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ABSTRACT

Variational autoencoders (VAE), (Kingma & Welling, 2013; Rezende et al., 2014),
learn probabilistic latent variable models by optimizing a bound on the marginal
likelihood of the observed data. Beyond providing a good density model a VAE
model assigns to each data instance a latent code. In many applications, this la-
tent code provides a useful high-level summary of the observation. However, the
VAE may fail to learn a useful representation when the decoder family is very
expressive. This is because maximum likelihood does not explicitly encourage
useful representations and the latent variable is used only if it helps model the
marginal distribution. This makes representation learning with VAEs unreliable.
To address this issue, we propose a method for explicitly controlling the amount of
information stored in the latent code. Our method can learn codes ranging from in-
dependent to nearly deterministic, while benefiting from decoder capacity. Thus,
we decouple the choice of decoder capacity and the latent code dimensionality
from the amount of information stored in the code.

1 INTRODUCTION

Latent variable models are a powerful approach to generative modeling of complicated distributions.
In a latent variable model we model a distribution over observables x ∈ X through a hierarchical
model,

pθ(x) =

∫
Z
pθ(x|z) p(z) dz. (1)

In practice, we learn the model parameters θ in (1) using maximum likelihood estimation (MLE),

max
θ∈Θ

Ex[log pθ(x)]. (2)

The recent variational autoencoder (VAE) method, (Kingma & Welling, 2013; Rezende et al., 2014),
provides tractable lower bounds to (2) for deep latent models like (1).

The model (1) has another interesting property: although the latent variables z are never observed,
they provide a high-level summary of the observation x. Therefore z could serve as a powerful rep-
resentation in a number of machine learning tasks (Bengio et al., 2013). Because (1) can be learned
from unlabeled data, we can in principle use latent variable models for unsupervised representation
learning, an important building block in artificial intelligence systems.

But when does unsupervised learning lead to useful representations? We argue that trusting (2) alone
is not enough to ensure that z stores useful information.1 In particular, the amount of information
stored in z depends on the expressiveness of the model pθ(x|z) with respect to the true data dis-
tribution (Chen et al., 2017). In practice this has made the VAE approach difficult to work with in
important applications such as natural language processing and for modeling discrete data.

We propose a solution in the form of explicit control of information flow in latent variable mod-
els. This is illustrated in Figure 1: optimizing log pθ(x) as in VAEs will lead to a model p̂ which
achieves a certain mutual information between x and z but this amount of information is difficult
to predict and in fact may be zero (Chen et al., 2017; Zhao et al., 2017). Our mutual autoencoder

1See also the recent article (Huszár, 2017).
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(MAE) approach forces information flow by ensuring that the estimated model p̂m achieves a user-
specified mutual information M = Ip̂m . Therefore, we precisely control the amount of bits stored
in the representation but leave the organization and use of this information to be learned. To control
information in this way requires novel algorithms and the rest of the paper discusses our procedure
in more detail.

P p̂

p̂m Ip̂
Ip̂m

Figure 1: The mutual autoencoder maximizes the likelihood log pθ(x) while constraining model
family P by ensuring that the latent variable z and the observables x share a desired mutual infor-
mation M = Ip̂m . The purple lines denote level sets of the likelihood Ex[log pθ(x)].

2 BACKGROUND: VARIATIONAL AUTOENCODERS

Consider a latent variable model with a data variable x ∈ X and a latent variable z ∈ Z ,
pθ(z, x) = p(z) pθ(x|z). Given the data x1, . . . , xn, we would like to train the model by maxi-
mizing the marginal log-likelihood,

L := E
x∼q

[log pθ(x)] = E
x∼q

[
log

∫
Z
pθ(x|z) p(z) dz

]
, (3)

where q(x) denotes the empirical distribution of x, q(x) = 1
n

∑n
i=1 δxi(x). However, the integral in

(3) is intractable in many applications of interest. The idea behind variational methods is to instead
maximize a lower bound L(pθ, q) to the log-likelihood, where

L(p, q) := E
x∼q

[
E

z∼q(z|x)
[log p(x|z)]−DKL(q(z|x)‖p(z))

]
. (ELBO)

