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ABSTRACT

The vast majority of natural sensory data is temporally redundant. For instance,
video frames or audio samples which are sampled at nearby points in time tend to
have similar values. Typically, deep learning algorithms take no advantage of this
redundancy to reduce computations. This can be an obscene waste of energy. We
present a variant on backpropagation for neural networks in which computation
scales with the rate of change of the data - not the rate at which we process the
data. We do this by implementing a form of Predictive Coding wherein neurons
communicate a combination of their state, and their temporal change in state,
and quantize this signal using Sigma-Delta modulation. Intriguingly, this simple
communication rule give rise to units that resemble biologically-inspired leaky
integrate-and-fire neurons, and to a spike-timing-dependent weight-update similar
to Spike-Timing Dependent Plasticity (STDP), a synaptic learning rule observed
in the brain. We demonstrate that on MNIST, on a temporal variant of MNIST,
and on Youtube-BB, a dataset with videos in the wild, our algorithm performs
about as well as a standard deep network trained with backpropagation, despite
only communicating discrete values between layers.

1 INTRODUCTION

Currently, most algorithms used in Machine Learning work under the assumption that data points are
independent and identically distributed, as this assumption provides good statistical guarantees for
convergence. This is very different from the way data enters our brains. Our eyes receive a single,
never-ending stream of temporally correlated data. We get to use this data once, and then it’s gone.
Moreover, most sensors produce sequential, temporally redundant streams of data. This can be both a
blessing and a curse. From a statistical learning point of view this redundancy may lead to biased
estimators when used to train models which assume independent and identically distributed input data.
However, the temporal redundancy also implies that intuitively not all computations are necessary.

Online Learning is the study of how to learn in this domain - where data becomes available in
sequential order and is given to the model only once. Given the enormous amount of sequential data,
mainly videos, that are being produced nowadays, it seems desirable to develop learning systems
that simply consume data on-the-fly as it is being generated, rather than collect it into datasets for
offline-training. There is, however a problem of efficiency, which we hope to illustrate with two
examples:

1. CCTV feeds. CCTV Cameras collect an enormous amount of data from mostly-static scenes.
The amount of new information in a frame, given the previous frame, tends to be low, i.e.
the data tends to be temporally redundant. If we want to train a model from of this data (for
example a pedestrian detector), we need to process a large amount of mostly-static frames.
If the frame rate doubles, so does the amount of computation. Intuitively, it feels that this
should not be necessary. It would be nice to still be able to use all this data, but have the
amount of computation scale with the amount of new information in each frame, not just the
number of frames and dimensions of the data.
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2. Robot perception. Robots have no choice but to learn online - their future input data (e.g.
camera frames) are dependent on their previous predictions (i.e. motor actions). Not only
does their data come in nonstationary temporal streams, but it typically comes from several
sensors running at different rates. The camera may produce 1MB images at 30 frames/s,
while the gyroscope might produce 1-byte readings at 1000 frames/s. It is not obvious,
using current methods in deep learning, how we can integrate asynchronous sensory signals
into a unified, trainable, latent representation, without undergoing the inefficient process of
recomputing the function of the network every time a new signal arrives.

These examples point to the need for a training method where the amount of computation required to
update the model scales with the amount of new information in the data, and not just the dimensionality
of the data.

There has been a lot of work on increasing the computational efficiency of neural networks by
quantizing neural weights or activations (see Section 4), but comparatively little work on exploiting
redundancies in the data to reduce the amount of computation. O’Connor and Welling (2016b),
set out to exploit the temporal redundancy in video by having neurons only send their quantized
changes in activation to downstream neurons, and having the downstream neurons integrate these
changes over time. This approach (take the temporal difference, multiply by weights, temporally
integrate) works for efficiently approximating the function of the network, but fails for training. The
reason for this failure is that when the weights are functions of time, we no longer reconstruct the
correct activation for the next layer. In other words, given a sequence of inputs x0...xt with x0 = 0
and weights w1...wt:

∑t
τ=1(xτ − xτ−1) · wτ 6= xt · wt unless wt = w0∀t. Figure 2 describes the

problem visually.

In this paper, we correct for this problem by encoding a mixture of two components of the layers
activation xt: the proportional component kpxt, and the derivative component kd(xt − xt−1).
When we invert this encoding scheme, we get a decoding scheme which corresponds to taking an
exponentially decaying temporal average of past inputs. Interestingly, the resulting neurons begin to
resemble models of biological spiking neurons, whose membrane potentials can approximately be
modeled as an exponentially decaying temporal average of past inputs.

In this work, we present a scheme wherein the temporal redundancy of input data is used to reduce the
computation required to train a neural network. We demonstrate this on the MNIST and Youtube-BB
datasets. To our knowledge we are the first to create a neural network training algorithm which uses
less computation as data becomes more temporally redundant.

2 METHODS

We propose a coding scheme where neurons can represent their activations as a temporally sparse
series of impulses. The impulses from a given neuron encode a combination of the value and the rate
of change of the neuron’s activation.

While our algorithm is designed to work efficiently with temporal data, we do not aim to learn
temporal sequences in this work. We aim to efficiently approximate a function yt = f(xt), where
the current target yt is solely a function of the current input xt, and not previous inputs x0...xt−1.
The temporal redundancy between neighbouring inputs xt−1, xt will however be used to make our
approximate computation of this function more efficient.

