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Abstract—A novel method is reported for simultaneous registra-
tion of location (axial direction) and orientation (circumferential
direction) of two intravascular ultrasound (IVUS) pullbacks of the
same vessel taken at different times. Monitoring plaque progres-
sion or regression (e.g., during lipid treatment) is of high clinical
relevance. Our method uses a 3D graph optimization approach, in
which the cost function jointly reflects similarity of plaque mor-
phology and plaque/perivascular image appearance. Graph arcs
incorporate prior information about temporal correspondence of
the two IVUS sequences and limited angular twisting between con-
secutive IVUS images. Additionally, our approach automatically
identifies starting and ending frame pairs in the two IVUS pull-
backs. Validation of ourmethodwas performed in 29 pairs of IVUS
baseline/follow-up pullback sequences consisting of 8 622 IVUS
image frames in total. Incomparison tomanualregistrationby three
experts, the average location and orientation registration errors
ranged from0.72mmto0.79mmand from7.3 to 9.3 , respectively,
all close to the inter-observer variability with no difference being
statistically significant . Rotation angles determined
by our automated approach and expert observers showed high
correlation ( of 0.97 to 0.98) and agreed closely (mutual bias
between the automated method and expert observers ranged from

to 0.15 ). Compared with state-of-the-art approaches, the
newmethodoffers lower errors inboth locationandorientation reg-
istration. Our method offers highly automated and accurate IVUS
pullback registration and can be employed in IVUS-based studies
of coronary disease progression, enabling more focal studies of
coronary plaque development and transition of vulnerability.
Index Terms—Atherosclerosis, natural history, intravascular ul-

trasound, image registration, graph-based method.

I. INTRODUCTION

W HEN studying natural course of plaque development in
human coronary arteries in vivo using intravascular ul-

trasound (IVUS), registration of axial location and circumfer-
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ential orientation of each image frame in corresponding base-
line and follow-up IVUS pullback data is of paramount impor-
tance if location-specific quantitative comparisons between the
two timepoints are to be determined [1]–[5]. With large patient
cohorts involved in baseline/follow-up studies (e.g., 506 pa-
tients in [4]) and large numbers of IVUS image frames for each
pullback (e.g., 80–133 frames after ECG gating [3]), manual
registration of location and orientation is an extremely tedious
task and requires expert knowledge. As a result, current clinical
baseline/follow-up studies are not utilizing all available infor-
mation due to undetermined frame location/orientation corre-
spondences. Consequently, studies of mechanical forces, mor-
phology and composition of lesions are only examined in cul-
prit locations or over long vessel segments and are typically
circumferentially averaged [1]–[4], [6]. Such approaches limit
our ability to develop better understanding of the focal baseline/
follow-up associations since the coronary artery disease evolves
frequently in a focal and eccentric manner [4], [7], [8].
Automated location/orientation registration methods for

IVUS pullbacks have attracted substantial research interest in
recent years. Despite several methods reported [9]–[13], no
perfect solution emerged delivering reliable registration results.
The registration task is indeed very challenging [12], [13]. The
challenges associated with motion artifacts, longitudinal os-
cillations, artifactual angular twisting, stuck/accelerated IVUS
catheter during pullback acquisitions, vessel-morphologic
changes due to plaque progression/regression at follow-up,
etc. Fig. 1 provides an example of IVUS pullback registration
with seven frame pairs manually registered. Clearly, in focal
analyses of coronary artery disease progression [5], complete
one-to-one correspondences between all baseline and follow-up
frames would be preferred.
For automated registration of frame locations, the most in-

tuitive approach is linear fitting (distance normalization) be-
tween two identified landmarks (e.g., side-branches) [9], [10].
This method works well when the transducer pullback exhibits a
constant speed, which is not always the case in clinical settings.
Non-rigid temporal alignment methods [11]–[13] (e.g., dynamic
timewarping, DTW [14]) treat the alignment task independently
from the orientation registration task—consequently, the align-
ment results may not be optimal in the circumferential direction.
In addition, these methods only rely on vessel morphologic fea-
tures (area or shape) or plaque components, which may change
for a long-term follow-up as a result of plaque progression/re-
gression. For automated registration of orientation, a cross-cor-

0278-0062 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ZHANG et al.: SIMULTANEOUS REGISTRATION OF LOCATION AND ORIENTATION IN INTRAVASCULAR ULTRASOUND PULLBACKS PAIRS 2551

