
Under review as a conference paper at ICLR 2020

USING HINDSIGHT TO ANCHOR PAST KNOWLEDGE IN
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In continual learning, the learner faces a stream of data whose distribution changes
over time. Modern neural networks are known to suffer under this setting, as they
quickly forget previously acquired knowledge. To address such catastrophic for-
getting, many continual learning methods implement different types of experience
replay, re-learning on past data stored in a small buffer known as episodic memory.
In this work, we complement experience replay with a meta-learning technique
that we call “anchoring”: the learner updates its knowledge on the current task,
while keeping predictions on some anchor points of past tasks intact. These anchor
points are learned using gradient-based optimization as to maximize forgetting
of the current task, in hindsight, when the learner is fine-tuned on the episodic
memory of past tasks. Experiments on several supervised learning benchmarks for
continual learning demonstrate that our approach improves the standard experience
replay in terms of both accuracy and forgetting metrics and for various sizes of
episodic memories.

1 INTRODUCTION

This manuscript studies the problem of continual learning, where a machine learning model ex-
periences a sequence of tasks. Each of these tasks is presented as a stream of input-output pairs,
where each pair is drawn from the corresponding task probability distribution. Since the length of
the learning experience is not specified a-priori, the learner can only assume a single pass over the
data, and store nothing but a few examples into a fixed-size episodic memory. At all times during the
lifetime of the model, predictions on examples from all tasks can be requested. Addressing continual
learning is an important research problem, since it would waive the long-obsolete assumption of
“identically and independently distributed data” impeding progress towards artificial intelligence, and
allow the deployment of models learning in-the-wild. However, continual learning presents one major
challenge, catastrophic forgetting (McCloskey & Cohen, 1989). That is, as the learner experiences
new tasks, it quickly forgets previously acquired knowledge. This is a hindrance for state-of-the-art
deep learning models, where all parameters are updated after observing each example.

Continual learning has received increasing attention from the scientific community during the last
decade. The state of the art in algorithms for continual learning fall into three categories. First,
regularization-based approaches reduce forgetting by restricting the updates in parameters that
were important for previous tasks (Kirkpatrick et al., 2016; Aljundi et al., 2018; Chaudhry et al.,
2018; Nguyen et al., 2018). However, when the number of tasks are large, the regularization of
past tasks becomes obsolete, leading to representation drift (Titsias et al., 2019). Second, modular
approaches (Rusu et al., 2016; Lee et al., 2017) add new modules to the learner as new tasks are
learned. While modular architectures overcome forgetting by design, the memory complexity of these
approaches scales with the number of tasks. Third, memory-based methods (Lopez-Paz & Ranzato,
2017; Hayes et al., 2018; Isele & Cosgun, 2018; Riemer et al., 2019; Chaudhry et al., 2019a), store
a few examples from past tasks in a so-called episodic memory, to be revisited when training for
a new task. Memory-based methods are the reigning state of the art, but remain a far-cry from the
achievable performance by a simple multi-task learning baseline accessing all data at once. Despite
intense research efforts, such gap in performance renders the problem of continual learning an open
research question.

1

Under review as a conference paper at ICLR 2020

Contribution We propose Hindsight Anchor Learning (HAL), a continual learning approach to
improve the performance of memory-based continual learning algorithms. HAL leverages meta-
learning to regularize the training objective with one representational point per class per task, called
anchor. Since it is desirable to preserve the performance of a learner during its lifetime, HAL
constructs anchors as to maximize forgetting on the current task throughout the learning experience.
We estimate the amount of forgetting that the learner would suffer on those anchors when learning
future tasks in hindsight: that is, by measuring forgetting on a temporary predictor that has been
fine-tuned on the episodic memories of past tasks. Then, the main parameter update of HAL is to
minimize the loss on the currently observed mini-batch, while keeping the predictions at all anchors
invariant.

Results We compare HAL to EWC (Kirkpatrick et al., 2016), AGEM (Chaudhry et al., 2019a),
experience replay (Hayes et al., 2018; Riemer et al., 2019), and MER (Riemer et al., 2019), across four
standard benchmarks in continual learning (MNIST permutations, MNIST rotations, split CIFAR-
100, and split miniImageNet). In these experiments, HAL achieves state-of-the-art performance,
improving accuracy by 5% and reducing forgetting by 20%. We show that these results hold for
various sizes of episodic memories (between 1 and 5 examples per class per task). Finally, we
perform an ablation study to show that learning anchors in hindsight is a critical factor to achieve
state-of-the-art performance.

We now begin our exposition by reviewing the continual learning setup. The rest of the manuscript
then presents our new algorithm HAL (Section 3), showcases its empirical performance (Section 4),
surveys the related literature (Section 5), and offers some concluding remarks (Section 6).