2.1 PRELIMINARY

Throughout this paper we will use the notation (f3 ◦ f2 ◦ f1)(x) = f3(f2(f1(x))) to denote function
composition. We slightly abuse the notion of functions by allowing them to have an internal state
which persists between calls. For example, we define the ∆ function in Equation 1 as being the
difference between the inputs in two consecutive calls (where persistent variable xlast is initialized to
0). The Σ function, defined in Equation 2, returns a running sum of the inputs over calls. So we can
write, for example, that when our composition of functions (Σ ◦∆) is called with a sequence of input
variables x1...xt, then (Σ◦∆)(xt) = xt, because (x1−x0)+(x2−x1)+...+(xt−xt−1)|x0=0 = xt.
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In general, when we write yt = f(xt), where f is a function with persistent state, it will be implied
that we have previously called f(xτ ) for τ ∈ [1, .., t− 1] in sequence. Variable definitions that are
used later will be highlighted in blue. While all terms are defined in the paper, we encourage the
reader to refer to Appendix A for a complete collection of definitions and notations.

2.2 POSITION-DERIVATIVE (PD) ENCODING

∆ :x 7→ y; Persistent: xlast ← 0

y ← x− xlast
xlast ← x

(1)

Σ :x 7→ y; Persistent: y ← 0

y ← y + x
(2)

Q :x 7→ y; Persistent: φ← 0

φ′ ← φ+ x

y ← round(φ′)

φ← φ′ − y

(3)

enc :x 7→ y; Persistent: xlast ← 0

y ← kpx+ kd(x− xlast)
xlast ← x

(4)

dec :x 7→ y; Persistent: y ← 0

y ← x+ kdy

kp + kd

(5)

R :x 7→ round(x) (6)

Suppose a neuron has time-varying acti-
vation x1..xt. Taking inspiration from
Proportional-Integral-Derivative (PID) con-
trollers, we can “encode” this activation
at each time step as a combination of its
current activation and change in activation
as at , enc(xt) = kpxt + kd(xt − xt−1), (see
Equation 4). The parameters kp and kd deter-
mine what portion of our encoding represents
the value of the activation and the rate of change
of that value, respectively. In Section 4, we dis-
cuss how this is a form of Predictive Coding and
in Appendix E, we discuss the effect our choices
for these parameters have on the network.

To derive our decoding formula, we can sim-
ply solve for xt as xt = at+kdxt−1

kp+kd
(Equation

5), such that (dec ◦ enc)(xt) = xt. Notice that
Equation 5 corresponds to decaying the previous
decoder state by some constant kd/(kp + kd)
followed by adding the input at/(kp + kd).
We can expand this recursively to see that this
corresponds to a temporal convolution a ∗ κ
where κ is a causal exponential kernel κτ ={

1
kp+kd

(
kd

kd+kp

)τ
if τ ≥ 0 otherwise 0

}
.

2.3 QUANTIZATION

Our motivation for the aforementioned encoding
scheme is that we want a sparse signal which can
be quantized into a low bitrate discrete signal.
This will later be used to reduce computation. We can quantize our signal at into a sparse, integer
signal st , Q(at), where the quantizer Q is defined in Equation 3. Equation 3 implements a form of
Sigma-Delta modulation, a method widely used in signal processing to approximately communicate
signals at low bit rates (Candy and Temes, 1962). We can show that Q(xt) = (∆ ◦R ◦ Σ)(xt) (see
Supplementary Material Section C), where ∆ ◦R ◦ Σ indicates applying a temporal summation, a
rounding, and a temporal difference, in series. If xt is temporally redundant and we set kp to be small,
then |at| � 1∀t, and we can expect st to consist of mostly zeros with a few 1’s and -1’s.

We can now approximately reconstruct our original signal xt as x̂t , dec(st) by applying our
decoder, as defined in Equation 5. As our coefficients kp, kd become larger, our reconstructed signal
x̂t should become closer to the original signal xt. We illustrate examples of encoded signals and their
reconstructions for different kp, kd in Figure 1.

2.3.1 SPECIAL CASES

We can compactly write the entire reconstruction function as x̂ = (dec ◦∆ ◦R ◦ Σ ◦ enc)(xt).

kp = 0: When kp = 0, we get dec(xt) = (k−1
d ◦ Σ)(xt) and enc(xt) = (kd ◦ ∆)(xt), so our

reconstruction reduces to x̂ = (k−1
d ◦Σ ◦∆ ◦R ◦Σ ◦ kd ◦∆)(xt). Because Σ ◦ kd ◦∆ all commute

with one another, we can simplify this to x̂t = (k−1
d ◦ R ◦ kd)(xt). so our decoded signal is
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Figure 1: An example signal xt (blue), encoded with kp varying across rows and kd varying across
columns. st (black) is the quantized signal produced by the successive application of encoding
(Equation 4) and quantization (Equation 3, where N indicates the total number of spikes. x̂t (orange)
is the reconstruction of xt produced by applying Equation 5 to st. One might, after a careful look
at this figure, ask why we bother with the proportional (kp) term at all? Figure 2 anticipates this
question and answers it visually.
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Figure 2: The problem with only sending changes in activation (i.e. kp = 0) is that during training,
weights change over time. Top: we generate random signals for a single scalar activation xt and scalar
weight wt. Row 2: We efficiently approximate zt by taking the temporal difference, multiplying by
wt then temporally integrating, to produce ẑt, as described in Section 2.4. As the weight wt changes
over time, our estimate ẑ diverges from the correct value. Rows 3, 4: Introducing kp allows us to
bring our reconstruction back in line with the correct signal.

x̂t = round(xt · kd)/kd, with no dependence on xt−1. This is visible in the bottom row of Figure 1.
This was the encoding scheme used in O’Connor and Welling (2016b).

kd = 0: In this case, dec(xt) = k−1
p xt and enc(xt) = kpxt so our encoding-decoding process

becomes x̂ = (k−1
p ◦∆ ◦R ◦ Σ ◦ kp)(xt). Neither our encoder nor our decoder have any memory,

and we take no advantage of temporal redundancy.

