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ABSTRACT

We propose a neural network architecture for generating tree-structured objects
from encoded representations. The core of the method is a doubly recurrent neu-
ral network model comprised of separate width and depth recurrences that are
combined inside each cell (node) to generate an output. The topology of the tree
is modeled explicitly together with the content. That is, in response to an encoded
vector representation, co-evolving recurrences are used to realize the associated
tree and the labels for the nodes in the tree. We test this architecture in an encoder-
decoder framework, where we train a network to encode a sentence as a vector,
and then generate a tree structure from it. The experimental results show the ef-
fectiveness of this architecture at recovering latent tree structure in sequences and
at mapping sentences to simple functional programs.

1 INTRODUCTION

Recurrent neural networks have become extremely popular for modeling structured data. Key to
their success is their ability to learn long-range temporal dependencies, their flexibility, and ease of
customization. These architectures are naturally suited for modeling sequences since the underlying
state evolution resulting from successive operations follows an inherently linear order (Williams &
Zipser, |1995; [Hochreiter & Schmidhuber, [1997)). Indeed, they have been successfully adapted to
language modeling (Zaremba et al.,|2015), machine translation (Sutskever et al.,2014)) and conver-
sational agents (Vinyals & Lel 2015)), among other applications.

Although sequences arise frequently in practice, other structures such as trees or graphs do not
naturally conform to a linear ordering. For example, natural language sentences or associated parse
trees, programs, hierarchical structures in biology, or molecules are not inherently linear structures.
While sentences in natural language can be modeled as if they were linear sequences, the underlying
process is compositional (Fregel |1892). Models that construct sentences compositionally should
derive an advantage from adopting a more appropriate inductive bias.

The flexibility and success of recurrent neural networks in modeling and generating sequential data
has prompted efforts to adapt them to non-sequential data too. Recent work has focused on the
application of neural architectures to hierarchical structures, albeit in limited ways. Much of this
work has assumed that either the full tree structure is given (Socher et al.|[2012; |Tai et al.,|2015)) or at
least the nodes are (Socher & Lin, [2011;|Chen & Manning, [2014} Kiperwasser & Goldberg, [2016)).
In the former scenario, the network aggregates the node information in a manner that is coherent
with a given tree structure while, in the latter, generation is reduced to an attachment problem, i.e.,
sequentially deciding which pairs of nodes to join with an edge until a tree is formed.

The full problem of decoding with structure, i.e., generating a tree-structured object with node labels
from a given vector representation, has remained largely unexplored until recently. Recent efforts to
adapt RNNss to this context have so far remained relatively close to their sequential counterparts. For
example, in order to capture depth and branching in the tree, one can introduce special tokens (Dong
& Lapata, 2016) or use alternating RNNs coupled with external classifiers to predict branching
(Zhang et al.| 2016).
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In this work, we propose a novel architecture tailored specifically to tree-structured decoding. At the
heart of our approach is a doubly-recurrent (breadth and depth-wise recurrent) neural network which
separately models the flow of information between parent and children nodes, and between siblings.
Each of these relationships is modeled with a recurrent module whose hidden states are updated
upon observing node labels. Every node in the tree receives two hidden states, which are then
combined and used to predict a label for that node. Besides maintaining separate but simultaneous
fraternal and paternal recurrences, the proposed architecture departs from previous methods in that
it explicitly models tree topology. Each node in the network has modules that predict, based on
the cell state, whether the node is terminal, both in terms of depth and width. Decoupling these
decisions from the label prediction allows for a more concise formulation, which does not require
artificial tokens to be added to the tree to simulate branching.

We test this novel architecture in various encoder-decoder frameworks, coupling it with sequential
encoders to predict tree structure from encoded vector representations of sequences. The experimen-
tal results show the effectiveness of this approach at recovering latent structure in flattened string
representations of trees (Section {f.T)) and at mapping from natural language descriptions of simple
programs to abstract syntax trees (Section 4.2)). In addition, we show that even for sequence-to-
sequence tasks such as machine translation, the proposed architecture exhibits desirable properties,
such as invariance to structural changes and coarse-to-fine generation (Section .3)).

To summarize, the main contributions of this paper are as follows:

e We propose a novel neural network architecture specifically tailored to tree-structured de-
coding, which maintains separate depth and width recurrent states and combines them to
obtain hidden states for every node in the tree.

e We equip this novel architecture with a mechanism to predict tree topology explicitly (as
opposed to implicitly by adding nodes with special tokens).

e We show experimentally that the proposed method is capable of recovering trees from
encoded representations and that it outperforms state-of-the-art methods in a task consisting
of mapping sentences to simple functional programs.

2 RELATED WORK

Recursive Neural Networks. Recursive neural networks (Socher & Lin,[2011;|Socher et al., 2012)
were proposed to model data with hierarchical structures, such as parsed scenes and natural language
sentences. Though they have been most successfully applied to encoding objects when their tree-
structured representation is given (Socher et al., 2013)), the original formulation by |Socher & Lin
(2011)) also considered using them to predict the structure (edges), albeit for the case where nodes
are given. Thus, besides their limited applicability due to their assumption of binary trees, recursive
neural networks are not useful for fully generating trees from scratch.