Fig. 1. Example of IVUS pullback registration. From top to bottom: Baseline
pullback in longitudinal view; follow-up pullback in longitudinal view; baseline
landmark frames in cross-sectional view; corresponding IVUS frames; corre-
sponding IVUS frames in proper orientation. In this case, the correspondences
were determined visually by a human expert.

relation based method (rotating each follow-up image locally
[9]) and a Catmull-Rom spline based method (rotating all the
follow-up images globally [10]) have been reported. These two
approaches achieve sub-optimal rotation results for two already
location-aligned IVUS image sequence. In addition, the former
method depends on Virtual Histology (VH)-IVUS [15] defined
plaque constituents and needs manual interaction to determine
the rotational registration angle. The latter method suffers from
artifactual angular twisting between consecutive image frames.
More generally, in the fields of computer vision and medical

imaging, the problem of spatio-temporal registration/align-
ment of image sequences has been investigated for several
years. Related work mainly followed two lines of approaches,
including feature-based approaches [16]–[18] appropriate
when the appearance varies from sequence to sequence, and
direct approaches [16], [18]–[21] that fit similar intensities
between sequences. The spatio-temporal registration/alignment
algorithms use a particular transform to achieve optimality,
typically based on gradient descent [16], [19], Powell methods
[18], [21] or dynamic programming [22].
Compared with previous IVUS pullback location/orientation

registration methods that treat the registration of location
and orientation as separate tasks, we propose a novel joint
spatio-temporal approach for IVUS pullback registration. By
combining these two aspects in one global optimization task of
finding an optimal path in a 3D graph, the location and orien-
tation are registered simultaneously. To increase the robustness
to the changes of vessel morphologic features, our method
combines advantages from feature-based and direct approaches
by incorporating plaque thickness and plaque/perivascular
pixel similarities which provides more robust correspon-
dence in two time points. To ensure geometrically feasible

registration, graph arcs incorporate prior information about
baseline-follow-up correspondences of the two IVUS se-
quences as well as information about limited-range angular
twisting between consecutive IVUS image frames. To initialize
the registration procedure, global and local similarities of two
IVUS pullbacks are extracted from the 3D graph to automat-
ically identify the most proximal and most distal image pair
correspondences. To the extent of our knowledge, our approach
is the first in the literature to simultaneously establish temporal
(location) and spatial (orientation) correspondences between
two different image sequences of two similar dynamic scenes
by using a graph-based method, which has been traditionally
used in image segmentation to detect boundaries or surfaces
[23]–[27] or in deformable image registration to obtain the dis-
placement field [28]–[30]. Partial results of this work have been
reported in [31]. The current study provides more sophisticated
methodology including regularization graph arcs, concise cost
function, and automated model initialization, as well as a more
comprehensive evaluation in a larger patient population.
Our system registers image sequences in a highly automated

fashion as long as sufficiently accurate lumen and external
elastic lamina (EEL) segmentations are available for all frames
of both image sequences. This means that there is no need to
provide a variety of manually obtained guiding information,
such as branch locations/orientations [9]–[12], plaque charac-
terization [9], [11], [12], matching anatomic landmarks [9],
[10], and co-registration angles [9]. IVUS segmentation suit-
able for further analysis is invariably required for quantitative
IVUS-based studies of coronary atherosclerosis [1]–[6], [8],
[32], [33].

II. METHODS

A. 3D Graph Construction

Given a pair of baseline and follow-up IVUS pullbacks, a
3D directed graph is constructed and searched for the optimal
path (Fig. 2). In the 3D graph, each node represents the pos-
sible location and orientation correspondences of a baseline and
a follow-up image frame pair. For example, the uppermost green
graph node with coordinates in
Fig. 2 represents correspondence of a follow-up frame #3 with
212 rotation with a baseline frame #4. The complete registra-
tion is defined by a sequence of nodes, which for each
coordinate triplet forms a path in the 3D graph defining a pos-
sible location and orientation correspondence of baseline and
follow-up image frames. Costs assigned to each node in the 3D
graph reflect similarities of IVUS image data appearance and
plaque morphology between the baseline and follow-up. An op-
timal path is defined as the path with the lowest global cost,
which in an overall sense defines the frame-to-frame location
and orientation registration of two image sequences. Clearly,
such a registration is optimal with respect to the employed cost
function.
To calculate the lowest cost path, a dynamic programming

algorithm is employed [22], [34]. A three-dimensional cumula-
tive cost matrix is computed according to node costs
( , see Section II.B for details) and
node connections. The design of the node connections assumes
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Fig. 2. Construction of a 3D graph used for solving the registration problem. This illustrative example assumes a baseline pullback (4 frames) and a follow-up
pullback (3 frames). Green lines depict the optimal path through the graph determining the registration solution.