2.4 SPARSE COMMUNICATION BETWEEN LAYERS

The purpose of our encoding scheme is to reduce computation by sparsifying communication between
layers of a neural network. Our approach is to approximate the matrix-product as a series of additions,
where the number of additions is inversely proportional to the sparsity of the input data. Suppose we
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are trying to compute the pre-nonlinearity activation of the first hidden layer, zt ∈ Rdout , given the
input activation, xt ∈ Rdin . We approximate zt as:

zt , xt · wt ≈ x̂t · wt , dec(Q(enc(xt))) · wt , dec(st) · wt ≈ dec(st · wt) , ẑt

where: xt, x̂t ∈ Rdin ; st ∈ Zdin ;w ∈ Rdin×dout ; zt, ẑt ∈ Rdout
(7)

The first approximation comes from the quantization (Q) of the encoded signal, and the second
from the fact that the weights change over time, as explained in Figure 2. The effects of these
approximations are further explored in Appendix E.1.

Computing zt takes din ·dout multiplications and (din−1) ·dout additions. The cost of computing ẑt,
on the other hand, depends on the contents of st. If the data is temporally redundant, st ∈ Zdin should
be sparse, with total magnitude N ,

∑
i |st,i|. st can be decomposed into a sum of one-hot vectors

st =
∑N
n=1 sign(st,in) · γin : in ∈ [1..din ] where γin is a length-din one-hot vector with element

(γin)in = 1. The matrix product st · w can then be decomposed into a series of row additions:

st · w =

(
N∑
n=1

sign(st,in) · γin

)
· w =

N∑
n=1

sign(st,in)γin · w =

N∑
n=1

sign(st,in) · win,· (8)

If we include the encoding, quantization, and decoding operations, our matrix product takes a
total of 2din + 2dout multiplications, and

∑
n |st,n| · dout + 3din + dout additions. Assuming the∑

n |st,n| · dout term dominates, we can say that the relative cost of computing ẑt vs zt is:

cost(ẑ)

cost(z)
≈

∑
n |st,n| · cost(add)

din · (cost(add) + cost(mult))
(9)

2.5 A NEURAL NETWORK

We can implement this encoding scheme on every layer of a neural network. Given a standard neural
net fnn consisting of alternating linear (·wl) and nonlinear (hl) operations, our network function
fpdnn can then be written as:

fnn(x) = (hL ◦ ·wL ◦ ... ◦ h1 ◦ ·w1)(x) (10)
fpdnn(x) = (hL ◦ decL ◦ wL ◦QL ◦ encL ◦ ... ◦ h1 ◦ dec1 ◦ ·w1 ◦Q1 ◦ enc1)(x) (11)

We can use the same approach to approximately calculate our gradients to use in training. If we define
our layer activations as ẑl , (dec ◦ ·wl ◦Q ◦ enc)(x) if l = 1 otherwise (dec ◦ ·wl ◦Q ◦ enc)(ẑl−1),
and L , `(fpdnn(x), y), where ` is some loss function and y is a target, we can backpropagate the
approximate gradients as:

∂̂L
∂ẑl

=

{
∂L
∂zL

if l = L(
�h′l(ẑl) ◦ decbackl ◦ ·wTl+1 ◦Qbackl+1 ◦ encbackl+1

)
( ∂̂L
∂ẑl+1

) otherwise
(12)

This can be implemented by either executing a (sparse) forward and backward pass at each time-step,
or in an “event-based” manner, where the quantizers fire “events” whenever incoming events push
their activations past a threshold, and these events are in turn sent to downstream neurons. For ease of
implementation, we opt for the former in our code. Note that unlike in regular backprop, computing
these forward and backward passes results in changes to the internal state of the enc, dec, and Q
components.

2.6 PARAMETER UPDATES

There is no use in having an efficient backward pass if the parameter updates are not also efficient. In
a normal neural network trained with backpropagation and simple stochastic gradient descent, the
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Figure 3: A visualization of our efficient update schemes from Section 2.6. Top: A scalar signal
representing a presynaptic neuron activation xt = hl−1(zl − 1), its quantized version, x̄t = (Q ◦
enc)(xt), and its reconstruction x̂t = dec(x̄t). Middle: Another signal, representing the postsynaptic
gradient of the error e = ∂L

∂zl
, along with its quantized (ē) and reconstructed (ê) variants. Bottom:

The true weight gradient ∂L
∂wt

and the reconstruction gradient ∂̂L
∂wt

. At the time of the spike in ēt, we
have two schemes for efficiently computing the weight gradient that will be used to increment weight
(see Section 2.6). The past scheme computes the area under x̂ · ê since the last spike, and the future
scheme computes the total future additional area due to the current spike.

parameter update for weight matrix w has the form w ← w − η ∂L∂w where η is the learning rate. If w
connects layer l − 1 to layer l, we can write ∂L

∂w = xt ⊗ et where xt , hl−1(zl−1,t) ∈ Rdin is the
presynaptic (layer l − 1) activation, et , ∂L

∂zl,t
∈ Rdout is the postsynaptic (layer l) backpropagating

gradient and ⊗ is the outer product. So we require din · dout multiplications to update the parameters
for each sample.

We want a more efficient way to compute this product, which takes advantage of the sparsity of our
encoded signals to reduce computation. We can start by applying our encoding-quantizing-decoding
scheme to our input and error signals as x̄t , (Q ◦ enc)(xt) ∈ Zdin and ēt , (Q ◦ enc)(et) ∈ Zdout ,

and approximate our true update as ∂̂L
∂w recon,t

, x̂t ⊗ êt where x̂t , dec(x̄t) and êt , dec(ēt). This
does not do any good by itself, because the vectors involved in the outer product, x̂t and êt, are still
not sparse. However, we can exactly compute the sum of this value over time using one of two sparse
update schemes - past updates and future updates - which are depicted in Figure 3. We give the
formula for the Past and Future update rules in Appendix D, but summarize them here:

Past Updates: For a given synapse wi,j , if either the presynaptic neuron spikes (x̄ti 6= 0) or the
postsynaptic neuron spikes (ēti 6= 0), we increment the wi,j by the total area under x̂τ,iêτ,j since the
last spike. We can do this efficiently because between the current time and the time of the previous
spike, x̂τ,iêτ,j is a geometric sequence. Given a known initial value u, final value v, and decay rate
r, a geometric sequence sums to u−v

1−r . The area calculated is shown in pink on the bottom row of
Figure 3, and one algorithm to calculate it is in Equation 19 in Appendix D.