Tree-structured encoders. The Tree-LSTM of Tai et al.|(2015) is a generalization of long short-
term memory networks (Hochreiter & Schmidhuber, |1997) to tree-structured inputs. Their model
constructs a sentence representation bottom-up, obtaining at every step the representation of a node
in the tree from those of its children. In this sense, this model can be seen as a generalization of
recursive neural networks to trees with degree potentially greater than two, with the additional long-
range dependency modeling provided by LSTMs. They propose two methods for aggregating the
states of the children, depending on the type of underlying tree: N-ary trees or trees with unknown
and potentially unbounded branching factor. TreeLSTMs have shown promising results for compo-
sitional encoding of structured data, though by construction they cannot be used for decoding, since
they operate on a given tree structure.

Tree-structured decoders. Proposed only very recently, most tree-structured decoders rely on
stacked on intertwined RNNs, and use heuristic methods for topological decisions during genera-
tion. Closest to our method is the Top-down Tree LSTM of [Zhang et al.| (2016), which generates
a tree from an encoded representation. Their method relies on 4 independent LSTMs, which act in
alternation—as opposed to simultaneously in our approach—yielding essentially a standard LSTM
that changes the weights it uses based on the position of the current node. In addition, their method



Published as a conference paper at ICLR 2017

provides children with asymmetric parent input: “younger” children receive information from the
parent state only through the previous sibling’s state. Though most of their experiments focus on
the case where the nodes are given, they mention how to use their method for full prediction by in-
troducing additional binary classifiers which predict which of the four LSTMs is to be used. These
classifiers are trained in isolation after the main architecture has been trained. Contrary to this
approach, our method can be trained end-to-end in only one pass, has a simpler formulation and
explicitly incorporates topological prediction as part of the functioning of each neuron.

A similar approach is proposed by Dong & Lapatal (2016). They propose SEQ2TREE, an encoder-
decoder architecture that maps sentences to tree structures. For the decoder, they rely on hierarchical
use of an LSTM, similar to Tai et al.|(2015)), but in the opposite direction: working top-down from
the root of the tree. To decide when to change levels in the hierarchy, they augment the training trees
with nonterminal nodes labeled with a special token <n>, which when generated during decoding
trigger the branching out into a lower level in the tree. Similar to our method, they feed nodes with
hidden representations of their parent and sibling, but they do so by concatenating both states and
running them through a single recurrent unit, as opposed to our method, where these two sources
of information are handled separately. A further difference is that our approach does not require
artificial nodes with special tokens to be added to the tree, resulting in smaller trees.

Hierarchical Neural Networks for Parsing. Neural networks have also been recently introduced
to the problem of natural language parsing (Chen & Manning| 2014; [Kiperwasser & Goldberg,
2016). In this problem, the task is to predict a parse tree over a given sentence. For this, Kiperwasser
& Goldberg|(2016) use recurrent neural networks as a building block, and compose them recursively
to obtain a tree-structured encoder. Starting from the leaves (words) they predict a parse tree with a
projective bottom-up strategy, which sequentially updates the encoded vector representation of the
tree and uses it to guide edge-attaching decisions. Though conceptually similar to our approach,
their method relies on having access to the nodes of the tree (words) and only predicts its topology,
so—similar to recursive neural networks—it cannot be used for a fully generative decoding.

3 DOUBLY RECURRENT NEURAL NETWORKS

Generating a tree-structured object from scratch using only an encoded representation poses several
design challenges. First, one must decide in which order to generate the tree. If the nodes on the
decoder side were given (such as in parsing), it would be possible to generate a tree bottom-up from
these nodes (e.g. as [Kiperwasser & Goldberg|2016|do). In the setting we are interested in, however,
not even the nodes are known when decoding, so the natural choice is a top-down decoder, which
starting from an encoded representation generates the root of the tree and then recursively generates
the children (if any) of every node.

The second challenge arises from the asymmetric hierarchical nature of trees. Unlike the sequence-
to-sequence setting where encoding and decoding can be achieved with analogous procedures, when
dealing with tree-structured data these two involve significantly different operations. For example,
an encoder that processes a tree bottom-up using information of a node’s children to obtain its
representation cannot be simply reversed and used as a decoder, since when generating the tree
top-down, nodes have to be generated before their children are.

An additional design constraint comes from deciding what information to feed to each node. For
sequences, the choice is obvious: a node should receive information from the node preceding or
succeeding it (or both), i.e. there is a one-dimensional flow of information. In trees, there is an
evident flow of information from parent to children (or vice-versa), but when generating nodes in
a top-down order it seems unnatural to generate children in isolation: the label of one of them will
likely influence what the states of the other children might be. For example, in the case of parse
trees, generating a verb will reduce the chances of other verbs occurring in that branch.

With these considerations in mind, we propose an architecture tailored to tree decoding from scratch:
top-down, recursive and doubly-recurrent, i.e. where both the ancestral (parent-to-children) and
fraternal (sibling-to-sibling) flows of information are modeled with recurrent modules. Thus, the
building block of a doubly recurrent neural network (DRNN) is a cell with two types of input states,
one coming from its parent, updated and passed on to its descendants, and another one received from
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its previous siblingﬂ updated and passed on to the next one. We model the flow of information in
the two directions with separate recurrent modules.

