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ABSTRACT

In this paper we present a unifying framework to study the local/global optima
equivalence of the optimization problems arising from training non-convex deep
models. Using the local openness property of the underlying training models, we
provide simple sufficient conditions under which any local optimum of the result-
ing optimization problem is globally optimal. We first completely characterize
the local openness of matrix multiplication mapping in its range. Then we use our
characterization to: 1) show that every local optimum of two layer linear networks
is globally optimal. Unlike many existing results, our result requires no assump-
tion on the target data matrix Y , and input data matrix X . 2) develop almost
complete characterization of the local/global optima equivalence of multi-layer
linear neural networks. 3) show global/local optima equivalence of non-linear
deep models having certain pyramidal structure. Unlike some existing works, our
result requires no assumption on the differentiability of the activation functions.

1 INTRODUCTION

Deep learning models have recently led to significant practical successes in various fields ranging
from computer vision to natural language processing. Despite these significant empirical successes,
the theoretical understanding of the behavior of these models is still very limited. To understand the
landscape of these non-convex models, we study the general optimization problem

min
w∈W

`(F(w)), (1)

where ` : Z 7→ R is the loss function and F :W 7→ Z represents a statistical model with parameter
w that needs to be learned by solving the above optimization problem. Here we assume that the set
W is closed and the mapping F is continuous. In this paper, we use local openness of F to provide
sufficient conditions under which every local optimum of (1) is in fact a global optimum.

To proceed, let us define the auxiliary optimization problem
min
z∈Z

`(z), (2)

where Z is the range of the mapping F . Since problem (2) minimizes the function `(·) over the
range of the mapping F , there is a clear relation between the global optimal points of the two
optimization problem through the mapping F . However, the connection between the local optima
of the two optimization problems is not clear. This connection, in particular, is important when
the local optima of (2) are “nice” (e.g. globally optimal or close to optimal). In what follows, we
establish the connection between the local optima of the optimization problems (1) and (2) under
some simple sufficient conditions. This connection is then used to study the relation between local
and global optima of (1) and (2) for various non-convex learning models.

Before proceeding, we define the following concepts. A mapping F : W → Z is said to be open,
if for every open set U ∈ W , F(U) is (relatively) open in Z . Moreover, a mapping F(·) is said to
be locally open at w if for every ε > 0, there exists δ > 0 such that Bδ

(
F(w)

)
⊆ F

(
Bε(w)

)
. We

call a point W = (Wh, . . . ,W1), with Wi ∈ Rdi×di−1 , non-degenerate if rank(Wh · · ·W1) =
min0≤i≤h di, and degenerate if rank(Wh · · ·W1) < min0≤i≤h di. We also say a point W is a
second order saddle point of an unconstrained optimization problem if the gradient of the objective
function is zero at W and its hessian at W has a negative eigenvalue. The following simple intuitive
observation, which establishes the connection between the local optima of (1) and (2), is a major
building block of our analyses.
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Observation 1. Suppose F(·) is locally open at w̄. If w̄ is a local minimum of problem (1), then
z̄ = F(w̄) is a local minimum of problem (2).

Observation 1 can be used to map multiple local optima of the original problem (1) to one local opti-
mum of the auxiliary problem (2); and potentially simplify the problem. Moreover, this observation
motivates us to study the local openness of the matrix multiplication mapping defined by

M : Rm×k × Rk×n 7→ RM with M(W1,W2) ,W1W2, (3)

whereRM , {Z ∈ Rm×n | rank(Z) ≤ min(m,n, k)} is the range of the mappingM. We study
in the next section the local openness/openness of the mapping M. We later use these results to
analyze the behavior of local optima of deep neural networks.

2 LOCAL OPENNESS OF THE MATRIX MULTIPLICATION MAPPING

When W1 ∈ Rm×k and W2 ∈ Rk×n with k ≥ min{m,n}, the range of the mapping
M(W1,W2) = W1W2 is the entire space Rm×n. In this case, (Behrends, 2017, Theorem 2.5)
provides a complete characterization of the pairs (W1,W2) for which the mapping is locally open.
However, when k < min{m,n} the characterization of the set of points for which the mapping is
locally open has not been resolved before. We settle this question in Theorem 2 stated below

Theorem 2. LetM(W1,W2) = W1W2 denote the matrix multiplication mapping with W1 ∈
Rm×k and W2 ∈ Rk×n. Assume k < min{m,n}. Then if rank(W̄1) 6= rank(W̄2), M(·, ·) is
not locally open at (W̄1,W̄2). Else, if rank(W̄1) = rank(W̄2), then the following statements are
equivalent:

i) ∃W̃1 ∈ Rm×k such that W̃1W̄2 = 0 and W̄1 + W̃1 is full column rank.

ii) ∃W̃2 ∈ Rk×n such that W̄1W̃2 = 0 and W̄2 + W̃2 is full row rank.

iii) dim
(
N (W̄1) ∩ C(W̄2)

)
= 0.

iv) dim
(
N (W̄T

2 ) ∩ C(W̄T
1 )
)

= 0.

v) M(·, ·) is locally open at (W̄1,W̄2) in its rangeRM.