Future Updates: Another approach is to calculate the Present Value of the future area under the
integral from the current spike. This is depicted in the blue-gray area in Figure 3, and the formula is
in Equation 20 in Appendix D.

Finally, because the magnitude of our gradient varies greatly over training, we create a scheme for
adaptively tuning our kp, kd parameters to match the running average of the magnitude of the data.
This is described in detail in Appendix E.

2.7 RELATION TO STDP

An extremely attentive reader might have noted that Equation 20 has the form of an online implemen-
tation of Spike-Timing Dependent Plasticity (STDP). STDP (Markram et al., 2012) emerged from
neuroscience, where it was observed that synaptic weight changes appeared to be functions of the
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Classic STDP Rule

Figure 4: Left: Our STDP rule, when both the input and error spikes have the same sign. Middle:
Our STDP rule, when the input and error spikes have opposite signs. Right: The classic STDP rule
Markram et al. (2012), where the weight update is positive when a presynaptic spike preceeds a
postsynaptic spike, and negative otherwise.

relative timing of pre- and post-synaptic spikes. The empirically observed function usually has the
double-exponential form seen on the rightmost plot of Figure 4.

Using the quantized input signal x̄ and error signal ē, and their reconstructions x̂t and êt as defined in
the last section, we define a causal convolutional kernel κt =

{
kβ (kα)

t if t ≥ 0 otherwise 0
}

,

where kα ,= kd
kp+kd

, kβ , 1
kp+kd

. We can then define a “cross-correlation kernel” gt =

{κt if t ≥ 0 otherwise κ−t} = kβ(kα)|t| : t ∈ Z which defines the magnitude of a parameter
update as a function of the difference in timing between pre-synaptic spikes from the forward pass
and post-synaptic spikes from the backward pass. The middle plot of Figure 4 is a plot of g. We
define our STDP update rule as:

∂̂L
∂w t,STDP

=

( ∞∑
τ=−∞

x̄t−τgτ

)
⊗ ēt (13)

We note that while our version of STDP has the same double-exponential form as the classic STDP
rule observed in neuroscience (Markram et al., 2012), our “presynaptic” spikes come from the forward
pass while our “postsynaptic” spikes come from the backwards pass. STDP is not normally used to
as a learning rule networks trained by backpropagation, so the notion of forward and backward pass
with a spike-timing-based learning rule are new. Moreover, unlike in classic STDP, we do not have
the property that sign of the weight change depends on whether the presynaptic spike preceded the
postsynaptic spike.

In Section D in the supplementary material we show experimentally that while Equations ∂̂L
∂w recon

,
∂̂L
∂w past

, ∂̂L∂w future,
∂̂L
∂w stdp

may all result in different updates at different times, the rules are equivalent
in that for a given set of pre/post-synaptic spikes x̄, ē, the cumulative sum of their updates over time
converges exactly.

3 EXPERIMENTS

3.1 TEMPORAL MNIST

To evaluate our network’s ability to learn, we train it on the standard MNIST dataset, as well as
a variant we created called “Temporal MNIST”. Temporal MNIST is simply a reshuffling of the
MNIST dataset so that so that similar inputs (in terms of L2-pixel distance), are put together. Figure
6 shows several snippets of consecutive frames in the temporal MNIST dataset. We compare our
Proportional-Derivative Net against a conventional Multi-Layer Perceptron with the same architecture
(one hidden layer of 200 ReLU hidden units and a softmax output). The results are shown in Figure
5. Somewhat surprisingly, our predictor slightly outperformed the MLP, getting 98.36% on the test
set vs 98.25% for the MLP. We assume this improvement is due to the regularizing effect of the
quantization. On Temporal MNIST, our network was able to converge with less computation than it
required for MNIST (it used 32 · 1012 operations for MNIST vs 15 · 1012 for Temporal MNIST), but
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Figure 5: Top Row: Results on MNIST. Bottom Row: Re-
sults on Temporal MNIST. Left Column: the training and
test scores as a function of epoch. Middle: We now put the
number of computational operations on the x-axis. We see
that as a result our PDNN shifts to the left. Right: Because
our network computes primarily with additions rather than
multiplications. When we multiply our operation counts
with the estimates of Horowitz (2014) for the computational
costs of arithmethic operations (0.1pJ for 32-bit fixed-point
addition vs 3.2pJ for multiplication), we can see that our
algorithm would be at an advantage on any hardware where
arithmetic operations were the computational bottleneck.

Figure 6: Some sam-
ples from the Temporal-
MNIST dataset. Each
column shows a snippet
of adjacent frames.

ended up with a slightly worse test score when compared with the MLP (the PDNN achieved 97.99%
vs 98.28% for the MLP). The slightly higher performance of the MLP on Temporal MNIST may be
explained by the fact that the gradients on Temporal MNIST tend to be correlated across time-steps,
so weights will tend to move in a single direction for a number of steps, which will interfere with the
PDNN’s ability to accurately track layer activations (see Figure 2). Appendix F contains a table of
results with varying hyperparameters.

3.2 YOUTUBE VIDEO DATASET

Next, we want to simulate the setting of CCTV cameras, discussed in Section 1, where we have a
lot of data with only a small amount of new information per frame. In the absence of large enough
public CCTV video datasets, we investigate the surrogate task of frame-based object classification on
wild YouTube videos from the large, recently released Youtube-BB dataset Real et al. (2017). Our
subset consists of 358 Training Videos and 89 Test videos with 758,033 frames in total. Each video is
labeled with an object in one of 24 categories.

