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1 INTRODUCTION

Advances in neural network based classifiers have accelerated the progress of automatic represen-
tation learning. Since the emergence of AlexNet (Krizhevsky et al., 2012)), every winning submis-
sion of the ImageNet challenge (Russakovsky et al.,2015) has employed end-to-end representation
learning, and due to the utility of good representations for transfer learning (Yosinski et al.,|2014),
representation learning has become as an important and distinct task from supervised learning. At
present, this distinction is inconsequential, as supervised methods are state-of-the-art in learning
transferable representations, which are widely transferred to tasks such as evaluating the quality of
generated samples (Nguyen et al.,[2016; Salimans et al.| 2016).

In this work, however, we demonstrate that supervised learning is limited in its capacity for repre-
sentation learning. Based on an experimentally validated assumption, we show that the existence of
a set of features will hinder the learning of additional features. We also show that the total incen-
tive to learn features in supervised learning is bounded by the entropy of the labels. We hope that
our analysis will provide a rigorous motivation for further exploration of other methods for learning
robust and transferable representations.

2 FEATURE LEARNING WITH DISCRIMINATIVE MODELS

Let x € R? be observations drawn from a distribution px (x), and y € R be labels for x obtained
through a deterministic mapping y = g(x). Assume we are operating in some domain (e.g. com-
puter vision), and there exists a set of good features F, that we would like to learn (e.g. a feature
that denotes “tables”). These features will emerge from suitable weights of a deep neural network
(e.g. a filter that detects tables), and thus must compete against an exponentially large set of bad,
random features. Our goal is to learn all the good features from the dataset in the process of using a
neural network to perform certain tasks.

We analyze the feature learning process by parameterizing the state of a network according to the set
of features it has already learned. We then investigate the marginal value of learning an additional
feature. If we have thus far learned k& — 1 features, { fi}fz_ll, we propose to measure the ease of
learning the k-th feature according to the reduction in entropy of the labels when we add the new
feature to improve the supervised learning performance.

signal(fi)) = 1(Y; fr(X)|f1(X), -, -1 (X))] (1)
where we use the term “signal” of feature f}, to denote signal( fx). This concept simply encodes our
intuition that features will be easier to learn when they pertain more directly to the task at hand, and
it aligns well with the “information gain” feature selection metric in Random Forests and Genomic
studies (Schleper et al., 2005).

We informally use the term “learnability” to indicate the degree of incentive to learn features. The
intuition is that features that add more predictive power to the current model (over a supervised task)
have higher incentives to be learned.

Let us currently assume that the “learnability” of the feature corresponds to its signal (we will
validate this in an experiment in Section . If we learn features one-by-one, then the existence of a

'In the remainder of the paper, We remove the X in f(X) to ease notation.
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set of features will decrease the conditional mutual information between a new feature and the label,
and reduce the “signal”, hence the “learnability”. If the ’signal” for a particular feature is small (or
even worse, zero), then the model would receive little benefit in predicting the label correctly, hence
it is unlikely for the model to learn this feature over others.

If we aim to learn k features, the sum of ’signals” over all those features must be no greater than the
entropy in the labels, since

k
> signal(f;) = I(Y; fi,..., fi) < H(Y) )
i=1

which indicates that there is an upper bound for the sum of “’signals”. Suppose that we have already

come up with features f1,.. ., fj that already reaches the maximum possible ”signal”, there will be

no additional incentive to learn any new features. Therefore, if our assumption is true then we have
an upper bound on the capacity of the model to learn features, which is the entropy of the labels and
independent of the size of the dataset or the capacity of the model.

On the other hand, the existence of a set of features will reduce the ”signal” of a new feature:

signal(fy) = I(Y; fulf1, - fee1) < ICYS frlfr, oo fre2) 3)

This suggests that the presence of a set of features for a supervised learning task may hinder the
learning of additional features, regardless of their relation to the task (when considered as an in-
dependent feature). In the remainder of this paper, we will refer to this phenomenon under our
assumption as “feature competition”.

Intuitively, let us consider a dataset with images of “cats and dogs”. If we have an “eye” feature that
already allows us to discriminate cats versus dogs almost perfectly, there would be little incentive
to learn an additional “mouth” feature, even though it is also highly related to the current task.
Learning additional features that not directly related to the task, such as “tables”, would be even
more difficult. From an optimization perspective, the batch gradient will be close to zero when we
have learned the “eye” feature; learning additional features can only be guided by the gradients from
a small set of incorrectly classified samples.