Any choice of q(z|x) gives a valid lower bound L(p, q) ≤ L with a gap of
Ex∼q [DKL(q(z|x)‖p(z|x))].
VAEs (Kingma & Welling, 2013; Rezende et al., 2014) replace the per-instance posteriors q(z|x)
by an inference network qθ(z|x) that is trained together with pθ(x|z) to jointly maximize L(pθ, qθ).
For the inference network qθ(z|x), this is equivalent to minimizing DKL(qθ(z|x)‖pθ(z|x)), so one
can think of qθ(z|x) as an approximate posterior for p(z|x).
Being a stochastic mapping of data x to a latent code z, the inference network qθ(z|x) is sometimes
called the encoder and, by the same analogy, the generator network pθ(x|z) is called the decoder.

3 VAE OBJECTIVE IS INSUFFICIENT FOR REPRESENTATION LEARNING

A major appeal of the VAE framework is the ability to learn meaningful latent codes z from unla-
beled or only weakly labeled data. Despite numerous promising results on image and video datasets
(see e.g. Higgins et al. (2017), Bouchacourt et al. (2017), or Goyal et al. (2017)), the application
of VAEs to text has proven challenging. Specifically, Bowman et al. (2015) found that a VAE with
an LSTM-based decoder fails to learn a useful latent code when trained naively – the approximate
posterior collapses to the prior, qθ(z|x) = p(z), for all inputs x, leading to a near independent
relationship between x and z.

A number of works have addressed this problem, mostly treating it as an optimization issue
(Sønderby et al., 2016; Kingma et al., 2016; Yeung et al., 2017). However, as Chen et al. (2017)

2



Under review as a conference paper at ICLR 2018

point out, even if one could optimize exactly, the model would still learn trivial latent codes when
using a high-capacity decoder such as an LSTM.

The reason for this is the VAE objective. Note that the log-likelihood (3) is only a function of the
marginal distribution pθ(x), whereas representation is an aspect of the joint distribution pθ(x, z).
That is, we approximately optimize a marginal quantity in the hope of producing the desired effect
on the joint distribution. This approach is unreliable, although it works when the marginal imposes
strong constraints on the joint distribution, such as when the decoder has limited capacity and the
model is forced to use the latent structure to reach a high likelihood. However, in the high-capacity
regime, e.g. when pθ(x|z) = q(x) is close to achievable, the task of density estimation becomes
disconnected from the goal of representation learning (Huszár, 2017).

We propose an alternative optimization problem that better captures the representation objective.
Our idea is to explicitly control the amount of information stored in the latent code, as measured
by the mutual information. In the next sections, we derive our procedure in detail and show that it
enables representation learning with powerful decoders.

4 CONTROLLING INFORMATION IN LATENT CODE REPRESENTATIONS

Our goal is to learn a deep latent variable model pθ(z, x) = p(z) pθ(x|z), while precisely controlling
the coupling between the latent code z and the output x. We formalize our goal in the following
constrained optimization problem,

maxθ E
x∼q(x)

[
log

∫
pθ(x|z) p(z) dz

]
, (4)

s.t. Ipθ (x, z) =M, (5)

where M ≥ 0 is a scalar constant denoting the desired mutual information, Ipθ (x, z) =

E(x,z)∼pθ [log
pθ(x,z)

pθ(x) pθ(z) ], between x and z as encoded in the model pθ(z, x). When M is close
to zero, the code z is uninformative about x, whereas a large value of M approaching the entropy as
maximum possible value, Hpθ (x), should lead to a deterministic relation between x and z. Interme-
diate values of M will lead to lossy codes z which recover a compressed representation of structure
in q(x) that can be most efficiently captured by pθ(x|z).

5 THE MUTUAL AUTOENCODER (MAE)

We now describe our idea for approximately solving the problem (4–5). We call our approach the
mutual autoencoder.

Our method relies on two results from the literature: 1) exact penalty functions (Zangwill, 1967)
to accommodate the equality constraint (5) into the estimation problem; 2) the variational infomax
bound, (Barber & Agakov, 2003), to approximate the intractable mutual information Ipθ (x, z).

We briefly describe each of them and their role in the mutual autoencoder.