Fig. 3. Node connections for three different graph locations are shown as red, green, and blue dashed lines. This illustrative example assumes . Note
that the graph node connections seamlessly connect nodes at any location, including connections across the graph boundaries.

limited angular twisting between consecutive image pairs [9],
[35]. In each stage of the dynamic programming, the best one
of the possible preceding nodes
is selected, where is the rotational constraint of angular
frame-to-frame twisting. The node connection diagram is visu-
alized in Fig. 3. Nodes at any location (e.g., the red, green, or
blue shaded nodes in Fig. 3) in the 3D graph, can be reached
from any nodes in the other three rows (nodes connected by red,
green, or blue arcs in Fig. 3), which potentially correspond to
preceding baseline/follow-up frame pairs. As a result, each el-
ement in the matrix is
computed as

(1)

where is the -th baseline image, is the rotation angle of the
-th follow-up image, . Note that

when and , the connections will link
to and , respectively, shown as the
connections to purple nodes in Fig. 3. is the smooth-
ness penalty function for different angular twisting . The
angular twisting between consecutive IVUS images depends
on the geometrical vessel morphology and vessel movement
in the 4D case. It can be analytically determined using fusion
with X-ray angiography [35]. Under ideal circumstances, such
twisting should be identical between the two pullbacks and thus
their differences should be zero. While this cannot be assured
in clinical setting when artificial catheter movements may add
an unpredictable component, the relative frame-to-frame differ-
ences should be small but they are cumulative. Therefore, we
increasingly penalize twisting in either direction as follows

(2)

where controls the penalty weight. The elements in
the first layer (follow-up frame 1) and the elements



ZHANG et al.: SIMULTANEOUS REGISTRATION OF LOCATION AND ORIENTATION IN INTRAVASCULAR ULTRASOUND PULLBACKS PAIRS 2553

in the first rows of each layer (baseline frame 1) are initialized
as

(3)
(4)

The initialization condition is set as

(5)

As is typical for dynamic programming, the optimal path
through the 3Dmatrix is determined by backtracking from el-
ement to by following the minimum
values of the neighboring elements, where and represent
the last frames in baseline and follow-up, respectively.

B. Cost Function Design

Design of node-associated costs is always problem-specific.
For IVUS pullback registration, Each cost reflects
the similarity between the -th baseline image and the -th
follow-up image with -degree rotation. The similarity is de-
signed as a combination of feature-based and direct approaches
based on three terms: 1) perivascular tissue, including pixels
outside of the EEL border (the green region in Fig. 4(c)); 2)
plaque appearance, including the pixels between the EEL and
lumen borders (the orange region in Fig. 4(c)); and 3) plaque
thickness, defined as the distance between lumen and EEL
borders at 360 circumferential wedges centered at the lumen
centroid. Such a cost function design is depicted in Fig. 4 and
formulated as

(6)

Calculation of is based on the normalized
cross-correlation approach as detailed in [9], , and are
the weights for the perivascular tissue, plaque appearance, and
plaque thickness terms, respectively, satisfying

. In [9], the calculation of relies on the VH-derived
indexed values to describe plaque component similarity. In
our implementation, IVUS image pixel intensities are directly
used to reveal the plaque appearance similarity while avoiding
the dependency on VH. Since the used in [9] cannot
discriminate between two similar plaque shapes with different
sizes, a size factor was added to represent differences of mean
plaque thickness between baseline and follow-up:

(7)

where is the rotation angle of a follow-up image being regis-
tered, and are average plaque thickness values of the -th
baseline and the -th follow-up images, respectively, and

are their respective standard deviations, is the number of
plaque thickness values which were set to 360, and is the

Fig. 4. Cost function designed for IVUS pullback registration. (a) Longitudinal
and cross-sectional views of a baseline IVUS pullback with expert-defined seg-
mentation (lumen—yellow, EEL—red). (b) Longitudinal view of corresponding
follow-up IVUS pullback. (c) Cost function of , and

. Costs are calculated by comparing the IVUS image frame given
in panel (a) with all follow-up IVUS image frames in panel (b). Each value on
a curve corresponds to the minimal value with respect to all possible rotations
of a follow-up frame. In the cross-sectional view, the perivascular tissue and
plaque are overlaid with green and orange colors, respectively. (d) Cost func-
tion considering all follow-up images.

plaque thickness index calculated in the radial directions. Note
that when computing these Corr values, coinciding lumen cen-
troids for the baseline and rotated follow-up image pairs are pro-
vided by our automated segmentation and operator-guided re-
finement algorithm [27]. This cost function design follows the
rules for characteristic calcifications, perivascular landmarks,
and plaque shape, which cardiologists use to match baseline and
follow-up IVUS pullbacks [32].