Formally, let 7 = {V, £, X'} be a connected labeled tree, where V is the set of nodes, £ the set of
edges and X are node 1abelsE] Let g® and g7 be functions which apply one step of the two separate
RNNs. For a node ¢ € V with parent p(i) and previous sibling s(4), the ancestral and fraternal
hidden states are updated via

h? = ga( ;(i),xp(i)) (1)
hf =g/ (bf ), %) 2)

where x,(;), Xp(;) are the vectors representing the previous sibling’s and parent’s values, respec-
tively. Once the hidden depth and width states have been updated with these observed labels, they
are combined to obtain a predictive hidden state:

h?) = tanh (Uf h! + U“h?) 3)

where Uf € R"*Ps and U® € R™*Pe are learnable parameters. This state contains combined
information of the node’s neighborhood in the tree, and is used to predict a label for it. In its
simplest form, the network could compute the output of node ¢ by sampling from distribution

0, = softmax(Whl(.p md)) 4)

In the next section, we propose a slight modification to (@) whereby topological information is
included in the computation of cell outputs. After the node’s output symbol x; has been obtained by
sampling from o;, the cell passes h¢ to all its children and h{ to the next sibling (if any), enabling
them to apply Egs (I)) and (Z) to realize their states. This procedure continues recursively, until
termination conditions (explained in the next section) cause it to halt.

3.1 TOPOLOGICAL PREDICTION

As mentioned before, the central issue with free-form tree construction is to predict the topology
of the tree. When constructing the tree top-down, for each node we need to decide: (i) whether it
is a leaf node (and thus it should not produce offspring) and (ii) whether there should be additional
siblings produced after it. Answering these two questions for every node allows us to construct a
tree from scratch and eventual stop growing it.

Sequence decoders typically rely on special tokens to terminate generation (Sutskever et al.|[2014).
The token is added to the vocabulary and treated as a regular word. During training, the examples are
padded with this token at the end of the sequence, and during testing, generation of this token signals
termination. These ideas has been adopted by most tree decoders (Dong & Lapata, 2016). There
are two important downsides of using a padding strategy for topology prediction in trees. First,
the size of the tree can grow considerably. While in the sequence framework only one stopping
token is needed, a tree with n nodes might need up to O(n) padding nodes to be added. This can
have important effects in training speed. The second reason is that a single stopping token selected
competitively with other tokens requires one to continually update the associated parameters in
response to any changes in the distribution over ordinary tokens so as to maintain topological control.

Based on these observations, we propose an alternative approach to stopping, in which topological
decisions are made explicitly (as opposed to implicitly, with stopping tokens). For this, we use the
predictive hidden state of the node h(?"¢®) with a projection and sigmoid activation:

pf = o(u® - b)) (5)

The value p¢ € [0, 1] is interpreted as the probability that node ¢ has children. Analogously, we can
obtain a probability of stopping fraternal branch growth after the current node as follows:

p! = a(ul -nP?) 6)

'Unlike the “ancestral” line, the order within sibling nodes is ambiguous. While in abstract trees it is
assumed that the there is no such ordering, we assume that for the structures were are interested in learning
there is always one: either chronological (the temporal order in which the nodes were generated) or latent
(e.g. the grammatical order of the words in a parse tree with respect to their sentence representation).

2We assume throughout that these values are given as class indicators x; € {1,..., N}.
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Encoder

Figure 1: Left: A cell of the doubly-recurrent neural network corresponding to node ¢ with parent p
and sibling s. Right: Structure-unrolled DRNN network in an encoder-decoder setting. The nodes
are labeled in the order in which they are generated. Solid (dashed) lines indicate ancestral (fraternal)
connections. Crossed arrows indicate production halted by the topology modules.

Note that these stopping strategies depart from the usual padding methods in a fundamental property:
the decision to stop is made before instead of in conjunction with the label prediction. The rationale
behind this is that the label of a node will likely be influenced not only by its context, but also by
the type of node (terminal or non-terminal) where it is to be assigned. This is the case in language,
for example, where syntactic constraints restrict the type of words that can be found in terminal
nodes. For this purpose, we include the topological information as inputs to the label prediction
layer. Thus, @]) takes the form

0, = softmax(th(-pred) + o v® + goivf) 7

where a;, ¢; € {0, 1} are binary variables indicating the topological decisions and v¢, v are learn-
able offset parameters. During training, we use gold-truth values in (7)), i.e. «; = 1 if node 7 has
children and ¢; = 1 if it has a succeeding sibling. During testing, these values are obtained from
p®, p/ by sampling or beam-search. A schematic representation of the internal structure of a DRNN
cell and the flow of information in a tree are shown in Figure

3.2 TRAINING DRNNSs

We train DRNNs with (reverse) back-propagation through structure (BPTS) (Goller & Kuechler,
1996). In the forward pass, node outputs are computed in a top-down fashion on the structure-
unrolled version of the network, following the natura dependencies of the tree. We obtain error
signal at the node level from the two types of prediction: label and topology. For the former, we
compute cross-entropy loss of o; with respect to the true label of the node x;. For the topological

values p{ and plf we compute binary cross entropy loss with respect to gold topological indicators
a;, @i € {0, 1}. In the backward pass, we proceed in the reverse (bottom-up) direction, feeding into
every node the gradients received from child and sibling nodes and computing internally gradients
with respect to both topology and label prediction. Further details on the backpropagation flow are

provided in the Appendix.
Note that the way BPTS is computed implies and underlying decoupled loss function
L) =Y L1 (xi, %) + L7 (pi, Bi) ®)
i€V

The decoupled nature of this loss allows us to weigh these two objectives differently, to emphasize
either topology or label prediction accuracy. Investigating the effect of this is left for future work.