We start from a VGG19 network (Simonyan and Zisserman, 2014): a 19-layer convolutional network
pre-trained on imagenet. We replace the top three layer with three of our own randomly initialized
layers, and train the network both as a spiking network, and as a regular network with backpropagation.
While training the entire spiking network end-to-end works, we choose to only train the top layers, in
order to speed up our training time.

We compare our training scores and computation between a spiking and non-spiking implementation.
The learning curves in Figure 7 show that our spiking network performs comparably to a non-spiking
network, and Figure 8 shows how the computation per frame of our spiking network decreases as
we increase the frame rate (i.e. as the input data becomes more temporally redundant). Because our
spiking network uses only additions, while a regular deep network does multiply-adds, we use the
estimated energy-costs per op of Horowitz (2014) to compare computations to a single scale, which
estimates the amount of energy required to do multiplies and adds in fixed-point arithmetic.
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Figure 8: We simulate different frame-rates by
selecting every n’th frame. This plot shows our
network’s mean computation over several snippets
of video, at varying frame rates. As our frame
rate increases, the computation per-frame of our
spiking network goes down, while with a normal
network, it remains fixed.

4 RELATED WORK

Noise-Shaping is a quantization technique that aims to increase the fidelity of signal reconstruc-
tions, per unit of bandwidth of the encoded signal, by quantizing the signal in such a way that the
quantization noise is pushed into a higher frequency band which is later filtered out upon decoding.
Sigma-Delta (also known as Delta-Sigma) quantization is a form of noise-shaping. Shin (2001) first
suggested that biological neurons may be performing a form of noise shaping, and Yoon (2017) found
standard spiking neuron models actually implement a form of Sigma-Delta modulation.

The encoding/decoding scheme we use in this paper can be seen as a form of Predictive Coding.
Predictive coding is a lossless compression technique wherein the predictable parts of a signal are
subtracted away so that just the unpredictable parts are transmitted. The idea that biological neurons
may be doing some form of predictive coding was first proposed by Srinivasan et al. (1982). In a
predictive-coding neuron (unlike neurons commonly used in Deep Learning), there is a distinction
between the signal that a neuron represents and the signal that it transmits. The neurons we use in this
paper can be seen as implementing a simple form of predictive coding where the “prediction” is that
the neuron maintains a decayed form of its previous signal - i.e. that pred(xt) ,

kd
kp+kd

xt−1 (See
Appendix B for detail). Chklovskii and Soudry (2012) suggest that the biological spiking mechanism
may be thought of as consisting of a sigma-delta modulator within a predictive-coding circuit.

To our knowledge, none of the aforementioned work has yet been used in the context of deep learning.

There has been sparse but interesting work on merging the notions of spiking neural networks and
deep learning. Diehl et al. (2015) found a way to efficiently map a trained neural network onto a
spiking network. Lee et al. (2016) devised a method for training integrate-and-fire spiking neurons
with backpropagation - though their neurons did not send a temporal difference of their activations.
O’Connor and Welling (2016a) created a method for training event-based neural networks - but their
method took no advantage of temporal redundancy in the data. Binas et al. (2016) and (O’Connor and
Welling, 2016b) both took the approach of sending quantized temporal changes to reduce computation
on temporally redundant data, but their schemes could not be used to train a neural network. Bohte
et al. (2000) showed how one could apply backpropagation for training spiking neural networks, but it
was not obvious how to apply the method to non-spiking data. Zambrano and Bohte (2016) developed
a spiking network with an adaptive scale of quantization (which bears some resemblance to our tuning
scheme described in Appendix E), and show that the spiking mechanism is a form of Sigma-Delta
modulation, which we also use here. Courbariaux et al. (2015) showed that neural networks could be
trained with binary weights and activations (we just quantize activations). Bengio et al. (2015) found
a connection between the classic STDP rule (Figure 4, right) and optimizing a dynamical neural
network, although the way they arrived at an STDP-like rule was quite different from ours (they
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frame STDP as a way to minimze an objective based on the rate of change of the real-valued state of
the network, whereas we use it approximately compute gradients based on spike-encodings of layer
activations).

5 DISCUSSION

We set out with the objective of reducing the computation in deep networks by taking advantage
of temporal redundancy in data. We described a simple rule (Equation 4) for sparsifying the
communication between layers of a neural network by having our neurons communicate a combination
of their temporal change in activation, and the current value of their activation. We show that it
follows from this scheme that neurons should behave as leaky integrators (Equation 5). When we
quantize our neural activations with Sigma-Delta modulation, a common quantization scheme in
signal processing, we get something resembling a leaky integrate-and-fire neuron. We derive efficient
update rules for the weights of our network, and show these to be related to STDP - a learning rule
first observed in neuroscience. Finally, we train our network, verify that it does indeed compute more
efficiently on temporal data, and show that it performs about as well as a traditional deep network of
the same architecture, but with significantly reduced computation. Finally, we show that our network
can train on real video data.

The efficiency of our approach hinges on the temporal redundancy of our input data and neural
activations. There is an interesting synergy here with the concept of slow-features (Wiskott, 1999).
Slow-Feature learning aims to discover latent objects that persist over time. If the hidden units
were to specifically learn to respond to slowly-varying features of the input, the layers in a spiking
implementation of such a network would have to communicate less often. In such a network, the
tasks of feature-learning and reducing inter-layer communication may be one and the same.

Code is available at github.com/petered/pdnn.
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A NOTATION

Here we present a legend of notation used throughout this paper. While the paper is intended to be
self-contained, the reader may want to consult this list if ever there is any doubt about the meaning of
a variable used in the paper. Here we indicate the section in which each symbol is first used.