5.1 EXACT PENALTY FUNCTIONS

To approximately solve (4–5), we resort to a classic method for constrained nonlinear optimization,
the penalty function method. First proposed by Zangwill (1967), this method uses a positive penalty
constant C > 0 to relax (4–5) to the unconstrained problem

max
θ

E
x∼q(x)

[
log

∫
pθ(x|z) p(z) dz

]
− C |Ipθ (x, z)−M |. (6)

In (6), any deviation of Ipθ (x, z) from M is penalized linearly. For values of C large enough, an
unconstrained maximum of (6) recovers a feasible local maximum of (4–5). In particular, we do not
need to take C all the way to infinity, but a finite value is sufficient as shown by Han & Mangasarian
(1979), and the magnitude of this value is determined by the unknown optimal Lagrange multiplier
for (5), see Bertsekas (1999, Proposition 4.3.1). In practice, we observe that values of C in the range
[0.1, 10] work best.
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We will show experimentally that the above penalty approach is highly effective. However, to lever-
age the approach, we also need to approximate the intractable mutual information Ipθ (x, z).

5.2 VARIATIONAL INFORMATION MAXIMIZATION (INFOMAX INEQUALITY)

The mutual information Ipθ (x, z) is intractable because of the complex structure in the conditional
distribution pθ(x|z). To overcome this difficulty, we leverage the variational infomax inequality of
Barber & Agakov (2003).
Theorem 1 (Variational infomax bound, Barber & Agakov (2003)). For any two random variables
x and z distributed according to the joint distribution with a density p(x, z) and for any conditional
density function r(z|x) we have

Ip(x, z) ≥ H(z) + E
(x,z)∼p

[log r(z|x)]. (7)

Proof. See Appendix B on page 12.

Equality in (7) is attained for r(z|x) = p(z|x), so we can write

Ip(x, z) = Hp(z) + max
r

E
(x,z)∼p

[log r(z|x)]. (8)

In our method, we constrain the inner search over r to a parametric class, yielding the following
lower bound approximation Îp(x, z) ≤ Ip(x, z), to the mutual information:

Îp(x, z) = Hp(z) + max
ω

E
(x,z)∼p

[log rω(z|x)]. (9)

5.3 THE MUTUAL AUTOENCODER

We are now in the position to combine the variational infomax bound (9) with the variational like-
lihood bound (ELBO) to define the following mutual autoencoder objective Lm(p, q) to be maxi-
mized over the distributions p and q.

Lm(p, q) :=L(p, q)− C
∣∣∣Îp(x, z)−M ∣∣∣ (10)

= E
x∼q(x)

[
E

z∼q(z|x)
[log p(x|z)]−DKL(q(z|x) ‖ p(z))

]
− C

∣∣∣∣Hp(z) + max
ω

E
(x,z)∼p

[log rω(z|x)]−M
∣∣∣∣ . (11)

We now discuss how to realize this objective via gradient-based methods. The quantity Hp(z) is
typically a constant because we fix the prior p(z) to a simple distribution such as a multivariate
normal distribution. We assume the latent variable is continuous, that is z ∈ Z with Z = Rk, so we
can use the reparametrization trick (Kingma & Welling, 2013; Rezende et al., 2014) to compute an
unbiased and low-variance estimate of the gradients of the expectation over q(z|x).
The difficult part is the derivative of the term maxω E(x,z)∼p[log rω(z|x)] with respect to p. De-
noting by r∗p the optimal rω corresponding to p, one can derive by REINFORCE-style reasoning
(Williams, 1992) that

∇pmax
ω

E
(x,z)∼p

[log rω(z|x)] = ∇p E
(x,z)∼p

[log r∗p(z|x)] (12)

= E
(x,z∼p)

[
(∇p log p(z, x)) · log r∗p(z|x) +∇p log r∗p(z|x)

]
. (13)

There are two difficulties here: 1) The last term in (13) that arises from the dependence of r∗p on p is
difficult to compute. 2) Evaluating r∗p requires solving a separate optimization program in ω, which
is too expensive to do for each gradient evaluation.
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To address the first issue, we note that in the non-parametric limit, as r∗p(z|x) ≈ p(z|x), the prob-
lematic term vanishes. We therefore ignore it, which is equivalent to treating r∗p as independent of
p during back-propagation. For the second issue, we keep a running estimate of the optimal r∗p and
perform a single gradient update to it whenever p is updated. This gives rise to the practical proce-
dure described in Algorithm 1. A more detailed derivation of the method can be found in Appendix
A.1.