3The traversal is always breadth-first starting from the root, but the order in which sibling nodes are visited
might depend on the specific problem. If the nodes of the tree have an underlying order (such as in dependency
parse trees), it is usually desirable to preserve this order.
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Figure 2: Trees generated by the DRNN decoder trained on subset of size N of the synthetic dataset,
for a test example with description “ROOT B W FJ V™.

As is common with sequence generation, during training we perform feacher forcing: after predict-
ing the label of a node and its corresponding loss, we replace it with its gold value, so that children
and siblings receive the correct label for that node. Analogously, we obtain the probabilities p®
and p’, compute their loss, and replace them for ground truth variables v, @; for all downstream
computations. Addressing this exposure bias by mixing ground truth labels with model predictions
during training (Venkatraman et al.,[2015) or by incremental hybrid losses (Ranzato et al., |2016)) is
left as an avenue for future work.

4 EXPERIMENTS

4.1 SYNTHETIC TREE RECOVERY

In our first set of experiments we evaluate the effectiveness of the proposed architecture to recover
trees from flattened string representations. For this, we first generate a toy dataset consisting of
simple labeled trees. To isolate the effect of label content from topological prediction, we take a
small vocabulary consisting of the 26 letters of the English alphabet. We generate trees in a top-down
fashion, conditioning the label and topology of every node on the state of its ancestors and siblings.
For simplicity, we use a Markovian assumption on these dependencies, modeling the probability of
a node’s label as depending only on the label of its parent and the last sibling generated before it (if
any). Conditioned on these two inputs, we model the label of the node as coming from a multinomial
distribution over the alphabet with a dirichlet prior. To generate the topology of the tree, we model
the probability of a node having children and a next-sibling as depending only on its label and the
depth of the tree. For each tree we generate a string representation by traversing it in breadth-first
preorder, starting from the root. The labels of the nodes are concatenated into a string in the order
in which they were visited, resulting in a string of |7 | symbols. We create a dataset of 5,000 trees
with this procedure, and split it randomly into train, validation and test sets (with a 80%,10%,10%
split). Further details on the construction of this dataset are provided in the Appendix.

The task consists of learning a mapping from strings to trees, and using this learned mapping to
recover the tree structure of the test set examples, given only their flattened representation. To
do so, we use an encoder-decoder framework, where the strings are mapped to a fixed-size vector
representation using a recurrent neural network. For the decoder, we use a DRNN with LSTM
modules, which given the encoded representation generates a tree. We choose hyper-parameters
with cross-validation. Full training details are provided in the Appendix.

Measuring performance only in terms of exact recovery would likely yield near-zero accuracies for
most trees. Instead, we opt for a finer-grained metric of tree similarity that gives partial credit for
correctly predicted subtrees. Treating tree generation as a retrieval problem, we evaluate the quality
of the predicted tree in terms of the precision and recall of recovering nodes and edges present in
the gold tree. Thus, we penalize both missing and superfluous components. As baseline, we induce
a probabilistic context-free grammar (PCFG) on the full training data and use it to parse the test
sentences. Note that unlike the DRNN, this parser has direct access to the sentence representation
and thus its task is only to infer the tree structure on top of it, so this is indeed a strong baseline.

Figure [3] shows the results on the test set. Training on the full data yields node and edge retrieval
F1-Scores of 75% and 71%, respectively, the latter considerably above the baselineﬂ This 4% gap
can be explained by correct nodes being generated in the wrong part of the tree, as in the example in

4Since the PCFG parser has access to the nodes by construction, node accuracy for the baseline method is
irrelevant and thus omitted from the analysis.
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Figure 3: Left: F1-Score for models trained on randomly sampled subsets of varying size, averaged
over 5 repetitions. Right: Node (first column) and edge (second) precision as a function of tree size.

1.0 1.0

08 mmm Node 08 mmm Node
N Edge N Edge
5 §
S 086 S 06
§ . § - i i i i
I ii |1
0.2
Tree Depth (# nodes) Tree Width (# nodes)

Figure 4: Node and edge precision as a function of tree depth (left figure) and width (right).

Figure[2] The second plot in Figure[3|shows that although small trees are recovered more accurately,
precision decays slowly with tree size, with depth accounting for the largest effect (Figure ).

4.2 MAPPING SENTENCES TO FUNCTIONAL PROGRAMS

Tree structures arise naturally in the context of programs. A typical compiler takes human-readable
source code (expressed as sequences of characters) and transforms it into an executable abstract
syntax tree (AST). Source code, however, is already semi-structured. Mapping natural language
sentences directly into executable programs is an open problem, which has received considerable
interest in the natural language processing community (Kate et al., [ 2005; Branavan et al.| 2009).

The IFTTT dataset (Quirk et al., [2015) is a simple testbed for language-to-program mapping. It
consists of if-this-then-that programs (called recipes) crawled from the IFTTT websiteﬂ paired with
natural language descriptions of their purpose. The recipes consist of a trigger and an action, each
defined in terms of a channel (e.g. “Facebook”), a function (e.g. “Post a status update”) and poten-
tially arguments and parameters. An example of a recipe and its description are shown in Figure [5]
The data is user-generated and extremely noisy, which makes the task significantly challenging.