C. Identification of Starting and Ending Frame Pairs
For the baseline and follow-up IVUS acquisition in the same

vessel, the starting and ending positions of pullbacks are not al-
ways the same. Therefore, before applying the proposed regis-
tration method, we should identify the most proximal and most
distal corresponding image frame pairs. Our strategy combines
global and local costs embedded in the 3D graph-based frame-
work. Fig. 5 demonstrates identification of the ending frame
pair, which is determined by the following equation:

(8)

where is the global cost. corresponds to
mean cost of the optimal path (green solid line in Fig. 5), which
backtracks from element (green point in Fig. 5) in
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Fig. 5. Schema of the proposed global and local method for identification of ending pair. Given a baseline and follow-up IVUS sequence pair, our method con-
structs a 3D graph and follows two tracks: In the first track, the last baseline frame is fixed and the follow-up frame iteratively shifted by the minimal required
length of baseline-follow-up overlap (25 mm in our case). In each iteration, global and local costs embedded in the 3D graph are extracted and combined. By fixing
the last follow-up frame and iteratively shifting the baseline frame, another series of costs are obtained in the second track. The frame pair providing minimal cost
is chosen as the ending pair.

the 3D cumulative cost matrix (cube in Fig. 5), and is defined
as:

(9)

is computed according to (1); is the number of ele-
ments which form the optimal path. Such a design of the global
cost represents the average similarity between two registered
IVUS image sequences with as the ending frame pair.

is the local cost, associated with the similarity be-
tween the -th image in baseline and the -th image with rota-
tion angle in follow-up, as defined in (6). and represent
the last frames in baseline and follow-up, respectively. After the
ending pair is identified, both the 3D cumulative cost matrix
and the cost matrix are inverted and the same global and local
approach is used to identify the starting pair with a searching
range constrained by the minimal required lengths of the base-
line/follow-up pullback overlap (25 mm overlap required in our
studies).
Subsequently, the aforementioned selection order is inverted

by identifying the starting pair first followed by obtaining the
ending pair. This, two start/end pairs are available and the final
solution is identified by choosing the lower total cost (global
and local) from these two solutions. The 3D graph is subse-
quently constructed and the optimal path is determined, simul-

taneously registering the IVUS pullback with respect to location
and orientation.

D. Post-Processing
In clinical data, the pullback lengths (number of frames) of

the imaged vessel segment at baseline and follow-up may differ
dramatically. Reasons come from many aspects, including pri-
mary heart rate, different segment covered, resistance to trans-
ducer withdrawal, anatomic considerations, problems with the
pullback device, etc. [33]. As a result, our registration of base-
line and follow-up may generate one-to-many or many-to-one
correspondences. To achieve one-to-one correspondence among
baseline and follow-up, the registered frame pair with the min-
imal cost (6) is selected and used to define the overall corre-
spondence of the two pullback IVUS frame pairs.

III. EXPERIMENTAL METHODS

A. Patient Data
The performance of the proposed method was evaluated in 29

serial IVUS-VH studies of patients with stable coronary artery
disease enrolled in the PREDICT study (ClinicalTrials.gov
Identifier: NCT01773512) at the Charles University Hospital,
Prague. The PREDICT study aims at prediction of extent and
risk profile of coronary atherosclerosis and their changes during
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lipid-lowering therapy based on non-invasive techniques. From
33 patients in total, 29 patients satisfied inclusion criteria [6],
[33] and were selected for this baseline/follow-up registration
study.
IVUS imaging was performed in the standard fashion using

the IVUS phased-array probe (Eagle Eye 20 MHz 2,9F mono-
rail, Volcano Corporation, Rancho Cordova, California), IVUS
console, Gold standard software, and motorized pullback at 0.5
mm/s (research pullback device, model R-l00, Volcano Corpo-
ration, Rancho Cordova, California). After 8–14 months pa-
tients underwent repeat cardiac catheterization and IVUS of the
same coronary artery.
The Volcano IVUS imaging system provided EKG R-wave

gated IVUS image sequences with 8 622 gated frames in total
(72 to 235 frames per pullback), 0.27 to 0.67 mm distances
between adjacent frames depending on the heart rate, and 500
500 pixels per image frame. Both baseline and follow-up pull-

backs were at least 30 mm long, with at least 25 mm longmutual
overlap.