Algorithm 1 Mutual Autoencoder Training
1: procedure TRAINMAE(θ, ω,B,C,M,N )
2: for i = 1, . . . , N do
3: UPDATEMODEL(θ, ω,B,C,M ) // We simultaneously optimize the model...
4: UPDATEMIESTIMATE(ω, θ,B) // ...and the mutual information estimate.
5: end for
6: end procedure

7: procedure UPDATEMIESTIMATE(ω, θ,B)
8: Sample (zi, xi) ∼ pθ for i = 1, . . . , B

9: g ← 1
B

∑B
i=1∇ω log rω(zi|xi) // Gradient estimate of the infomax bound.

10: ω ← Update(ω, g)
11: end procedure

12: procedure UPDATEMODEL(θ, ω,B,C,M )
13: gELBO ← EstimateElboGradient(θ)
14: gMI ← Estimate of∇θ E(x,z)∼pθ [log rω(z|x)] // Using reparametrization trick or REINFORCE.
15: Sample (zi, xi) ∼ pθ for i = 1, . . . , B

16: m← Hp(z) +
1
B

∑B
i=1 log rω(zi|xi) // Mutual information estimate.

17: θ ← Update(θ, gELBO − C · sign(m−M) · gMI)
18: end procedure

Note that unlike (13), the gradient of the term E(x,z)∼pθ [log rω(z|x)] with respect to θ can be ef-
ficiently approximated via the reparametrization trick (if x is continuous) or REINFORCE (if x is
discrete). We provide a derivation of the necessary gradients in Appendix A.2.

6 DISCRETE DATA REQUIRES FLEXIBLE ENCODER DISTRIBUTIONS

Before presenting experimental results, we discuss the choice of encoder distribution, which we
find to be critical to making our method work. More generally, it turns out that flexible encoder
distributions are essential for VAE representation learning of discrete data. Below we give the formal
statement and discuss its practical implications.

Theorem 2. Consider a VAE model applied to discrete data. Assume that both the prior p(z) and
the approximate posterior q(z|x) are Gaussian and that the decoder p(x|z) is powerful enough to
model the true marginal q(x). Then the independent configuration given by q(z|x) = p(z) and
p(x|z) = q(x) is the only global optimum of the VAE objective.

Proof. Maximizing the VAE objective L(p, q) is equivalent to minimizing the Kullback-Leibler
divergence between the joint distributions q and p, DKL(q(x) q(z|x)‖ p(z) p(x|z)). The VAE opti-
mum is attained when the KL divergence is zero i.e. when q(x, z) = p(x, z) almost everywhere.
The independent solution clearly satisfies this.

To show that all other configurations are suboptimal, let p, q be such that q(z|x) 6= p(z) for some
value of x with q(x) > 0. Then the implied marginal q(z) =

∑
x∈X q(z|x) q(x) is a finite Gaussian

mixture with at least one nonstandard component, so it cannot equal p(z) and the KL divergence is
positive.

Our theorem shows that not only is the VAE agnostic to representation learning, it in fact encourages
the independent solution. The Gaussianity assumption introduces a gap due to q(z) not being able
to fit p(z). We have observed this to be a major practical concern. The gap tends to grow with the
dimension of the latent space as well as the amount of encoded information. We include 1D plots
illustrating the issue in Appendix C.
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In our experiments, we mitigate the issue by employing a resampling-based approximate posterior
of Cremer et al. (2017) based on importance weighted autoencoders (Burda et al., 2015).

7 EXPERIMENTS

We show that the mutual autoencoder can learn latent codes ranging from independent to nearly
deterministic. First, we consider two toy examples (a continuous and a discrete one), where we can
visualize important quantities. Then we show promising results on text data, building a VAE model
of movie reviews.

7.1 SPLITTING THE NORMAL

We compare our method to the variational autoencoder on the task of modeling the one-dimensional
standard normal distribution, q(x) = N (x| 0, 1). Our goal here is to a) show in a minimal setting
the issue of representation collapse in VAEs, and b) show that our method overcomes this problem
and in fact can encode any pre-specified amount of information.