Swww.ifttt.com

Recipe “Save photos you're tagged in on Facebook to Dropbox”
IF (TRIGGER) THEN (ACTION)
(b) Functions You_are_tagged_in_a_photo Add_file_from_URL
ile_URL ile_name Dropbox_Folder_Path
(¢) Arguments [ File_URL [ File_name ] [ ropbox_Folder Pa ]

“{{CreatedAt}}}

(b) Parameters {{ImageSource}}} - {{From}}) - {{Pacebook}}}

{{Caption}}”

Figure 5: Example recipe from the IFTTT dataset. The description (above) is a user-generated
natural language explanation of the if-this-then-that program (below).


www.ifttt.com
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Table 1: Results on the IFTTT task. Left: non-English and unintelligible examples removed (2,262
recipes). Right: examples for which at least 3+ humans agree with gold (758 recipes).

Method Channel +Func F1 Method Channel +Func F1
retrieval 36.8 254 49.0 retrieval 433 32.3 56.2
phrasal 27.8 164 399 phrasal 372 235 45.5
sync 26.7 15.4 37.6 sync 36.5 23.5 45.5
classifier 64.8 47.2 56.5 classifier 79.3 66.2 65.0
posclass 67.2 50.4 57.7 posclass 81.4 71.0 66.5
SEQ2SEQ 68.8 50.5 60.3 SEQ2SEQ 87.8 75.2 73.7
SEQ2TREE 69.6 514 60.4 SEQ2TREE 89.7 78.4 74.2
GRU-DRNN 70.1 51.2 62.7 GRU-DRNN 89.9 77.6 74.1
LSTM-DRNN 74.9 543  65.2 LSTM-DRNN 90.1 78.2 77.4

We approach this task using an encoder-decoder framework. We use a standard RNN encoder, either
an LSTM or a GRU (Cho et al.| |2014), to map the sentence to a vector representation, and we use
a DRNN decoder to generate the AST representation of the recipe. We use the original data split,
which consists of 77,495 training, 5,171 development and 4,294 test examples. For evaluation, we
use the same metrics as|Quirk et al.|(2015), who note that computing exact accuracy on such a noisy
dataset is problematic, and instead propose to evaluate the generated AST in terms of Fl-score on
the set of recovered productions. In addition, they compute accuracy at the channel level (i.e. when
both channels are predicted correctly) and at the function level (both channels and both functions
predicted correctly).

We compare our methods against the various extraction and phrased-based machine translation base-
lines of |Quirk et al.| (2015) and the the methods of Dong & Lapatal (2016): SEQ2SEQ, a sequence-
to-sequence model trained on flattened representations of the AST, and SEQ2TREE, a token-driven
hierarchical RNN. Following these two works, we report results on two noise-filtered subsets of the
data: one with all non-English and unintelligible recipes removed and the other one with recipes
for which at least three humans agreed with the gold AST. The results are shown in Table [I| In
both subsets, DRNNs perform on par or above previous approaches, with LSTM-DRNN achieving
significantly better results. The improvement is particularly evident in terms of F1-score, which is
the only metric used by previous approaches that measures global tree reconstruction accuracy. To
better understand the quality of the predicted trees beyond the function level (i.e. (b) in Figure [5),
we computed node accuracy on the arguments level. Our best performing model, LSTM-DRNN,
achieves a Macro F1 score of 51% (0.71 precision, 0.40 recall) over argument nodes, which shows
that the model is reasonably successful at predicting structure even beyond depth three. The best
performing alternative model, SEQ2TREE, achieves a corresponding F1 score of 46%.

4.3 MACHINE TRANSLATION

In our last set of experiments, we offer a qualitative evaluation DRNNSs in the context of machine
translation. Obtaining state-of-the-art results in machine translation requires highly-optimized ar-
chitectures and large parallel corpora. This is not our goal. Instead, we investigate whether decoding
with structure can bring benefits to a task traditionally approached as a sequence-to-sequence prob-
lem. For this reason, we consider a setting with limited data: a subset of the WMT14 dataset
consisting of about 50K English <+ French sentence pairs (see the Appendix for details) along with
dependency parses of the target (English) side.

We train a sequence-to-tree model using an LSTM encoder and a DRNN decoder as in the previous
experiments. A slight modification here is that we distinguish left and right children in the tree,

using two symmetric width-modules g{, g{% that produce children from the parent outwards. With
this, children are lexically ordered, and therefore trees can be easily and un-ambiguously projected
back into sentences. We compare our model against a sequence-to-sequence architecture of similar
complexity (in terms of number of parameters) trained on the same data using the optimized Open-
NMT library (Klein et al.|[2017). For decoding, we use a simple best-of-k sampling scheme for our
model, and beam search for the SEQ2SEQ models.



Published as a conference paper at ICLR 2017

DRNN “ produit différentes réponses qui . S .
| -]+ + + produi P q «
(Small) m Source  changent avec le temps selon nos Je ne sais jamais 9},10‘
= . - dire dans ces cas 12
expériences et nos relations
DRNN
(Large) ﬂ] SR A SEQ2SEQ:
=1 a 1
S?ﬁi?ngg - E o N I =4  with the different actions Ido

I =8  with the different actions who change with T do not know what to say

Seq2Seq DRNN:
Smay b - 1 de1

answers know
0 20 40 60 80 100 d =2  different answers change but i do not know
Log-Likelihood relative change (%) d =3  product the different answers change . but i do not know to say

Figure 6: Likelihood change un- Table 2: Translations at different resolutions (size constraints im-
der target structural perturbation. posed during decoding) for two example sentences.