3 EXPERIMENTAL VALIDATIONS

In this section, we validate our assumption through an experiment, which suggests a high corre-
lation between the “learnability” of a feature to its “signal”’. We consider our data to be images
of size 28 x 56, where each 28 x 28 sub-image contains a digiﬂ which we denote as z; and z,
respectively (for “left” and “right”). We extract features using only the labels of x; (which is de-
noted as y;), and evaluate how much features from x,. is learned. The goal of this experiment is to
answer the following question - Does the “signal” for learning features in z, correspond to its
“learnability”?

The experiment process is split into two phases termed “feature extraction” and “feature evaluation”.
In "feature extraction”, we train a network over a dataset with (z;, x,) as input and y; as labels.
Features of x; will be learned before x,. since only ¥; is provided. Therefore, the conditional mutual
information I(Y;;X,|X;) is the total ”signal” for learning all the features in x,. We manually
control I(Y; X,|X;) through two mechanisms to control the dataset:

1. Aurtificially introduce correlation between left label and right label by some probability p,.,
and thus also between right digit and left label, which will increase the “signal” of the
features for the right input.

2. Corrupting the left input by some probability (1 — p;) ﬂ This will also increase the “signal”
for the right input, since the left input becomes less informative about left label.

We parametrize the feature extraction model as a neural network. In particular, we learn two feature
extractors f; and f,. for x; and x,. respectively. The concatenation of f; and f, is then feed through

“Digits are obtained from the MNIST dataset.
3The corruption is done by sampling x; from a factored Gaussian distribution, where the mean and variance
corresponds to the mean and variance of the MNIST training set.
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Figure 1: Illustration of the experiment.
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Figure 2: Test accuracy over y, and I(Y; X,|X;). The r-value between test accuracy and signals
is 0.9213, which suggests that features having higher conditional mutual information with the labels
are easier to learn.

a softmax regression classifier to make predictions. f;, f, and the softmax regression classifier are
trained jointly.

In “feature evaluation”, we measure the quality of f,. learned in “feature extraction”. We perform
this by training a softmax regression classifier with the concatenation of f; and f,. as input and v,
(the label of z,.) as labels. We use “test accuracy’” as a means to measure the overall quality (or
equivalently, “learnability”) of f,.. In this phase, we do not control the dataset, and only the softmax
regression classifier is trained. FigureT]illustrates the two phases of the experiment process.

Figure [2] contains heatmaps for the “signal” and test accuracy of y,. We see a strong correlation
between “signal” and “test accuracy”, which suggests that features with higher “’signal” will have
higher incentive to be learned; this validates our assumption between “signal” and “learnability”.
Interestingly, we can observe the “feature competition” phenomenon in the upper right corners,
where both inputs have high correlation to the y; yet the quality of f,. is still low. This is because f,
competes with f; for its “signal”, which has a fixed upper bound of H (Y}).

4 CONCLUSION

In this paper, we discuss certain limitations of supervised feature learning. We propose to measure
the incentive to learn a new feature through conditional mutual information. Based on this measure,
we propose the “feature competition” phenomenon in supervised learning and identify an upper
bound on the capacity of supervised learning methods to extract features. Experimental results
support our claims, and we observe a strong correlation between “signal” and “learnability”, as well
as strong “feature competition” between features. We hope that our analysis will motivate further
explorations in representation learning without labels, such as generative representation learning.
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Model | CNN AE | GAN | WGAN
6793 | 89.95 | 90.38 | 91.37
(84.31) | (82.18) | (82.27) | (84.97)

Accuracy

Table 1: Test accuracy for y.., given f learned by different architectures. The numbers in the brackets
indicate using weights that are not trained, which is a baseline for the case of random features.

A CORNER CASES OF FIGURE[Z]

Figure 2] reflects some corner cases:

Bottom row y, (hence also z,.) has no correlation with the y;, hence there is no signal to learn
features from the right part, and f, would perform no better than random initialization of
the weights.

Top left corner The x, has high correlation with the y; while the x; doesnt (because of added
noise), this has the highest signal, since this is essentially assigning the y; to the z,..

Top right corner Both inputs have high correlation to the y;. Due to “feature competition”, rela-
tively few features corresponding to the x,. are learned.

B FEATURE LEARNING WITH GENERATIVE MODELS

If supervised learning is bounded in its capacity for feature extraction by the entropy of the labels,
what of unsupervised learning? In this section, we show that one family of unsupervised learning
methods, Generative Adversarial Networks (GAN |Goodfellow et al.| (2014)), is not impacted by
feature competition under limited assumptions.

