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ABSTRACT

Two recently developed methods, Feedback Alignment (FA) and Direct Feedback
Alignment (DFA), have been shown to obtain surprising performance on vision
tasks by replacing the traditional backpropagation update with a random feedback
update. However, it is still not clear what mechanisms allow learning to happen
with these random updates. In this work we argue that DFA can be viewed as a
noisy variant of a layer-wise training method we call Linear Aligned Feedback
Systems (LAFS). We support this connection theoretically by comparing the up-
date rules for the two methods. We additionally empirically verify that the random
update matrices used in DFA work effectively as readout matrices, and that strong
correlations exist between the error vectors used in the DFA and LAFS updates.
With this new connection between DFA and LAFS we are able to explain why the
“alignment” happens in DFA.

1 INTRODUCTION

Deep neural networks have achieved human or superhuman performance on an increasing variety of
tasks. These networks are most frequently trained with the back-propagation algorithm (Rumelhart
et al., 1985). However, it has been suggested (Bengio et al., 2015b) that the back-propagation
algorithm is not biologically plausible, and recently there have been a number of proposals for
learning the weights of a neural network in a way which could be more feasibly implemented in the
brain (Lillicrap et al., 2014; Nøkland, 2016; Liao et al., 2015; Scellier & Bengio, 2016; Bengio et al.,
2015a). One such proposal is feedback-alignment (FA) (Lillicrap et al., 2014), which demonstrated
that one can swap out the weight matrices used in a backward pass with fixed random matrices and
still achieve comparable performance to standard backpropagation. They also prove that for a linear
network with a single hidden layer trained with FA, the feedforward weight matrix will approach the
pseudo-inverse of the fixed random weight matrix. Consequently, the gradient updates will become
correlated with the correct gradient update from backpropagation.

Motivated by feedback-alignment, a variant called direct-feedback-alignment (DFA) was proposed
in (Nøkland, 2016). This method differs from feedback-alignment in that the error signal from the
output is directly propagated to each internal layer via a random matrix. DFA was found to achieve
comparable performance to FA on the MNIST and CIFAR-10 datasets. DFA is also interesting
because it allows for updates to internal matrices to be computed in parallel, which could lead to
more efficient training algorithms.

In this work we interpret DFA as a noisy variant to a supervised layer-wise training scheme that we
call Linear Aligned Feedback Systems (LAFS). We show that the update equations are very similar
between the two training schemes, only differing in the error vectors used to initialize backprop.
Finally, we empirically demonstrate that the error vectors used in the LAFS and DFA updates are
correlated throughout training.
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2 DIRECT FEEDBACK ALIGNMENT

We begin with the update equations for training a k-layer feed forward network with DFA. We use
Wi and bi to denote the learned weight matrix and bias vector in layer i, and f to denote the
nonlinearity. For all i ∈ {1, . . . , k} we have

ai = Wihi−1 + bi, hi = f(ai), (1)

where h0 = x is the input to the network. For the output we have

ŷ = fy(a
k), (2)

where fy is the softmax function. We assume a differentiable loss function L(y, ŷ), where y is the
target output. The error vector ey is defined to be the gradient of L with respect to the logits ak.
DFA creates fixed random matrices Bi ∈ Rd×dy for i = 1 . . . k− 1, where d is the dimension of all
the hidden layers, and computes for i 6= k

δai = (Biey)� f ′y(ai), (3)

and at layer k, δak = ey . The update to the weight matrix for layer i is then

δWi = −δai
(
hi−1)T =

(
(Biey)� f ′y(ai)

) (
hi−1)T . (4)

For comparison, in traditional backpropagation

δai = ∇hiL� f ′y(ai) =
(
Wi

)T
δai+1 � f ′y(ai). (5)

3 LINEAR ALIGNED FEEDBACK SYSTEMS

When training a feed forward network with LAFS, we first append auxiliary output matrices to each
of the internal hidden layers and define an auxiliary loss at each layer. For each layer i 6= k we
introduce an auxiliary output defined as

ŷi = fy(
(
Bi

)T
hi−1), (6)

where Bi are fixed random readout matrices. This is similar to the concept of linear probes intro-
duced in Alain & Bengio (2016). Layer k is kept the same as for a feed forward network,

ŷk = fy(W
khk−1 + bk). (7)

Each layer then has a loss defined as
Li = L(ŷi,y). (8)

When training the weights of the LAFS model we train the weights in layer i to optimize the aux-
iliary loss Li. Note that gradients are isolated within each layer – that is we do not consider how
changing the weights in layer i affects the loss in layer j > i. This corresponds to layer-wise train-
ing, where layer i predicts the target by mapping the features hi−1 from layer i − 1 to hi followed
by feeding hi through the random readout matrix Bi. The key insight behind this work is that the
derived update equations for the LAFS network are very similar to the update equations for DFA. In
particular, the update to weight matrix Wi is calculated as

δWi := ∇WiLi =
(
(Biei)� f ′y(ai)

) (
hi−1)T (9)

where ei is the gradient of the i’th loss with respect to the auxiliary logits at the i’th layer(
Bi

)T
hi−1.

Comparing Equations 4 and 9 the connection between DFA and LAFS is clear. The only difference
is the error vector which initializes the backprop update. For a randomly initialized network with
small weight variance, the initial predictions in the LAFS model will be roughly uniform, due to
the fact that the softmax will map a vector of logits with small norm to an approximate uniform
distribution over the targets. In such initialization schemes, ei will be very similar to ek, and as a
result the DFA update will be correlated with the LAFS update. As training progresses, all layers
are optimized to predict the same targets, and as a result these correlations can be expected to persist
through training. We verify this empirically in the following section, by plotting the angles between
ei and ey during training.
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4 RESULTS

We trained the same feed forward architecture on MNIST with both DFA and LAFS, with learning
rate 0.1, tanh activations, and 3 hidden layers each with 800 nodes. In Figure 1 we look at the
accuracy of the auxiliary readouts at each layer for both DFA and LAFS on the training set. Although
the random matrices Bi are not used explicitly as readout matrices in the DFA model, we find that
using the projections of the intermediate layers through the Bi obtains good accuracy. We also
look at the angles between ei and ey in both DFA and LAFS and find that they are well aligned
throughout training, which we believe is the primary condition for DFA to train properly.
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Figure 1: DFA performs like a noisy version of LAFS. Left: The angle in degrees between the
error vector in the top layer with the intermediate layers. Right: The accuracy of the readout in the
intermediate layers. Best viewed in color. Note the log scale of the x-axis.

5 DISCUSSION

Training a model with LAFS is closely related to training stacked linear systems, where the i’th
linear system is trained on the output of the i − 1 system. It is important that the backprop update
of each system goes through the non-linearity f , we believe this is why the model is able to perform
better than linear models. The LAFS update rule may be limited in its expressive power as there is
no training signal which captures interactions between layers, this limitation must then also exist for
the DFA update rule. We question whether or not LAFS and DFA can be expected to outperform
training single hidden layer networks, and leave this for future work.
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