First, we analyze the quality of translations as a function of the maximum allowed target sentence
“size”. The notion of size for a sequence decoder is simply the /length while for DRNN we use
depth instead so as to tap into the inherent granularity at which sentences can be generated from
this architecture. Two such examples are shown in Table[2] Since DRNN topology has been trained
to mimic dependency parses top-down, the decoder tends to first generate the fundamental aspects
of the sentence (verb, nouns), leaving less important refinements for deeper structures down in the
tree. The sequence decoder, in contrast, is trained for left-to-right sequential generation, and thus
produces less informative translations under max-length restrictions.

In our second experiment we investigate the decoders’ ability to entertain natural paraphrases of
sentences. If we keep the semantic content of a sentence fixed and only change its grammatical
structure, it is desirable that the decoder would assign nearly the same likelihood to the new sentence.
One way to assess this invariance is to compare the relative likelihood that the model assigns to the
gold sentence in comparison to its paraphrase. To test this, we take 50 examples from the WMT
test split and manually generate paraphrases with various types of structural alterations (see details
in the Appendix). For each type of decoder, we measure the relative change (in absolute value) of
the log-likelihood resulting from the perturbation. All the models we compare have similar standard
deviation (40 £ 20) of log-likelihood scores over these examples, so the relative changes in the
log-likelihood remain directly comparable. For each architecture we train two versions of different
sizes, where the sizes are balanced in terms of the number of parameters across the architectures. The
results in Figure [6] show that DRNN’s exhibit significantly lower log-likelihood change, suggesting
that, as language models, they are more robust to natural structural variation than their SEQ2SEQ
counterparts.

5 DISCUSSION AND FUTURE WORK

We have presented doubly recurrent neural networks, a natural extension of (sequential) recurrent
architectures to tree-structured objects. This architecture models the information flow in a tree with
two separate recurrent modules: one carrying ancestral information (received from parent and passed
on to offspring) and the other carrying fraternal information (passed from sibling to sibling). The
topology of the tree is modeled explicitly and separately from the label prediction, with modules
that given the state of a node predict whether it has children and siblings.

The experimental results show that the proposed method is able to predict reasonable tree structures
from encoded vector representations. Despite the simple structure of the IFTTT trees, the results
on that task suggest a promising direction of using DRNNs for generating programs or executable
queries from natural language. On the other hand, the results on the toy machine translation task
show that even when used to generate sequences, DRNN’s exhibit desirable properties, such as in-
variance over structural modifications and the ability to perform coarse-to-fine decoding. In order
to truly use this architecture for machine translation, the approach must be scaled by resorting to
batch processing in GPU. This is possible since forward and backward propagation are computed
sequentially along tree traversal paths so that inputs and hidden states of parents and siblings can be
grouped into tensors and operated in batch. We leave this as an avenue for future work.
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A VARIATIONS ON TOPOLOGY PREDICTION

Besides the topology prediction approach presented in Section we experimented with two addi-
tional variations of the proposed doubly-recurrent neuron: (i) using tokens to trigger both depth and
width termination (i.e. implicit topology prediction) and (ii) using tokens for width-stopping deci-
sion, but predict explicitly depth termination (single topology prediction). Recall that in the model
proposed in Section [3.1] both decisions are explicit (double topology prediction). The neurons in
each of these alternative formulations are depicted in Figure[7] In order to train these two alternative
models, we add special stopping tokens to the vocabulary, and we pad the training with additional
nodes labeled with this token. Besides requiring larger trees and resulting in slower training, we
empirically observed alternatives (i) and (ii) to result in worse performance. We hypothesize that
this has to do with the fact that when using token-based stopping, topological and label prediction
decisions are confounded, which results in less efficient learning.

\_,)

Figure 7: A single unit in each of the three alternative versions of the doubly-recurrent neural net-
work, for node 7 with parent p and sibling s. Left: No explicit topology prediction, Middle: single
(ancestral) topology prediction, Right: double (ancestral and fraternal) topology prediction. The top
(left) incoming arrows represent the input and state received from the parent node (previous node,
respectively).

B TRAINING DETAILS

B.1 BACKPROPAGATION WITH DRNN’S

During training, we do the forward pass over the trees in breadth-first preorder, feeding into every
node an ancestral and a fraternal state. For computational efficiency, before passing on the ancestral
state to the offspring, we update it through the RNN using the current node’s label, so as to avoid
repeating this step for every child node. After the forward pass is complete, we compute label
(cross-entropy) and topological (binary cross-entropy) loss for every node. In the backward pass,
we compute in this order:

1. Gradient of the current node’s label prediction loss with respect to softmax layer parameters
W, v, vl VoLl(x;,%;).

2. Gradients of topological prediction variable loss with respect to sigmoid layer parameters:
VoL(p{,t7) and VoL(p/, t]).

3. Gradient of predictive state layer parameters with respect to h(P"¢d)

4. Gradient of predicted ancestral and fraternal hidden states with respect to g/ and g*’s pa-
rameters.

The gradients of the input ancestral and fraternal hidden states are then passed on to the previous
sibling and parent. When nodes have more than one child, we combine gradients from multiple
children by averaging them. This procedure is repeated until the root note is reached, after which a
single (ancestral state) gradient is passed to the encoder.