Section 2.1

∆: A “temporal difference” operator. See Equation 1

Σ: A “temporal integration” operator. See Equation 2

Q: Sigma-Delta quantization. See Equation 3

φ: The internal state variable of the quantizer Q.

enc: An “encoding” operation, which takes a signal and encodes it into a combination of the signal’s
current value and its change in value since the last time step. See Equation 4.

dec: A “decoding” operation, which takes an encoding signal and attempts to reconstruct the original
signal that it was encoded from. If there was no quantization done on the encoded signal, the
reconstruction will be exact, otherwise it will be an approximation. See Equation 5.

R: The “rounding” operation, which simply rounds an input to the nearest integer value.

xt: Used throughout the paper to represent the value of a generic analog input signal at time t. In
Sections 2.1, 2.2, and 2.3 it represents a scalar, and thereafter it represents a vector of inputs.

Section 2.2

kp, kd ∈ R+: Positive scalar coefficients used in the encoder and decoder, controlling how the extent
to which the encoding is proportional to the input (kp) vs proportional to the temporal difference of
the input (kd).

at , enc(xt): Used to represent the encoded version of xt.

Section 2.3

st , Q(at): Used to represent the quantized, encoded version of xt.

x̂t , dec(st): Used to represent the reconstruction of input xt„ obtained by encoding, quantizing,
and decoding xt.

Section 2.4

wt ∈ Rdin×dout is the value of a weight matrix at time t.

zt , xt · wt ∈ Rdout is the value of a pre-nonlinearity hidden layer activation in a non-spiking
network at time t.

ẑt , dec(Q(enc(xt)) · wt) ∈ Rdout is the value of a pre-nonlinearity hidden layer activation in the
spiking network at time t. It is an approximation of zt.

Section 2.5

(·wl) indicates applying a function which takes the dot-product of the input with the l’th weight
matrix: (·wl)(x) , x · wl
hl indicates an elementwise nonlinearity (e.g. a ReLU).

Ql indicates the quantization step applied at the l’th layer (because quantization has internal state, φ,
and an associated layer dimension, we use the subscript to distinguish quantizers at different layers.)

decl, encl are likewise the (stateful) encoding/decoding functions applied before/after layer l.
∂L
∂zl

is the derivative of the loss with respect to the (pre-nonlinearity) activation of layer l.

(·wTl ) indicates the dot product with the transpose of wl. This is simply backpropagation across a
weight matrix: If u , x · wl, then ∂L

∂x = ∂L
∂u · w

T
l

12
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ẑl is the approximation to the (pre-nonlinearity) activation to layer l (ie the output of decl), computed
by the spiking network.

(�h′l(ẑl)) is a function that performs an elementwise multiplication of the input with the derivative of
nonlinearity hl evaluated at ẑl. This is simply backpropagation across a nonlinearity: If u , hl(x),
then ∂L

∂x = ∂L
∂u � h

′
l(x)

decbackl , encbackl , Qbackl serve the same functions as decl, encl, Ql, but for the backward pass.

∂̂L
∂ẑl
∈ Rdl Is our approximation to the derivative of the loss of our network with respect to ẑl, which

is itself an approximation of the activation zl in a non-spiking implementation of the network.

Section 2.6

In the updates section we describe how we calculate the weight gradients in layer l. Because this
description holds for any arbitrary layer, we get rid of the layer subscript and use the following
notation:

xt , hl−1(zl−1,t) ∈ Rdin here is defined as a shorthand for “the input to layer l”.

et , ∂̂L
∂ẑl,t

∈ Rdout is simply a shorthand for “the approximate backpropagated gradient at layer l”

(x̄t and ēt) are the encoded and quantized versions of signals (xt and et)

(x̂t and êt) are the reconstructed versions of signals (xt and et), taken from the quantized (x̄t and ēt)

∂̂L
∂w recon,t

, x̂t ⊗ êt ∈ Rdin×dout is the approximate gradient of weight matrix w, as calculated by
taking the outer product of the (input, error) reconstructions, x̂, ê.(
∂̂L
∂w past,t

, ∂̂L∂w future,t

)
are the gradient approximations at time t taken using the (past, future) ap-

proximation methods, defined in Appendix D. They are more efficient to calculate than ∂̂L
∂w recon,t

but converge to the same value when averaged over time (i.e. limT→∞
1
T

∑T
t
∂̂L
∂w future,t

=

1
T

∑T
t
∂̂L
∂w recon,t

(see Figure 9).

Section 2.7
∂̂L
∂w stdp,t

is the gradient approximation taken using the STDP-type update. It also converges to the

same value as ∂̂L
∂w recon,t

when averaged out over time.

kα , kd
kp+kd

∈ [0, 1], kβ , 1
kp+kd

∈ R+: A reparametrization of kp, kd in terms of the memory in
our decoder kα and the scaling of our encoded signal (kβ). This reparametrization is also used when
discussing the automatic tuning of kp, kd to match the dynamic range of our data in Appendix E

B RELATION TO PREDICTIVE CODING

Our encoding/decoding scheme is an instance of predictive coding - an idea imported from the signal
processing literature into neuroscience by Srinivasan et al. (1982) wherein the power of a transmitted
signal is reduced by subtracting away the predictable component of this signal before transmission,
then reconstructing it after (This requires that the encoder and decoder share the same prediction
model).

Bharioke and Chklovskii (2015) formulate feedforward predictive coding as follows (with variables
names changed to match the conventions of this paper):

13
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at , xt − Cfeedforward(xt−1, xt−2, ...) (14)

= xt −
∞∑
τ=1

ωτxt−τ In the case of Linear Predictive Coding (15)

Where the reconstruction is done by:

xt = at + Cfeedforward(xt−1, xt−2, ...) (16)

They go on to define “optimal” liner filter parameters [w1, w2, ...] that minimize the average magnitude
of at in terms of the autocorrelation and signal-to-noise ratio of x.