2 CONTINUAL LEARNING SETUP

In continual learning, we experience a stream of data triplets (xi, yi, ti), each containing an input
xi, a target yi, and a task identifier ti ∈ T = {1, . . . , T}. Each input-target pair (xi, yi) ∈ X × Yti
is an identically and independently distributed example drawn from some unknown distribution
P (Xti , Yti), representing the ti-th learning task. Without loss of generality, we assume that the tasks
are experienced in order (ti ≤ tj for all i ≤ j), and that the number of total tasks T is not known a
priori. Under this setup, our goal is to estimate a predictor f = (w ◦ φ) : X × T → Y , composed by
a featurizer φ : X → H and a classifier w : H → Y , that minimizes the multi-task error

1

T

T∑
t=1

E(x,y)∼Pt
[`(f(x, t), y)] , (1)

where Y = ∪t∈T Yt, and ` : Y × Y → R is a suitable loss function.

In the sequel, and similarly to prior literature in continual learning (Lopez-Paz & Ranzato, 2017;
Hayes et al., 2018; Riemer et al., 2019; Chaudhry et al., 2019a), we consider streams of data, which
are experienced only once. Therefore, the learner cannot store or revisit any but a small amount of
data triplets chosen to be stored in its episodic memoryM. More specifically, we consider tiny “ring”
episodic memories, which contain the last m observed examples per class for each of the experienced
tasks, where m ∈ {1, 3, 5}. That is, considering as variables the number of experienced tasks t and
examples n, we study continual learning algorithms with a O(t) memory footprint.

Following Lopez-Paz & Ranzato (2017), we monitor two statistics to evaluate the quality of continual
learning algorithms: final average accuracy, and final maximum forgetting. First, the final average
accuracy of a predictor is defined as

Accuracy =
1

T

T∑
j=1

aT,j , (2)

where ai,j denotes the test accuracy on task j after the model finished experiencing task i. That is,
the final average accuracy measures the test performance of the predictor at each of the tasks after the
continual learning experience has finished. Second, the final maximum forgetting is defined as

Forgetting =
1

T − 1

T−1∑
j=1

max
l∈{1,...,T−1}

(al,j − aT,j), (3)

2

Under review as a conference paper at ICLR 2020

that is, the decrease in performance at each of the tasks between their peak accuracy and their accuracy
after the continual learning experience has finished.

Finally, following Chaudhry et al. (2019a), we use the first k < T tasks to cross-validate the hyper-
parameters of each of the considered continual learning algorithms. These first k tasks are not
considered when computing the final average accuracy and maximum forgetting metrics.

3 HINSDIGHT ANCHOR LEARNING (HAL)

Our starting point to describe our proposed continual learning algorithm is the current state of the art
methods based on experience replay (Hayes et al., 2018; Riemer et al., 2019; Chaudhry et al., 2019b).
These are predictors fθ that, during training, store a small amount of past observed triplets into an
episodic memoryM = {(x′, y′, t′)}. When facing a new mini-batch of observations B := {(x, y, t)}
from task t, they employ the rule θ ← θ − α · ∇θ `(B ∪ BM) to update their parameters, where

`(A) = 1

|A|
∑

(x,y,t)∈A

`(fθ(x, t), y) (4)

denotes the average loss across a collection of triplets A, and BM is a mini-batch constructed by
sampling triplets of previous tasks fromM at random. In general, BM is constructed to have the
same size as B, but can be smaller if the episodic memoryM does not yet contain enough samples.

In the previous, the episodic memoryM reminds the predictor about how to perform at past tasks
using only a very small amount of datum. As such, the behaviour of the predictor outside the data
stored inM is not guaranteed, and subject to worsen. Because of this reason, we would like to be
more conservative, and propose to further fix the behaviour of the predictor at a collection of carefully
constructed anchor points et′ , one per class per past task t′, after a parameter update1.

To implement this, we propose a two-step parameter update rule:

θ̃ ← θ − α · ∇θ `(B ∪ BM),

θ ← θ − α · ∇θ

(
`(B ∪ BM) + λ ·

∑
t′<t

(
fθ(et′ , t

′)− fθ̃(et′ , t
′)
)2)

. (5)

The first step computes a temporary parameter vector θ̃ by minimizing the loss at a minibatch from
the current task t, and the episodic memory of past tasks (this is the usual experience replay parameter
update). The second step employs nested optimization to perform the final update of the parameter
θ, which trades-off the minimization of (a) the loss value at the current minibatch and the episodic
memory, as well as (b) the change in predictions at the anchor points for all past tasks. We use
L2 over the unnormalized logits as a distance measure in Eq. 5, as we experimentally find it to be
superior than cosine similarity or L1 distance. This two-step nested optimization bears a similarity to
gradient-based meta-learning approach (Finn et al., 2017) where we restrict the inner update to only a
single gradient step.