B. Independent Standard
Three experts defined the ground truth for baseline/follow-up

IVUS pullback registration. The experts were blinded to the re-
sults of the computer registration and had the following levels
of expertise:
• Expert 1 (TK): Cardiologist with 16 years clinical experi-
ence in coronary imaging (mainly IVUS).

• Expert 2 (AW): IVUS analyst with 17 years of IVUS ex-
perience.

• Expert 3 (ZC): IVUS analyst with 4 years of IVUS experi-
ence.

For each frame of each IVUS pullback, luminal and EEL sur-
faces were automatically segmented using our fully three-di-
mensional LOGISMOS graph-based approach [24], [25], which
shows excellent performance compared to the state-of-the-art
algorithms on a public available IVUS image database [36]. Au-
tomatically determined surfaces were reviewed and algorithmi-
cally refined by an expert cardiologist using our previously re-
ported computer-aided refinement approach [27]. Examples of
the final segmentation can be seen in Fig. 4.
To evaluate the performance of the automated registration,

262 frame pairs with well-identifiable landmarks (baseline
follow-up) were determined by Expert 1. The 262 follow-up
frames were further rotated by Expert 1 to make their circum-
ferential positions coincide with their corresponding baseline
frames, where 5 steps were used. Expert 1 devoted about 50
minutes to each baseline/follow-up registration; 24 hours of ex-
pert effort were needed to define the ground truth in all 29 base-
line/follow-up pairs. The remaining two experts (Experts 2 and
3) were provided the 262 landmarks in baseline pullbacks and
were asked to find corresponding follow-up frames and properly
rotate them to determine inter-observer variability of manual
registration.

C. Registration Accuracy and Statistical Analysis
The registration results were first qualitatively evaluated by

visually checking for gross inaccuracies. To quantify the suc-
cess rate of the locational registration, distances (mm) between

the expert-identified follow-up frames and the automatically
registered frames were used as the performance measure (10).
To quantitatively evaluate the orientation registration perfor-
mance, rotational registration angles of corresponding frames
were compared with those determined by the expert (11). All
results are reported as the mean error the standard deviation.

(10)
(11)

where and are the automatically registered location and
orientation, and and denote the independent standard.
For statistical analysis, differences between manual and com-

puter registered locations were determined using a Wilcoxon
signed-ranks test [37] to reflect non-normal distribution, while
angular differences between orientations were determined using
a paired Students -test, both with deemed statistically
significant. Linear regression analysis [38] and Bland-Altman
plots [39] were used to compare the rotation angle differences.
To reveal the true angular difference between two rotations, an-
gular values were first transformed to the range .

D. Comparison With Other Methods

Performance of our method was compared to the inter-ob-
server variability of manually-performed registration, the work
of Timmins et al. [9], our earlier-reported side-branch guided
(SBG) approach [10], the DTW framework [14] with area-based
costs [11], [12], and DTW framework [14] with correlation-
based costs (6). For the method in [9], the location registra-
tion is actually the same as SBG (piecewise distance normal-
ization) [10], the manual co-registration angle was derived from
the first corresponding side-branch pairs obtained in [10]. Other
parameters were set as in [9]. In the DTW framework, due to
the sliding window approach [11], the method is not designed
to register pullbacks of different length; the extremes of path
search strategy [12] did not work well on our data set in a
preliminary experiment (e.g., failed in 8 out of the 29 pull-
back pairs). Therefore, we used our automatically-determined
start/end frame pairs to initialize the DTW framework for a
relatively fair comparison of the registration performance. For
DTW framework with area-based costs, the first four features
used in [11], [12] were employed and the areas of calcified and
fibro-lipidic plaque were derived from VH in our implementa-
tion, and the directional penalty [11], [12] was set as 0.05 by op-
timizing the accuracy using Expert 1 landmark frame registra-
tion as the ground truth. For DTW framework with correlation-
based costs, we first optimized the orientation for each frame
pair followed by locational registration in the DTW framework
for which the orientation was used as a single fixed cost.