Our scheme defines:

at , kpxt + kd(xt − xt−1) = (kp + kd)

(
xt −

kd
kp + kd

xt−1

)
(17)

So it is identical to feedforward predictive coding with ωτ =

{
kd

kp+kd
if τ = 1

0 otherwise
up to a scaling

constant of (kp + kd). In our case, the function of this additional constant is to determine the
coarseness of the quantization.

From this relationship it is clear that this work could be extended to come up with more efficient
predictive coding schemes which could further reduce computation by learning the temporal charac-
teristics of the input signal.

C SIGMA-DELTA UNWRAPPING

Here we show that Q = ∆ ◦R ◦Σ, where Q,∆, R,Σ are defined in Equations 3, 2, 6, 1, respectively.

From Equation 3 (Q) we can see that

yt ← round(xt + φt−1) ∈ Z
φt ← φt−1 + xt − yt ∈ R

Now we can unroll for yt and use the fact that if s ∈ Z then round(a+ s) = round(a) + s:

yt = round(xt + φt−1)

= round(xt + φt−2 + xt−1 − yt−1)

= round(xt + xt−1 + φt−2)− yt−1

= round(xt + xt−1 + φt−2)− round(xt−1 + φt−2)

=

(
round(

t∑
τ=1

xτ + ���
0

φ0)−
t−2∑
τ=0

yτ

)
−

(
round(

t−1∑
τ=1

xτ + ���
0

φ0)−
t−2∑
τ=0

yτ

)

= round(

t∑
τ=1

xτ )− round(

t−1∑
τ=1

xτ )

(18)

At which point it is clear that Q is identical to a successive application of a temporal summation, a
rounding, and a temporal difference. That is why we say Q = ∆ ◦R ◦ Σ.
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D UPDATE ALGORITHMS

In Section 2.6, we visually describe what we call the “Past” and “Future” parameters updates. Here
we present the algorithms for implementing these schemes.

To simplify our expressions in the update algorithms, we re-parametrize our kp, kd coefficients as
kα , kd

kp+kd
, kβ , 1

kp+kd
.

past : (x̄ ∈ Zdin , ē ∈ Zdout) 7→ ∂̂L
∂w past

Persistent: w, u ∈ Rdin×dout ,

x̂← 0din , ê← 0dout

i← x̄ 6= 0, j ← ē 6= 0

x̂← kαx̂ , ê← kαê

v ← x̂i ⊗ êj ∈ R
∑

i′ [x̄i′ 6=0]×
∑

j′ [ēj′ 6=0]

∂̂L
∂w past,i,j

← ui,j − v
1− k2

α

x̂← x̂+ kβ x̄, ê← ê+ kβ ē

ui,j ← v
(19)

future : (x̄ ∈ Zdin , ē ∈ Zdout) 7→ ∂̂L
∂w future

Persistent: w ∈ Rdin×dout ,

x̂← 0din , ê← 0dout

x̂← kαx̂

ê← kαê+ kβ ē

∂̂L
∂w future

← x̄⊗ ê+ x̂⊗ ē
k2
α − 1

x̂← x̂+ kβ x̄
(20)
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Figure 9: In Section 2.6 and 2.7, we described 4 different update rules (“Reconstruction”, “Past”,
“Future”, and “STDP”), and stated that while they do not necessarily produce the same updates at
the same times, they produce the same result in the end. Here we demonstrate this empirically. We
generate two random spike-trains representing the presynaptic input and the postsynaptic error signal
to a single synapse and observe how the weight changes according to the different update rules. Top:
A randomly generated presynaptic quantized signal x̄, along with its reconstruction x̂. Middle: A
randomly generated postsynaptic quantized error signal ē, along with its reconstruction ê. Bottom:
The cumulative weight update arising from our four updates methods. "recon" is just

∑t
τ=1 x̂τ êτ ,

“past” and “future” are described in Section 2.6 and “STDP” is described in Section 2.7. Note that by
the end all methods arrive at the same final-weight value.

15



Published as a conference paper at ICLR 2018

E TUNING kp, kd

E.1 CAUSES OF APPROXIMATION ERROR

Equation 7 shows how we make two approximations when approximating zt = xt · wt with ẑt =
(dec ◦ w ◦Q ◦ enc)(xt). The first is the “nonstationary weight” approximation, arising from the fact
that w changes in time. The second is the “quantization” approximation, arising from the quantization
of x. Here we do a small experiment in which we multiply a time-varying scalar signal xt with a
time-varying weight wt for many different values of kp, kd to understand the effects of kp, kd on our
approximation error. The bottom-middle plot in Figure 10 shows that we enter a high-reconstruction-
error regime (blue on plot) when kd is small (high quantization error), or when kd >> kp (high
nonstationary-weight error). The bottom-right plot shows that blindly increasing kp and kd leads to
representing the signal with many more spikes. Thus we need to tune hyperparameters to find the
“sweet spot” where reconstruction error is fairly low but our encoded signal remains fairly sparse,
keeping computational costs low.
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Figure 10: Top Left: A time varying signal xt, the quantized signalQ(enc(xt)), and the time-varying
“weight”wt. Bottom Left: Compare the true product of these signals xt·wt with the dec(enc(xt)·wt),
which shows the effects of the non-stationary weight approximation, and dec(Q(enc(xt)) ·w) which
shows both approximations. Top Middle: The Cosine distance between the “true” signal x � w
and the approximation due to the nonstationary w, scanned over a grid of kp, kd values. Top Right:
The cosine distance between the “true” signal and the approximation due to the quantization of
x. Bottom Middle: The Cosine Distance between the “true” signal and the full approximation
described in Equation 7. This shows why we need both kp and kd to be nonzero. Bottom Right: The
Number of spikes in the encoded signal. In a neural network this would correspond to the number of
weight-lookups required to compute the next layer’s activation: dec(Q(enc(x))� w).