By definition,M(·, ·) is locally open at (W1,W2) if for a given ε > 0, there exists δ > 0 such that
for any Z̃ = Z +Rδ ∈ RM with ‖Rδ‖ ≤ δ, there exists W̃1, W̃2 with ‖W̃1‖ ≤ ε, ‖W̃2‖ ≤ ε,
such that Z̃ = (W1 +W̃1)(W2 +W̃2). As a perturbation bound on δ, we show that for any locally
open pair (W1,W2), given an ε > 0, the chosen δ is of order ε, i.e., δ = O(ε). In the next sections,
we use our local openness result to characterize the cases where the local optima of various training
optimization problem of the form (2) are globally optimal.

3 NON-LINEAR DEEP NEURAL NETWORK WITH A PYRAMIDAL STRUCTURE:

Consider the non-linear deep neural network optimization problem with a pyramidal structure

min
W

`
(
Fh(W )

)
with Fi(W ) , σi

(
WiFi−1(W )

)
, for i ∈ {2, . . . , h}, (4)

and F1(W ) , σ1(W1X) where σi : R 7→ R is a continuous and strictly monotone activation
function applied component-wise to the entries of each layer, i.e., σi(A) = [σi(Ajk)]j,k. Here
W =

(
Wi

)h
i=1

where Wi ∈ Rdi×di−1 is the weight matrix of layer i, X ∈ Rd0×n is the input
training data. In this section, we consider the pyramidal network structure with d0 > n and di ≤
di−1 for 1 ≤ i ≤ h; see Nguyen & Hein (2017) for more details on these types of networks.

First notice that when X is full column rank and the functions σi’s are all continuous and strictly
monotone, the image of the mapping Fh is convex. We now show that when Wi’s are all full row
rank and the functions σi’s are all strictly monotone, the mapping Fh is locally open atW .
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Lemma 3. Assume the functions σi(·) : R 7→ R are all continuous strictly monotone. Then the
mapping Fh defined in (4) is locally open at the pointW = (W1, . . . ,Wh) ifWi’s are all full row
rank.

Lemma 3 in conjunction with Observation 1 implies that if W̄ is a local optimum of problem (4)
with W̄i’s being full row rank, then Z̄ = Fh(W̄ ) is a local optimum of the corresponding auxiliary
problem minimize

Z∈Z
`(Z) where Z is convex. Consequently, Z̄ is a global optimum of problem (4)

when the loss function `(·) is convex. A popular activation function that is strictly monotonic and
not differentiable is the Leaky ReLU, for which our result follows.

4 LINEAR DEEP NEURAL NETWORK

Consider the training problem of multi-layer deep linear neural networks:

min
W

1

2
‖Wh · · ·W1X − Y ‖2. (5)

Here W =
(
Wi

)h
i=1

, Wi ∈ Rdi×di−1 are the weight matrices, X ∈ Rd0×n is the input training
data, and Y ∈ Rdh×n is the target training data. Based on our general framework, the corresponding
auxiliary optimization problem is given by

minZ∈Rdh×n

1

2
||ZX − Y ||2 s.t. rank(Z) ≤ dp , min0≤i≤h di. (6)

(Lu & Kawaguchi, 2017, Theorem 2.2) shows that when X is full rank, every local minimum of
problem (6) is global. By using local openness, we relax the full rankness assumption onX .
Lemma 4. Every local minimum of problem (6) is global.

(Yun et al., 2017, Theorem 2.2) shows that whenXXT , Y XT , andY XT (XXT )−1XY T are full
rank, every local optimum of a linear deep network is global. Moreover, they provide necessary and
sufficient conditions for a critical point to be a global minimum. In another result, Lu & Kawaguchi
(2017) showed that when X and Y are full row rank, every local minimum of (5) is global. We
now relax the full rankness assumptions and reproduce similar results. First consider a two layer
linear model, i.e. problem (5) with h = 2. Theorem 5, shows, without any assumptions on both X
and Y , that every local minimum of a two layer linear model is global. Furthermore, Theorem 5
and Corollary 6, show that, even when the square loss error is replaced by a general convex loss
function, every degenerate critical point of a two layer linear model is either a global minimum or a
second order saddle.
Theorem 5. Every local minimum of a two layer linear deep model, problem (5) with h = 2, is
global. Moreover, every degenerate saddle point of problem (5), with h = 2, is a second order
saddle.

Corollary 6. Replace the square loss error in (5) by a general convex loss function `(·). Then, for
h = 2, every degenerate critical point is either a global minimum or a second-order saddle.

Now consider the general case of multi-layer linear models. Due to a simple counterexample, we
cannot in general relax the full rankness assumption on Y. However we determine a set of necessary
conditions under which every local minimum of problem (5) is global. The results are stated in
Lemma 7 and Theorem 8. We note that Theorem 8 holds when replacing the square error loss by a
general convex and differentiable function `(·).
Lemma 7. Every non-degenerate local minimum of (5) is global minimum.

Theorem 8. If there exist 1 ≤ p1 < p2 ≤ h − 1 with dh > dp2 and d0 > dp1 , we can find a rank
deficient Y such that problem (5) has a local minimum that is not global. Otherwise, given any X
and Y , every local minimum of problem (5) is a global minimum.
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