We now describe the experimental setup. The prior p(z) is assumed to be a one-dimensional standard
normal. Both the decoder pθ(x|z) and encoder qθ(z|x) are modeled as normal, with means and
log-variances parametrized by a three-layer fully connected network. We train a VAE and several
instances of the MAE with different values of the mutual information target M .

One can think of the task as splitting the normal q(x) into an infinite mixture of normals∫
p(x|z) p(z)dz. There exists a trivial optimum of the VAE objective pθ(x|z) = q(z|x) =
N (x| 0, 1) that ignores the latent code. Indeed, this is the solution recovered by the VAE and the
MAE with M = 0, corresponding to the top row of Figure 2a.

When we setM > 0, though, our method learns a non-trivial representation, as can be seen in Figure
2a. As we increase M , the conditionals pθ(x|z) become more peaked and carry more information
about z.

M= 0.0

M= 0.6

M= 1.2

M= 1.8

(a) MAE splits the normal. Each row corresponds
to a MAE model with the specified mutual in-
formation target M . Each curve corresponds to
the scaled conditional pθ(x|z) p(z) for some fixed
z ∈ {−2.1,−1.3,−0.4,+0.4,+1.3,+2.1}.

(b) Categorical example, modeling the uniform distri-
bution over 10 labels. Each row corresponds to a MAE
model with the specified mutual information target M .
Each colored patch corresponds to one possible out-
come of x. A vertical slice at position z consists of
10 line segments whose lengths (sometimes 0) indicate
the probabilities pθ(x|z).

Figure 2: The mutual autoencoder learns codes ranging from independent to deterministic.

7.2 CATEGORICAL EXAMPLE

VAEs are particularly prone to ignoring the latent code when modeling discrete data. Here we show
that the MAE is an effective solution even in this setting, and is able to learn a wide range of codes.
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We consider synthetic data drawn from q(x) = Unif[10]. We let the latent variable again be a one-
dimensional standard normal. The decoder is a three-layer fully connected network with a 10-way
softmax output; the encoder is given by 10 separate normal distributions, one for each possible value
of x.

As in the continuous case, the decoder pθ(x|z) can easily reach an optimum of the VAE objective
by outputting the marginal, Unif[10], irrespective of z. What makes the discrete case more difficult
is that any distribution over X can be represented independently of the latent z. Such a scenario is
shown in the top row of Figure 2b; this is the model learned by the VAE and the MAE with M = 0.

For higher values of M , the MAE avoids this problem. In Figure 2b, we see that as M increases,
the conditionals pθ(x|z) learned by MAE move from independence towards determinism.

7.3 MOVIE REVIEWS

We now demonstrate the effectiveness of the mutual autoencoder on real text data.

We consider a sentence modeling task using a subset of the IMDB movie review dataset (Diao et al.,
2014). We split each review into sentences and extract those of length 8 words or shorter. We train
several instances of the MAE with different M , using a variant of the bidirectional LSTM (Schuster
& Paliwal, 1997; Hochreiter & Schmidhuber, 1997) as the encoder and a standard LSTM as the
decoder. The conditioned value of the latent variable z is fed to the decoder LSTM at each step.

To evaluate the information content of a given model’s latent code, we perform a simple reconstruc-
tion experiment: we use the model to encode a random subset of the training data and decode the
obtained representations back into sentence space. A model with a highly informative latent code
should be able to approximately reconstruct the input. We consider two metrics: 1) the number of
exactly reconstructed sentences, and 2) the number of matching words between the input sentence
and the reconstruction.

Figure 3 shows the results for MAE models trained with different M . The graph shows a simple
monotonic relation: as M increases, so does the amount of encoded information, which in turn is
reflected by the model’s ability to autoencode. The MAE provides a powerful way of controlling
this behavior by setting M .

In Table 1 we show sample sentence reconstructions of a VAE and two MAE models. As expected,
the VAE fails to learn a useful latent code, qVAE

θ (z|x) ≈ p(z), so its ‘reconstructions’ are random
samples from the decoder model. At the other extreme, the MAE with a high value of the target mu-
tual information (last row) learns a close-to-deterministic code and reconstructs the input sentence
with high fidelity, at the expense of sample diversity. MAEs trained with intermediate values of M
learn to ‘paraphrase’ input sentences.