E. Computational Resources

The proposed system was tested on an HP Z400 workstation
with 3.33 GHz Xeon W3680 CPU, 24 GB of RAM, running
Windows 7 SP1 Enterprise. The mean execution times are re-
ported in terms of the complete registration process, the identi-
fication of starting/ending frame pairs, and the frame-by-frame
registration, respectively.
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Fig. 6. Automated registration of pullback pair from Fig. 1. From the first to the
fourth row: Registered baseline pullback; registered follow-up pullback; base-
line landmarks selected by Expert 1; registration results obtained by our auto-
mated method. Optimal path (green path) in 3D space and its projec-
tions (red paths) on 2D plane and 2D plane generated by our
method for this example are shown in the upper-right panel.

F. Registration Method Parameters
According to our earlier studies, the node connection pa-

rameters used for the registration graph construction
need not exceed 15 [35]. Others reported that the average
rotation between consecutive EKG-gated IVUS image frames
is [9]. Generally, the registration solution is
more constrained for lower values of and thus less com-
putationally demanding. Here, was experimentally
set as a trade-off between accuracy and efficiency and its
exact value was not critical for the method's performance. The
smoothness penalty weight was set as 0.1. Considering that
perivascular landmarks (side-branch, small vein, myocardium
proximity, etc.) can provide more consistent correspondence
than plaque appearance and plaque thickness between base-
line/follow-up, was set to 0.5 to emphasize the importance
of the perivascular tissue term; both and were set to 0.25
to let the plaque appearance term and plaque thickness term
contribute equally.

IV. RESULTS

A. Qualitative Assessment of Registration Performance
Fig. 6 shows the automated registration of the pullback pairs

shown in Fig. 1. Prior to registration, the reconstructed baseline
and follow-up longitudinal views looked quite different (Fig. 1).
After registration (Fig. 6), both the longitudinal and cross-sec-
tional views show good correspondences between baseline and
follow-up. The automatically (fourth row in Fig. 6) and man-
ually (fifth row in Fig. 1) registered follow-up cross-sectional
images are visually comparable in both appearance and orien-
tation. Fig. 7 shows a 3D reconstruction of the lumen and EEL
surfaces before and after automated registration. It can be visu-
ally appreciated that two segments become narrower (blue ar-
rows in Fig. 7) and that plaque rupture is shown at follow-up
(red circle in Fig. 7).

Fig. 7. Three-dimensional visualization of IVUS pullback registration. (a)
Original pullback pair. (b) Automatically registered pullback pair. Lumen
shown in orange, EEL surface in green. Notice that two segments become
narrower (blue arrows) and that plaque rupture is visible at follow-up (red
circle, in which two registered IVUS image pairs are shown on the right side).

Fig. 8 shows six examples of registration results obtained
by a) our new method and b) three experts. When visually
comparing our results with expert registration, good agreement
was reached across a variety of image-induced challenges and
morphology changes (note matching of the following clues in
Fig. 8): side-branches (cases B, D, E, F), shadows (cases A, E),
big and small calcifications (cases E, A, C), small veins (cases
B, F), and myocardium proximity (cases C, F).

B. Quantitative Assessment of Registration Performance

Table I shows the location and orientation registration er-
rors of our 3D graph based method and the inter-observer vari-
ability. Compared to three expert registration results, the re-
ported 3D-graph-based method achieved mean distance errors
ranging from 0.72 mm to 0.79 mm with the mean angle errors
ranging from 7.3 to 9.3 . There were no significant differences
between our method and experts in location and orientation reg-
istration . The maximal distance and angle errors gen-
erated by our method were 8.4 mm and 147 , respectively, com-
parable to themaximum disagreements between experts. For the
262 baseline landmarks selected by Expert 1, our method failed
to determine eight corresponding follow-up frames; 7 of these
were the most distal landmarks from 7 patients and 1 was the
most proximal landmark. Similarly, Expert 2 failed to identify
three of the most distal landmarks in three patients, stating that
the corresponding landmarks were beyond the coverage of the
follow-up pullbacks.
For statistical analysis of orientation registration, linear re-

gression analysis (Fig. 9(a)-(b)) demonstrated that the automat-
ically registered frame orientations exhibited high correlation
with expert registrations ( ranging from 0.97 to 0.98), com-
parable to inter-observer variability. The Bland-Altman plots
(Fig. 9(c)-(d)) revealed that the rotation angles determined by
our method and experts agreed well with bias values ranging
from to 0.15 , comparable to inter-observer variability
ranging from to 1.08 .
Table II summarizes the location and orientation registration

errors of Timminsmethod [9], SBG approach [10], DTW frame-
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Fig. 8. IVUS pullback registration. From the first row to the seventh row: our baseline/follow-up registration results in longitudinal views, baseline landmarks
selected by Expert 1, corresponding follow-up registration obtained by our method, Expert 1, Expert 2, and Expert 3. White dotted lines indicate positions of the
landmark locations shown in cross-sectional views.