In GANS, a generator network, GG, generates samples (with generative distribution G), and a discrim-
inator network, D(x), attempts to distinguish between those samples and real data. D is presented
with a labeled dataset {(x;,y;)}™, where y = 1 if x ~ D, and y = 0 if x ~ G; the two classes are
balanced, so H(y) = 1.EI

Assume that G and D have already learned k£ — 1 features fi,..., fx—1, where the discrimina-
tor cannot separate samples from G and D with only these features. This indicates that Pr(y =
1f1(x), "+, fr—1(x)) = 0.5 for all x in the dataset, and that H (y|f1,..., fk—1) = 1. Thus, the
discriminator is in a state of confusion. We measure the motivation of D for learning a new feature
fi to be

I(y;fk?‘flw"afkfl) = H(ylfh""fk*l) o H(y‘f17.-.,fk71’fk)
=1—Hlfr, - fr-1, fr)
> 1 H(ylfi) @

where H (y|fi) € [0,1] is a measure of similarity between the distributions on the feature f}, for real
and generated samples. H(y|fx) = 1 if and only if fi(x) is identically distributed almost every-
where for G and D. Thus, if the generated distribution does not yet match the real data distribution
along fj, we will have positive signal to learn. Importantly, this lower bound has no dependence on
previously learned features, f1, ..., fk—1. That is, when the discriminator is in a state of confusion,
we have no feature competition.

C EXPERIMENTAL VALIDATION OF GENERATIVE MODELS

We have shown theoretically that one class of generative models, GANSs, is not limited by the same
upper bound on feature learning signal as discriminative models such as CNNs. We now empirically
test these implications by revisiting the two-digit experiment from Section 2] We set p; = 1 and
pr = 0, where the two digits are selected completely at random (and where feature learning for

“In this section, we consider the distribution over x to be the average of G and D for entropy and mutual
information terms.
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X, using supervised learning methods performed worst). We consider four frameworks - a feed
forward convolutional net (CNN); a traditional GAN (Goodfellow et al.,2014); a recently proposed
Wasserstein GAN (WGAN, |Arjovsky et al.|(2017)) and an Autoencode For the four frameworks,
we use the same CNN architecture and set the output of f to be the 100 neurons at the second top
layer. The results, shown in Table [1| demonstrate that in spite of the absence of labels, the features
learned by all three generative models we considered, including GANs, AEs, and WGANSs, were
useful in the subsequent task of learning to recognize the right digit.

D MOTIVATION FOR BALANCING GANS VIA LOSS STATISTICS

Assume that the “state of confusion” assumption breaks for D, such that D has learned I > 1
more features than G has learned, and it can classify better than random guessing. Therefore,

H(y|f17- . .,fk_l) =1, H(y‘fl, . -;fk+l—1) < 1, and
Hylfrs - frri-1) <1 5

The motivation of D for learning a new feature fj,; then becomes

I(y; frtalfro - frorim1) = Hlf, o fevim1) = H@l - for)
= H(y|f/€7'-'7fk+l—1)_H(y‘fkw"afk-'rl) (6)
which is no longer independent of f, ..., fr4,—1 because of Equation[5} This is analogous to the

supervised learning setting - D is simply trying to learn a new features fj;, given all the previous
features f, ..., fi+1—1 to optimize a fixed objective defined by features f1,..., fr—1.

If D has learned k& + [ — 1 features and G has learned k£ — 1 features, then G is motivated to learn
the proper distribution for feature fj to minimize H (y|f1, ..., fx+1—1). However, this quantity will
still be smaller than one even if we assume G learns the correct distribution on f, so the incentive
for G becomes|f]

Hy (Yl frs-o o fopi—1) — Hylf1, - freri-1)
<1—=H(ylfi, -, feti-1)

=H(y) — HWlfr, s frri-1) = L(y; fi, -+ fori-1) @)
Notice that the mutual information I(y; fi, ..., fk+i—1) is exactly the sum of motivation for the
discriminator to learn features fy, ..., fr4;. This implies that if we continue to allow D and G

to learn one feature at a time, which is the case where we do not attempt to balance GANs via
loss statistics, G will not catch up with D in one step; D, on the other hand, the advantage in D
will cause it to suffer from the “feature competition” challenge, where it has less incentive to learn
features than it should.

One obvious method to counter this is by balancing GANs via loss statistics; although D and G
suffers from feature competition during learning f, ..., fx+i—1, G will catch up if it learns multiple
features consecutively, so that it makes D confused again, where V (D, G) = log 4. However, we are
not promoting the strategy where G and D should be trained more whenever its loss exceeds some
predetermined value, but we believe principled approaches to tackle this problem will be valuable
to training of GANs.

SWe do not split f into two networks in the convolution setting.
SWe use H 7, to denote the expectation is performed over the distribution when G has learned the proper
distribution for feature fy.
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