations OS and OT from source and 
target domain to PNN via ψS(OS) and ψT(OT). Second, if tasks in source and target domain are similar, 
source and target task distributions can be thought of drawn from the same task population Ω, and direct 
transfer of policy can be treated as a generalization problem. Therefore, we design and generate 
sufficient amount of diversified tasks in source domain to minimize the difference between source task 
distribution and target task distribution from view of agent. Ideally, we want to learn optimal policy πT* 
in target domain to transit from initial state S0

T to optimal state S*
T =TT(S0

T, πT*) in one-shot. In practice, 
we instead learn optimal policy πS* in source domain to approximate πT*, and further approximate πS* 
by a neural network πS

θ(PNN) with weight θ: πS
θ ≈ πS* ≈ πT*, since S0

T is partially observable.  
 

2.2 DISTILL TEMPORAL-SPATIAL RELATIONSHIPS TO SCALABLE 3D IMAGE-LIKE TENSOR 

Given the complex temporal-spatial relationships between cells and mobile users, discrepancy between 
simulator and real world, and capability of convolutional neural network (CNN) to exploit spatially 
local pattern (LeCun et al., 1998), we distill local observations of each agent/cell into scalable 3D tensor 
as field of view for DRL agent. As in Figure 2, for each cell C1, we rank all neighbor cells Ni based on 
relationships between C1 and Ni, e.g., inter-site distance (ISD), overall interference. We then select most 
important neighbors (e.g., 24) and put C1 in center and arrange Ni around C1 in X-Y axis of tensor based 
on its rank. At last, for each channel along Z-axis, we extract relevant information from temporal-spatial 
relationships between each pair of cells in X-Y axis, such as, topology (ISD), key performance indicator 
(cell load, throughput), measured signal (averaged signal strength, averaged interference), etc. 

 
2.3 SELF-PLAY TO GRADUALLY IMPROVE INTELLIGENCE VIA COMPETITION 

Inspired by AlphaGo, we use a novel self-play mechanism to encourage competition for best record on 
multi-tasks, just like athletes compete for world record in decathlon. As in Figure 3, for initial state Si

0 
of task Ti drawn from a distribution, if new actions achieve better immediate global reward over all cells 
Rnew than the best record Rbest in history by a threshold: ∆Rg=Rnew-Rbest>=Thge, we encourage them by 
backpropagating a gradient, ge=Te(R–B(s))*dθ, here Te is a function (e.g., 2*Abs(x), Abs is absolute 
value function), R is expected total reward, B(s) is baseline in REINFORCE (Williams 1992), dθ is 
gradient w.r.t. weights θ. If ∆Rg<=Thgp, we penalize them by gradient gp=Tp(R–B(s))*dθ, here Tp is a 
function, e.g, -1*Abs. If Thgp<∆Rg <Thge, we use simulated annealing (SA) to decide if accepting them 
by comparing an uniform random number ∈ [0,1] with acceptance probability Pg=1/(1+exp(∆Rg/Tg)), 
here Tg is global SA temperature annealed according to certain cooling schedule (e.g., exponential). 

 
2.4 DECENTRALIZED SELF-PLAY, COMPETITIVE AND COOPERATIVE DRL (S2C) 
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Figure 5: 5 Mobile Network       Figure 6: Validation results of DRL agents         Figure 7: Test results of S2C agent 

We proposed a decentralized self-play competitive/cooperative DRL method (S2C), to coordinate 
multi-agents to compete as a team for best global reward via self-play and cooperate with each other to 
minimize negative impact. As in Figure 4, each cell/agent takes action by its local view PNN. When 
actions are accepted at global level, if local reward Rc for cell ci is larger than a threshold Rc>=Thce, then 
accept action for ci with gradient ge; if Rc<=Thcp, then reject it with gradient gp; if Thcp<Rc<Thce, we use 
SA with acceptance probability Pc=1/(1+exp(Rc/Tc)), here Tc is cell level SA temperature. 

 
3 EXPERIMENTS AND RESULTS 

 
3.1 DECENTRALIZED MULTI-AGENT MULTI-TASK DEEP REINFORCEMENT LEARNING IN SIMULATOR 

 
First, we generated 2,380,000 CCO tasks Ti in Netlab simulator, with 10,000 random Tilt settings 
as initial states for each of 238 simulated mobile networks (<=60 cells, 400-620 users; 5 shown in 
Figure 5). We designed a SA agent to optimize each training task in 10 steps to generate labels (Si

0 
tensor for each cell in Ti, best Tilt action in 10 shots) for supervised learning (SL-DNN) by a 
depth-14 residual network (He et al., 2015) with 32×32×12 input and 11 output Tilt ∈ [-5,5]. 
Using 146k training data, we achieved 78.4% accuracy <=1 degree and 91.5% <=2 degree for 16k 
validation data. We then use weights of SL-DNN to initialize CNN for 4 DRL agents, DQN (Mnih 
et al., 2015), Double Q (Hasselt et al., 2016), A3C (Mnih et al., 2016), and S2C. We use 160k-
320k training tasks over 80-160 mobile networks (distributed over 640 simulators on 80 VMs) to 
train agents for one-shot CCO in 8 epochs with 4-16 threads, and 300-500 validation tasks (15-25 
mobile networks) per epoch. As in Figure 6, S2C achieved better result, in terms of immediate 
global reward averaged over all validation tasks (Left, 6.46% for S2C), and ratio of validation 
tasks with positive global reward (Right, 94% for S2C). We also tested the same S2C policy for 
5481 unseen tasks over 238 mobile networks in Netlab without retraining. As in Figure 7 (Upper), 
it achieved 5.60% average global reward and 92% ratio of test tasks with positive gain. We further 
verified cross-domain generalization power by testing the same S2C policy for 7693 unseen tasks 
over 160 unseen mobile networks (100-140 cells, 2480-19840 users) in another simulator Unet, 
without any further training in both simulators. As in Figure 7 (Lower), it also achieved good 
results with 4.93% average global reward and 95.7% ratio of test tasks with positive gain.   

 
3.2 DIRECT TRANSFER LEARNING FROM SIMULATION TO REAL WORLD MOBILE NETWORK 

To verify the generalization capability of our approach to direct transfer learning from simulation 
to unseen CCO tasks in unseen very complex real world mobile network without any further 
training in both domains, we performed 6 field trials over 4 commercial mobile networks that have 
never been simulated in both simulators, and are very different from all simulated mobile 
networks, e.g., multi-frequency (MF) or carrier aggregations (CA) has never simulated before, 
user distribution/number in real world mobile network is temporal-spatial dynamic and very 
different from static distribution/number in simulators, very different cell/building layouts and 
radio propagation. We separated commercial mobile network A into 2 neighboring clusters C1/C2 
(66/47 cells, MF), and performed a trial for each one, with 2.03% RSRP (coverage indicator) and 
5.62% RSRQ (interference/capacity indicator) improvement in C1, and 3.17% RSRP, 4.86% 
RSRQ improvement for C2. The 3rd trial was done for whole mobile network A (113 cells, MF), 
and no significant improvement was observed since most gain has been achieved in first 2 trials. 
In 4th trial, we achieved 10.79% RSRP and 6.74% RSRQ improvement for mobile network B 
(151 cells, MF). In 5th trial for mobile network C (131 cells, MF/CA), no significant improvement 
was observed due to either little room for optimization or significant difference between mobile 
network C and task distributions in simulation. In 6th trial, we achieved 9.55% RSRP and 12.42% 
RSRQ improvement for commercial mobile network D (159 cells, MF/CA). 
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