TABLE I
DISTANCE AND ROTATIONAL REGISTRATION ERRORS OF INTER-OBSERVER VARIABILITY AND OUR METHOD.

LM: LANDMARKS. NO DIFFERENCES WERE STATISTICALLY SIGNIFICANT
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Fig. 9. Linear regression analysis and Bland-Altman plots comparing frame orientation differences among experts (a,c), and between our method and experts
(b,d).

work with area-based costs [11], [12], DTW framework with
correlation-based costs, and of our new method. The proposed

3D graph based method achieved lower errors in both the loca-
tion and orientation registration.
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TABLE II
COMPARISON OF LOCATION AND ORIENTATION REGISTRATION ERRORS OF THE TIMMINS METHOD [9], SBG [10], DTW-AREA [11], [12], DTW-CORRELATION
(WHICH USES THE DTW FRAMEWORK OF [14] WITH OUR CORRELATION-BASED COSTS), AND OUR 3D GRAPH METHOD. NOTE THAT OUR 3D GRAPH METHOD

SHOWS CONSISTENTLY LOWER REGISTRATION ERRORS. NOTE ALSO THAT DTW-AREA [11], [12] WAS NOT DESIGNED FOR ORIENTATION REGISTRATION

The mean execution time for the complete automated regis-
tration process was minutes per pullback pair. Identi-
fication of starting/ending frame pairs and performing complete
3D frame-by-frame registration required and
minutes per pullback pair, respectively. While the computation
of the cost function was time consuming (about 6–24 hours per
patient, depending on the length of the respective IVUS pull-
back) and was computed in parallel on a computer cluster in
about two days for all 29 patients, such training is only per-
formed once and its computational demands do not affect the
analysis speed.

V. DISCUSSION

A. Importance of Automated IVUS Pullback Registration
As mentioned in Section I, current clinical studies of the nat-

ural course of plaque progression and regression rely on tedious,
time-consuming, and subjective registration of location and
orientation of longitudinal IVUS pullbacks. We have reported
in Section III.B that registering IVUS baseline and follow-up
IVUS pullbacks by an expert cardiologist (Expert 1) required
50 minutes per pullback pair—and only landmark-frame pairs
were registered. Clearly, it is extremely time-consuming to
establish frame level correspondence manually, and almost
impossible when the patient cohort is large. Given the variety
of challenges presented in IVUS pullback data [12], [13], [33],
manual registration requires relatively high-level of experience
and expert interpretation. It is also subject to considerable
intra- and inter-observer variability. As a result, current clinical
studies mostly rely on comparisons of integral features deter-
mined over relatively long vessel segments and thus combining
large tissue areas. This regional rather than local approach
hinders our ability to achieve better understanding of local
plaque progression and local plaque vulnerability [5], [9].

B. Comparison With Other Methods
To automatically register frame location, some of the pre-

vious methods simply normalize the frame distances between
manually detected side-branches [9], [10]. As demonstrated
in Table II, the distance registration errors of this type of
method are relatively large mainly because of the irregularities
in catheter speed in IVUS acquisitions. Notably, such errors
were observed even when many frames with branches (already
manually identified in these approaches [9], [10]) were used as
landmarks. Other methods only make use of morphology-based
features [11]–[13] such as vessel/plaque area and shape con-
text, thus overlooking important image-based features such as
plaque and perivascular tissue appearance, which demonstrated
excellent performance in terms of location registration errors

(see of “DTW-correlation” in Table II). Therefore, the
registration results of such approaches [11], [12] are not robust
enough to properly register follow-up frames with similar
vessel areas or shape properties. Other reasons causing the
DTW framework with area-based costs [11], [12] not to be
sufficiently accurate on our data are likely attributed to: 1) por-
tion of patient data used in [11], [12] were repeatedly acquired
shortly after each other and at the same disease and intervention
stages, thus without any morphologic changes. In contrast, our
follow-up data were acquired after 1 year with possible plaque
progression-induced changes of morphology; 2) although some
data used in [11], [12] suffered from significant morphologic
changes, only side-branch locations were used as landmarks in
their evaluation; 3) in our data, the numbers of IVUS frames
in baseline and follow-up sequence pairs are frequently quite
different, which makes the registration task more challenging.
To automatically register frame orientation, previous solu-

tions [9], [10] ignore the problem that appears when a stuck/ac-
celerated IVUS pullback occurs during acquisition. Addition-
ally, for methods relying on local optimization [9], if there is an
incorrect locationally registered frame pair, the rotation angle
may also be incorrect and using this incorrect angle to constrain
consecutive image pair orientation registration will affect the re-
sult (refer to the relatively large of [9] in Table II). Further-
more, due to the lack of prior information about limited angular
twisting, the DTW framework with correlation-based costs ap-
proach exhibited large orientation registration errors (refer to

of “DTW-correlation” in Table II). In our globally optimal
approach, the final orientation registration was not affected in
this way.