E.2 AN AUTO-TUNING SCHEME FOR kp, kd

The smaller the magnitude of a signal, the more severely distorted it is by our quantization-
reconstruction scheme. We can see that scaling a signal by K has the same effect on the quan-
tized version of the signal, st, as scaling kp and kd by K: st = (Q ◦ enckp,kd)(Kxt) =
Q(kpKxt + kd(Kxt −Kxt−1)) = Q(Kkpxt +Kkd(xt − xt−1)) = (Q ◦ encKkp,Kkd)(xt). The
fact that the reconstruction quality depends on the signal magnitude presents a problem when training
our network, because the error gradients tend to change in magnitude throughout training (they start
large, and become smaller as the network learns). To keep our signal within the useful dynamic
range of the quantizer, we apply a simple scheme to heuristically adjust kp and kd for the forward
and backward passes separately, for each layer of the network. Instead of directly setting kp, kd as
hyperparameters, we fix the ratio kα , kd

kp+kd
, and adapt the scale kβ , 1

kp+kd
to the magnitude of

the signal. Our update rule for kβ is:

µt = (1− ηk)µt−1 + ηk · |xt|L1

kβ = kβ + ηk(krelβ · µt − kβ)
(21)
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Where ηk is the scale-adaptation learning rate, µt is a rolling average of the L1 magnitude of signal
xt, and krelβ defines how coarse our quantization should be relative to the signal magnitude (higher
means coarser). We can recover kp, kd for use in the encoders and decoders as kp = (1−kα)/kβ and
kd = kα/kβ . In our experiments, we choose ηk = 0.001, krelβ = 0.91, kalpha = 0.91, and initialize
µ0 = 1.

F MNIST RESULTS

Here we show training scores and computation for the PDNN and MLP under different input-
orderings (the unordered MNIST vs the ordered Temporal MNIST) and hidden layer depths.
We notice no dropoff in performance of the PDNN (as compared to an MLP) with the same
architecture as we add hidden layers - indicating that the accumulation of quantization noise
over layers appears not to be a problem. For all experiments, the PDNN started with kα = 0.5,
and this was increased to kα = 0.9 after 1 epoch (see Appendix A for the meaning of kα).
Note that the numbers for Mean Computation are counting additions for the PDNN, and
multiply-adds for the MLP, so they are not directly comparable (a 32-bit multiply, if imple-
mented in fixed point, is 32 times more energetically expensive than an add (Horowitz, 2014))

dataset hidden_sizes Network kOps/sample Training Score Test Score
mnist [200] PDNN 711000 100 98.34
mnist [200] MLP 314000 100 98.3
mnist [200, 200] PDNN 1000000 99.82167 98.18
mnist [200, 200] MLP 434000 100 98.5
mnist [200, 200, 200] PDNN 1300000 99.91 98.16
mnist [200, 200, 200] MLP 554000 99.99333 98.39
mnist [200, 200, 200, 200] PDNN 1620000 99.96 98.41
mnist [200, 200, 200, 200] MLP 674000 99.99167 98.28
temporal_mnist [200] PDNN 484000 100 98.39
temporal_mnist [200] MLP 314000 100 98.2
temporal_mnist [200, 200] PDNN 740000 99.97833 98.27
temporal_mnist [200, 200] MLP 434000 100 98.38
temporal_mnist [200, 200, 200] PDNN 967000 99.98 98.31
temporal_mnist [200, 200, 200] MLP 554000 99.99833 98.45
temporal_mnist [200, 200, 200, 200] PDNN 1170000 99.995 98.18
temporal_mnist [200, 200, 200, 200] MLP 674000 100 98.53
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G SAMPLE FRAMES FROM THE YOUTUBE-BB DATASET

skateboard bird horse bear

elephant bird elephant boat

potted plant bird skateboard bird

skateboard horse bear boat

Figure 11: 16 Frames from the Youtube-BB dataset. Each video annotated as having one of 24 objects
in it. It also comes with annotated bounding-boxes, which we do not use in this study.

H INSTABILITY IN NEURAL NETWORK REPRESENTATIONS

Figure 8 seems to show that computation doesn’t quite approach zero as our frame-rate increases, but
flat-lines at a certain point. We think this may have to do with the fact that hidden layer activations are
not necessarily smoother in time than the input. We demonstrate this by taking 5 video snippets from
the Youtube-BB dataset and running them through a (non-spiking) 19 layer VGGNet architectures
(Simonyan and Zisserman, 2014), which was pre-trained on ImageNet.

Given these 5 snippets, we measures how much the average relative change in layer activation
|at−at−1|

2(|at|+|at−1|) varies as we increase our frame-rate, at various layer-depths. We simulate lower frame
rates by skipping every N’th frame of video. (so for example to get a 10FPS frame rate we simply
select every 3rd frame of the 30FPS video). For each selected frame rate, and for the given layers, we
measure the average inter-frame change at various layers:

FPS(n) = 30/n x-axis (22)

RelChange(n) =
1

S

S∑
s=1

T/n∑
t=1

|ant − a(n−1)t|
2(|ant|+ |a(n−1)t|)

y-axis (23)

Where:
S = 5 is the number of video snippets we average over
T is the number of frames in each snippet
at is the activation of a layer at time t
n is the number of frames we are skipping over.

This shows something interesting. While our deeper layers do indeed show less relative change
in activation over frames than our input/shallow layers, we note that as frame-rate increases, this
seems to approach zero much more slowly than our input/shallow layers. This is a problem for our
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method, which relies on temporal smoothness in all layers (especially those hidden layers with large
amounts of downstream units) to save computation. It suggests that methods for learning slow feature
detectors - layers that are trained specifically to look for slowly varying features of the input, may be
helpful to us.
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Figure 12: The average relative change in layer activation between frames, as frame-rate increases.
For increasing network depth (red=shallow, violet=deep)
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