Next, let us discuss how to choose the anchor points. Recall that our objective is to preserve the
performance of the current task throughout the entire continual learning experience. Ideally, we
would like to choose each et as a tool to maximally suppress the amount of forgetting about current
task throughout the entire learning experience. For this, we are interested in letting et be the example
from task t on which the loss would increase maximally had training with future tasks been performed.
Such et would capture instances where the current task would be forgotten the most in future training.
Then, requiring the predictions to remain invariant at such et, by using Eq. 5, would minimize
forgetting on the current task. Mathematically, the desirable et and its label yt is given by:

(et, yt)← argmax
(x,y)∼Pt

`(fθT (x, t), y)− `(fθt(x, t), y), (6)

where θt is the parameter vector after training on task t and θT is the final parameter vector after
the entire learning experience. Thus, keeping predictions intact on the pair (et, yt) above would

1To ease the exposition, the remaining of the section assumes only one anchor et′ per task t′. The extension
to one anchor per class per task, as we use in our experiments, is straightforward.

3

Under review as a conference paper at ICLR 2020

maximally preserve the performance of task t. However, the idealistic Eq. 6 requires access to (a) the
entire distribution Pt as to compute the maximization, and (b) access to all future distributions t′ > t
as to compute the final parameter vector θT . Both are unrealistic assumptions.

To circumvent (a), we can recast Eq. 6 as to learn et by initializing it at random and using k gradient
ascent updates for a given label yt:

et ← et + α · ∇et

`(fθT (et, t), yt)− `(fθt(et, t), yt)︸ ︷︷ ︸
Forgetting loss

−γ (φ(et)− φt)2︸ ︷︷ ︸
Mean embedding loss

 , (7)

where we recall that φ denotes the feature extractor of the predictor, and φt is the neural mean
embedding (Smola et al., 2007) of all observed examples from task twhich regularizes the constructed
et against the outliers. Since the feature extractor is updated after experiencing each data point,
the mean embeddings φt are computed as running averages. That is, after observing a minibatch
B = {(x, y, t)} of task t, we update:

φt ← β · φt + (1− β) 1

|B|
∑
x∈B

φ(x), (8)

where φt is initialized to zero at the beginning of the learning experience. In our experiments, we
learn one et per class for each task. We fix the yt to the corresponding class label, and discard φt
after training on task t. Learning et in this manner circumvents the requirement of storing the entire
distribution Pt for a task.

Still, Eq. 7 requires the parameter vector θT , to be obtained in the distant future after all learning
tasks have been experienced. To waive this impossible requirement, we will approximate the future
by simulating the past. That is, instead of measuring the forgetting that would happen after the model
is trained at future tasks, we will measure the forgetting that happens when the model is fine-tuned at
past tasks. In this way, we say that forgetting is estimated in hindsight, using past experiences. More
concretely, after training on task t and obtaining the parameter vector θt, we minimize the loss during
one epoch on the episodic memoryM to obtain the temporary parameter vector θM, and recast Eq. 7
as:

et ← et + α · ∇et
(
`(fθM(et, t), yt)− `(fθt(et, t), yt)− γ(φ(et)− φt)2

)
. (9)

Our experiments show that the proposed approximation of future by replaying past data in hindsight
reduces forgetting by 20% when compared to a standard experience replay baseline.

This completes the description of our proposed algorithm for continual learning, which combines
experience replay with anchors learned in hindsight. We call our approach Hindsight Anchor Learning
(HAL) and summarize the entire learning process as follows:

Hindsight Anchor Learning (HAL)

• Initialize θ ∼ P (θ) and {et ∼ P (e)}Tt=1 from normal distributions P (θ) and P (e).
• InitializeM = {}
• For each task t = 1, . . . , T :

– Initialize φt = 0

– For each minibatch B from task t:

* Sample BM fromM
* Update θ using Eq. 5
* Update φt using Eq. 8
* UpdateM by adding B in a first-in first-out (FIFO) ring buffer

– Fine-tune onM to obtain θM
– Build et using Eq. 9 k times
– Discard φt

• Return θ.

4

Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

We now evaluate the performance of HAL against a variety of state-of-the-art methods, across four
popular continual learning benchmarks.

4.1 DATESETS AND TASKS

We perform experiments on four popular benchmarks for continual learning.