C. Advantages of the Reported Method
An important advantage of the reported method is that it

simultaneously registers locations and orientations of all frames
in the two longitudinal IVUS pullbacks in a geometrically
feasible manner. Subsequently, it is more robust than methods
which register location or orientation separately. Furthermore,
our system is designed to be highly automated as long as
segmentation of lumen and EEL borders is available for all
frames of the two image sequences. While our method was
only tested on IVUS data, it may be easily extended to other
intravascular imaging modalities solely by modifications of the
objective function, including intracororonary optical coherence
tomography (OCT) [40] or OCT-IVUS data co-registration
[41], [42].
The contributions of our new method can be summarized as

follows.
1) To the best of our knowledge, this is the first approach to

simultaneously establish frame-to-frame correspondence
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in location and orientation between two image sequences
using a 3D graph-based method.

2) The proposed 3D graph structure allows incorporating ro-
tation-related features and catheter twisting prior for reg-
istration, and the designed clinical knowledge-based cost
function is robust to vessel morphologic changes.

3) The reported method can automatically identify the
starting and ending frame pairs in two image sequences.

D. Limitations
Similar to most of previous IVUS pullback registration ap-

proaches, our method relies on the segmentation of lumen and
EEL, which is used to determine plaque and perivascular re-
gions and also provides a common lumen centroid for both the
baseline and follow-up image pairs to calculate the correlation
terms in (6). Inaccurate or ambiguous segmentation may re-
sult in incorrect final registration. Sensitivity of the registra-
tion to such segmentation inaccuracies need further evaluation
in our future work. A potential solution for avoiding segmen-
tation dependency may be to identify discriminative regions to
measure the structural similarity between two images as used in
video-volume registration for endoscopic 3D motion tracking
[21]. Nevertheless, accurate IVUS segmentation is a common
pre-requisite to any quantitative IVUS-based studies of coro-
nary atherosclerosis and as such must always be accomplished
regardless of the registration needs [1]–[6], [8], [32], [33].
Even though our proposed method outperforms previous

methods especially in handling irregular catheter speeds and
dealing with morphologic change, it may not perform well
if the IVUS pullback include images with a pronounced
frame-to-frame “jump,” in which a large number of image
frames is missing in one of the paired pullbacks either due to
gating issues or a sudden movement of the catheter (e.g., after
being slowed down by local plaque's resistance). A possible ap-
proach to solve this problem is to increase the node-connection
distance during the graph construction. The trade-off, however,
may be a loss of image sequence continuity. Alternatively,
utilizing branch detection algorithms either automatically [43]
or semi-automatically [44] may help constrain the range of
frames considered for registration.
Another limitation of our method is that the computation

burden of cost function calculation may increase noticeably
with increasing length of the registered IVUS sequences.
Potentially, such a problem could be overcome by employing
an acceleration algorithm [45]. However, integration of such
a speed-up delivering solution is beyond the scope of this
work and may be attempted in the future. Recently, we have
developed an efficient, integrated, side-branch constrained
framework that is not subject to length-dependent computa-
tional complexity increases [46].

VI. CONCLUSION
The presented results demonstrate that our automated 3D

graph-based registration method outperforms recent semi-au-
tomated approaches and achieves registration accuracy closely
approaching inter-observer variability. The presented 3D
graph-based framework yields globally optimal registration
of location and orientation of baseline and follow-up IVUS

pullbacks, which is achieved in a single optimization step by
using a 3D dynamic programming algorithm. By incorporating
rotation-related features and catheter twisting prior in the graph
structure, designing a comprehensive knowledge-based cost
function, and extracting global and local graph information for
identification of starting/ending image pairs, our work delivers
highly automatic, accurate and robust IVUS pullback registra-
tion. The new method was tested in 29 in vivo IVUS pullback
pairs from 29 patients. The experimental results yielded lo-
cation and orientation registration errors that were close to
the inter-observer variability. Our method has a potential to
enable large-volume focal studies of natural course of plaque
development in human coronary arteries in vivo.
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