12
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B.2 MODEL SPECIFICATION AND TRAINING PARAMETERS

The best parameters for all tasks are chosen by performance on the validation sets. We perform
early stopping based on the validation loss. For the IFTTT task, we initialize word embeddings
with pretrained G1loVe vectors (Pennington et al., [2014). For both tasks we clip gradients when
the absolute value of any element exceeds 5. We regularize with a small penalty p on the I, norm
of the parameters. We train all methods with ADAM (Kingma & Ba, [2014), with initial learning
rate chosen by cross-validation. The parameter configurations that yielded the best results and were
used for the final models are shown in Table[3l Details about the four models used for the machine
translation task are shown in Table [4]

Table 3: Hyperparameter choice for DRNNs in the synthetic and IFTTT tasks

Task Encoder Dim Batch Learning Rate Regularization p
synthetic =~ LSTM 50 20 0.05 1x107°
IFTTT GRU 150 35 0.06 1x107*
IFTTT  LSTM 150 35 0.05 5x107*

Table 4: Models used in the machine translation task.

Model | Encoder Decoder Dim RNN Layers Batch
SEQ2SEQ (Small) LSTM LSTM 150 1 64
SEQ2SEQ (Large) LSTM LSTM 300 3 64
DRNN (Small) LSTM DRNN-GRU (Left-Right) 150 1 32
DRNN (Large) LSTM DRNN-GRU (Left-Right) 300 1 32

C DATASET DETAILS

C.1 SYNTHETIC TREE DATASET GENERATION

We generate trees in a top-down fashion, conditioning the label and topology of every node on
the state of its ancestors and siblings. For simplicity, we use a Markovian assumption on these
dependencies, modeling the probability of a node’s label as depending only on the label of its parent
p(4) and the last sibling s(7) generated before it (if any). Conditioned on these two inputs, we model
the label of the node as coming from a multinomial distribution over the alphabet:

P(w; | T) = P(w | wy(iy, ws(ay) ~ Multi(@wpm}wsm) ©)

where 0y, ;) w,;, are class probabilities drawn from a Dirichlet prior with parameter a,. On the
other hand, we denote by b{ the binary variable indicating whether node 7 has descendants, and by

blf that indicating whether it has an ensuing sibling. We model these variables as depending only on
the label of the current node and its position in the tree:

P} | T) = P(b | wi, D;) = Bernoulli(pj,. - g*(D;))
P! | T) = P(b! | w;, W;) = Bemnoulli(p!, - g (W;))

where D; is the depth of node 7 and W; its width, defined as its position among the children of its par-
ent p(i). Intuitively, we want to make P(by = 1|7 ) decrease as we go deeper and further along the
branches of the tree, so as to control its growth. Thus, we model g® and gf as decreasing functions
with geometric decay, namely g*(D) = (v*)? and gf (W) = (v/), with v, 47 € (0,1). For the
label-conditioned branching probabilities P(b¢ | w;) and P (b{ | w;), we use Bernoulli distributions
with probabilities drawn from beta priors with parameters (a®, 3%) and (af, 37), respectively.

In summary, we use the following generative procedure to grow the trees:
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1. For each w; € V, draw p%_ ~ Beta(a®, %) and pJ, ~ Beta(a/, 87)
2. For each pair (w;, w;) draw 0., ,,, ~ Dir(a")
3. While there is an unlabeled non-terminal node 7 do:
e Sample a label for i from w* ~ P(w|wp(iy, W) = Multi(@w, ) w, ;) )-
e Draw b, ~ P(b%|w*, D) = Bernoulli(y? ~p$)(i)), where D is the current depth. If
b* = 1, generate an node k, set p(k) = i, and add it to the queue.

e Draw b, ~ P(b/|w*, D) = Bernoulli('y}/v -pf:(i)), where W is the current width. If

bf = 1, generate an node k, set s(k) = 14, and add it to the queue.

Note that this generative process does create a dependence between the topology and content of the
trees (since the variables b and b/ depend on the content of the tree via their dependence on the
label of their corresponding node). However, the actual process by which labels and topological
decision is generated relies on separate mechanisms. This is natural assumption which is reasonable
to expect in practice.

The choice of prior parameters is done drawing inspiration from natural language parse trees. We
want nodes to have low but diverse probabilities of generating children, so we seek a slow-decaying
distribution with most mass allocated in values close to 0. For this, we use (a®, %) = (0.25,1). For
sibling generation, we use (af, 37) = (7,2), which yields a distribution concentrated in values close
to 1, so that nodes have on average a high and similar probability of producing siblings. Since we
seek trees that are wider than they are deep, we use decay parameters 7y, = 0.6,y = 0.9. Finally,
we use a o, = 10 - 1 for the parent-sibling probability prior, favoring non-uniform interactions.
Using this configuration, we generate 5000 sentence-tree pairs, which we split into training (4000
examples), validation (500) and test (500) sets. The characteristics of the trees in the dataset are
summarized in Table

Table 5: Synthetic tree dataset statistics. Tree size is measured in number of nodes, depth is the
largest path from the root node to a leaf and width is the maximum number of children for any node
in the tree. The values reported correspond to means with one standard deviation in parentheses.