To further inspect the learned representations, we interpolate between sentences in the latent space.
An example is shown in Table 2. We see that the model picks up on syntactic elements such as
specific word choice or sentence length and that the generated sentences are mostly grammatical
(subject to limitations of the training data).

Input there are many great scenes of course .

VAE
and he knows it too .
terrific performances from all three stars .
this movie could have been a classic .

MAE (M = 5)
there are things that i liked .
as a whole it works pretty well .
there were a few good performances too .

MAE (M = 10)
there were many scenes like that .
there are many great scenes of course .
there were many scenes like that .

Table 1: Sentence reconstructions. The input sentence is encoded and decoded by a
given model, and the output is displayed. We show three reconstructions per model.
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Figure 3: Reconstruction ability grows with M .

there are many great scenes of course .
there are other good people as well .
they so look real its incredible .
they like different , not good .
they like different , not good .
these people talk way too much .
die hard gets a few character .
i love these kind of movies .
i left out a character .
i love those films ) .

Table 2: Sentence interpolation, M = 10.

8 RELATED WORK

To our knowledge, the first work to notice the failures of VAE-type models when combined with
high-capacity decoders was (Bowman et al., 2015). Since then, a number of authors have reported
similar difficulties and many fixes have been proposed.

Probably the most popular of these is ‘KL cost annealing’ (Bowman et al., 2015) or ‘warm-up’
(Sønderby et al., 2016), whereby the KL term in the VAE objective gets a multiplicative weight
that gradually increases from zero to one during training. Another class of approaches is based on
carefully limiting the capacity of the generative model class, as in (Chen et al., 2017), (Yang et al.,
2017), or (Yeung et al., 2017). Finally, some works make use of auxiliary objectives: Kingma et al.
(2016) introduce a ‘free bits’ constraint on the minimum value of the KL term, whereas (Semeniuta
et al., 2017) add a reconstruction term of an intermediate network layer. Zhao et al. (2017) propose
a more drastic change to the objective, either replacing the KL term by one derived from a different
divergence or removing it completely.

Our approach has close connections to the work of Chen et al. (2016), who also use the variational
infomax bound to learn meaningful representations. Their work is based on the GAN framework of
Goodfellow et al. (2014) and hence may be difficult to apply to text. The work of Hu et al. (2017) can
also be seen as employing (an approximation of) mutual information to enforce coupling between
the latent and output variable, although they do not state it explicitly.

9 CONCLUSION

In this work, we address the problem of representation collapse in VAEs with high-capacity de-
coders. We argue that the VAE objective is not sufficient to encourage learning of useful represen-
tations and propose to explicitly control the amount of information stored in the latent code. We
present new techniques for solving the resulting constrained optimization problem. We show exper-
imentally that our method is highly effective at encoding the user-specified number of bits, and can
thus learn a continuum of representation spaces with varying properties.

Our method has the advantage of being principled, preserving the probabilistic interpretation of
VAEs. Also, it is independent of specific architectural choices; it can be combined with any decoder
distribution and benefits from its capacity. We find optimization to be easy. On the downside, the
method is considerably slower to train due to the extra mutual information term.

In future work, we aim to extend the method to the semi-supervised setting. Making use of a
supervisory signal, we would be able to control not only the amount, but also the kind of information
stored in the latent code. This would be an important step towards fully controllable representation
learning.
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A REINFORCE DERIVATIONS FOR SECTION 5.3

A.1 DERIVATION AND PROPERTIES OF (13)

Note that we treat p(z) as constant and∇p denotes the gradient with respect to p(x|z) only.

∇p E
(x,z)∼p

[log r∗p(z|x)] = ∇p E
z∼p

[∑
x∈X

p(x|z) · log r∗p(z|x)

]
(14)

= E
z∼p

[∑
x∈X

(∇pp(x|z)) · log r∗p(z|x) + p(x|z) ·
(
∇p log r∗p(z|x)

)]
(15)

Taking out p(x|z) and writing the resulting ratio as the derivative of the log gives

= E
z∼p

[∑
x∈X

p(x|z)
{
(∇p log p(x|z)) · log r∗p(z|x) +∇p log r∗p(z|x)

}]
(16)

= E
z∼p

[∑
x∈X

p(x|z)
{
(∇p log p(z, x)) · log r∗p(z|x) +∇p log r∗p(z|x)

}]
(17)

= E
(x,z∼p)

[
(∇p log p(z, x)) · log r∗p(z|x) +∇p log r∗p(z|x)

]
. (18)

Next, we show that the term E(x,z∼p)
[
∇p log r∗p(z|x)

]
vanishes when r∗p(z|x) = p(z|x).

E
(x,z∼p)

[∇p log p(z|x)] = E
x∼p

E
z∼p(z|x)

[
∇pp(z|x)
p(z|x)

]
(19)

= E
x∼p

[∫
Z

∇pp(z|x)
p(z|x)

· p(z|x)dz
]
= E
x∼p

[
∇p
∫
Z
p(z|x)dz

]
= 0. (20)

A.2 GRADIENT OF THE MAE OBJECTIVE

Denote
Î(θ) := Hp(z) + E

(x,z)∼pθ
[log rω(z|x)]. (21)

We will compute the gradient of C
∣∣∣Î(θ)−M ∣∣∣ with respect to the model parameters θ.

∇θ C
∣∣∣Î(θ)−M ∣∣∣ = C · sign

(
Î(θ)−M

)
· ∇θ Î(θ) (22)

= C · sign
(
Î(θ)−M

)
· ∇θ E

z∼p

[
E

x∼pθ(x|z)
[log rω(z|x)]

]
(23)

= C · sign
(
Î(θ)−M

)
· E
z∼p

[∑
x∈X

(∇θpθ(x|z)) · log rω(z|x)

]
(24)

Again making use of the derivative of the log, we get

= C · sign
(
Î(θ)−M

)
· E
z∼p

[∑
x∈X

pθ(x|z)(∇θ log pθ(x|z)) · log rω(z|x)

]
(25)

= C · sign
(
Î(θ)−M

)
· E

(x,z)∼pθ
[(∇θ log pθ(x|z)) · log rω(z|x)]. (26)

The gradient in (26) can be estimated using Monte Carlo sampling of both the expectation and
the Î(θ) term inside the sign. The sign estimate will inevitably be wrong sometimes, making our
gradient estimator biased. However, note that only the norm is affected, while the direction of the
gradient estimate is still correct in expectation.
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B INFOMAX INEQUALITY

The inequality was proven by Barber & Agakov (2003). Here we provide an alternative direct proof.

Proof. The following Gibbs inequality yields

DKL(p(x, z) ‖ r(z|x) p(x)) ≥ 0 (27)
⇔ E

(x,z)∼p
[log p(z|x) + log p(x)− log r(z|x)− log p(x)] ≥ 0 (28)

⇔ E
(x,z)∼p

[log p(z|x)] ≥ E
(x,z)∼p

[log r(z|x)]. (29)

By the definition of mutual information and conditional entropy, we have

Ip(x, z) = Hp(z)−Hp(z|x) (30)
= Hp(z) + E

(x,z)∼p
[log p(z|x)] (31)

≥ Hp(z) + E
(x,z)∼p

[log r(z|x)]. (32)

C POSTERIOR APPROXIMATION

We found encoder flexibility to be instrumental to training a good MAE model. Here we illustrate
the effect on a toy task of modeling x ∼ Unif[10] with a one-dimensional normal latent space. We
set the mutual information target M to the theoretical maximum, aiming to learn a deterministic
code.

Figure 4 shows the difference between using the standard Gaussian encoder and a more complex
resampling-based encoding distribution of Cremer et al. (2017) with k = 5 samples. We see that not
only does the latter learn better approximate posteriors (bottom row), it also enables the decoder to
train more effectively, as reflected in a sharper, closer-to-deterministic model posteriors (top row).

(a) MAE trained with a Gaussian encoder. Top: true
model posterior pθ(z|x). Bottom: posterior approxi-
mation qθ(z|x). Each curve corresponds to one pos-
sible value of x.

(b) MAE trained with a resampling-based encoder.
Top: true model posterior pθ(z|x). Bottom: posterior
approximation qθ(z|x). Each curve corresponds to
one possible value of x.

Figure 4: The effect of encoder flexibility.
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