Fold Examples Size Depth Width

train 4000 3.94 (3.38) 1.42(0.66) 2.89(1.71)
dev 500 4.13(3.21) 1.46 (0.67) 2.91(1.76)
test 500 3.64 (3.21) 1.32(0.61) 2.80(1.71)

C.2 IFTTT

The IFTTT dataset comes with a script to generate the data by crawling and parsing the recipes.
Unfortunately, by the time we ran the script many recipes had been removed or changed. We there-
fore resorted to the original dataset used by Quirk et al.| (2015). We converted these recipes into
our tree format, assigning a node to each element in the first three levels (channels, functions and
arguments, see figure [5). For the parameters level, many recipes have sentences instead of single
tokens, so we broke these up creating one node per word. The last two layers are therefore the most
topologically diverse, whereas the structure of the first two layers is constant (all trees have channels
and functions). A very small fraction (< 1%) of trees that could not by parsed into our format was
excluded from the dataset.

Table [6] shows various statistics about the topological characteristics of the recipes in the IFTTT
dataset. The middle columns show percentage of trees that contain nonempty arguments and param-
eters in trigger (IF) and action (THEN) branches. Almost all recipes have none empty arguments and
parameters (and thus depth 4, excluding the root), and a lower percentage—but still a majority—has
arguments and parameters on the trigger side too. The last two columns show tree statistics pertain-
ing to the complexity of trees after conversion to our format. The distribution of tree sizes is mostly
concentrated between 4 and 30 nodes, with a slow-decaying tail of examples above this range (see

Figure|[g).
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Table 6: IFTTT dataset statistics. The middle columns show percentage of trees that contain
nonempty arguments and parameters in trigger (IF) and action (THEN) branches. The last column
shows average (with standard deviation) tree size and depth.

Has args. (%) Has params. (%) Tree Size
Fold Examples
Trigger Action Trigger  Action # Nodes Depth
train 67,444 69.10  98.46 65.47 96.77 16.93 (31.71)  3.99 (.13)
dev 4,038 69.44  98.46 66.42 96.31 16.55 (8.75) 3.99 (.11)
test 3,725 68.38  98.66 65.64 97.50 16.43 (8.18) 3.99 (.12)
Dev Test Train
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Figure 8: Tree size distribution in the IFTTT dataset.

Regarding the content of the trees, the labels of the nodes in the first two levels (channels and
functions) come from somewhat reduced vocabularies: 111 and 434 unique symbols for the trigger
branch, respectively, and 157 and 85 for the action branch. The lower layers of the tree have a much
more diverse vocabulary, with about 60K unique tokens in total. On the source side, the vocabulary
over the sentence descriptions is large too, with about 30K unique tokens. The average sentence size
is 6.07 tokens, with 80% of the sentences having at most 12 tokens.

C.3 MACHINE TRANSLATION

Starting from a preprocessecﬂ 2% sub-selection of the English-French section of the WMT14
dataset, we further prune down the data by keeping only sentences of length between 5 and 20
words, and for which every word is within the 20K most frequent. The reason for this is to simplify
the task by keeping only common words and avoiding out-of-vocabulary tokens. After this filtering,
we are left with 53,607, 918 and 371 sentences for train, validation and test sets. After tokenizing,
we obtain dependency parses for the target (English) sentences using the Stanford CoreNLP toolkit
(Manning et al.l 2014)).

For the perturbation experiments, we randomly selected 50 sentences from among those in the test
that could be easily restructured without significantly altering their meaning. The type of alterations
we perform are: subordinate clause swapping, alternative construction substitution, passive/active
voice change. In doing this, we try to keep the number of added/deleted words to a minimum, to
minimize vocabulary-induced likelihood variations. When inserting new words, be verify that they
are contained in the original vocabulary of 20K words. In Table[7] we show a few examples of the
source, original target and perturbed target sentences.

Shttp://www-lium.univ-lemans.fr/ schwenk/cslm_joint_paper/
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Table 7: Example structural perturbations for likelihood robustness experiments.

source “apres un accord de paix signe en 1992 elle est devenue un parti d opposition.”
target “after a 1992 peace deal it became an opposition party.”
perturbation “it became an opposition party after a 1992 peace deal.”
source “cela représente environ 9 milliards de grains de mais.”
target “that’s about 9 billion individual kernels of corn.”
perturbation “this amounts to about 9 billion kernels of corn.”
source “I’exercice de fonctions publiques est une question de service public.”
target “public office is about public service.”
perturbation “the exercise of public functions is a matter of public service.”
source “nous avons ainsi effectué depuis la fin de I’hiver dernier 64 interventions.”
target “hence we have carried out 64 operations since last winter.”
perturbation “we have therefore carried out 64 operations since last winter.”
source “on estime qu’un enfant sur 2000 nés chaque année n’est ni un garcon ni une fille.”
target “an estimated one in 2000 children born each year is neither boy nor girl.”
perturbation  “it is estimated that one in every 2000 children born every year is neither a boy nor a girl.”
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D ADDITIONAL EXAMPLE GENERATED TREES
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Figure 9: Selected trees generated by the DRNN decoder from vector-encoded descriptions for test
examples of the synthetic tree dataset. Trees in the same row correspond to predictions by models
trained on randomly sampled subsets of size IV of the training split. We present cases for which the
prediction is accurate (a,c) and cases for which it is not (b,d). Note how in (d) the model predicts
many of the labels correctly, but confuses some of the dependencies (edges) in the tree.
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