• Permuted MNIST is a variant of the MNIST dataset of handwritten digits (LeCun, 1998)
where each task applies a fixed random pixel permutation to the original dataset. This
benchmark contains 23 tasks, each with 1000 samples from 10 different classes.

• Rotated MNIST is another variant of MNIST, where each task applies a fixed random image
rotation (between 0 and 180 degrees) to the original dataset. This benchmark contains 23
tasks, each with 1000 samples from 10 different classes.

• Split CIFAR is a variant of the CIFAR-100 dataset (Krizhevsky & Hinton, 2009; Zenke et al.,
2017), where each task contains the data pertaining 5 random classes (without replacement)
out of the total 100 classes. This benchmark contains 20 tasks, each with 250 samples per
each of the 5 classes.

• Split miniImageNet is a variant of the ImageNet dataset (Russakovsky et al., 2015; Vinyals
et al., 2016), containing a subset of images and classes from the original dataset. This
benchmark contains 20 tasks, each with 250 samples per each of the 5 classes.

For all datasets, the first 3 tasks are used for hyper-parameter optimization (grids available in
Appendix B). The learners can perform multiple epochs on these three initial tasks, that are later
discarded for evaluation.

4.2 BASELINES

We compare our proposed model HAL to the following baselines.

• Finetune is a single model trained continually on the stream of data, without any regulariza-
tion or episodic memory.

• EWC (Kirkpatrick et al., 2016) is a continual learning method that limits changes to parame-
ters critical to past tasks, as measured by the Fisher information matrix.

• AGEM (Chaudhry et al., 2019a) is a continual learning method improving on (Lopez-Paz &
Ranzato, 2017), which uses an episodic memory of parameter gradients to limit forgetting.

• MER (Riemer et al., 2019) is a continual learning method that combines episodic memories
with meta-learning to limit forgetting.

• ER-Ring (Chaudhry et al., 2019b) is a continual learning method that uses a ring buffer as
episodic memory.

• Multitask is an oracle baseline that has access to all data to optimize Eq. 1, useful to estimate
an upper bound on the obtainable Accuracy (Eq. 2).

• Clone-and-finetune is an oracle baseline training one independent model per task, where the
model for task t′ is initialized by cloning the parameters of the model for task t′ − 1.

All baselines use the same neural network architectures: a perceptron with two hidden layers of 256
ReLU neurons in the MNIST experiments, and a ResNet18, with three times less feature maps across
all layers, similar to Lopez-Paz & Ranzato (2017), their CIFAR and ImageNet experiments. The
task identifiers are used to select the output head in the CIFAR and ImageNet experiments, while
ignored in the MNIST experiments. Batch size is set to 10 for both the stream of data and episodic
memories, across experiments and models. The size of episodic memories is set between 1 and 5
examples per class per task. The same unified code base runs all experiments, and is available at
https://bit.ly/2mw8bsE.2

2The code base is anonymized and implements the Permuted MNIST experiments.

5

https://bit.ly/2mw8bsE

Under review as a conference paper at ICLR 2020

Table 1: Accuracy (Eq. 2) and Forgetting (Eq. 3) results of continual learning experiments. Averages
and standard deviations are computed over five random seeds. When used, episodic memories contain
up to one example per class per task. Last two rows are oracle baselines.

Method Permuted MNIST Rotated MNIST
Accuracy Forgetting Accuracy Forgetting

Finetune 53.5 (±1.46) 0.29 (±0.01) 41.9 (±1.37) 0.50 (±0.01)
EWC 63.1 (±1.40) 0.18 (±0.01) 44.1 (±0.99) 0.47 (±0.01)
AGEM 62.1 (±1.39) 0.21 (±0.01) 50.9 (±0.92) 0.40 (±0.01)
MER 69.9 (±0.40) 0.14 (±0.01) 66.0 (±2.04) 0.23 (±0.01)
ER-Ring 70.2 (±0.56) 0.12 (±0.01) 65.9 (±0.41) 0.24 (±0.01)
HAL (ours) 73.6 (±0.31) 0.09 (±0.01) 68.4 (±0.72) 0.21 (±0.01)

Clone-and-finetune 81.4 (±0.35) 0.0 87.5 (±0.11) 0.0
Multitask 83.0 0.0 83.3 0.0

Method Split CIFAR Split miniImageNet
Accuracy Forgetting Accuracy Forgetting

Finetune 42.9 (±2.07) 0.25 (±0.03) 34.7 (±2.69) 0.26 (±0.03)
EWC 42.4 (±3.02) 0.26 (±0.02) 37.7 (±3.29) 0.21 (±0.03)
AGEM 54.9 (±2.92) 0.14 (±0.03) 48.2 (±2.49) 0.13 (±0.02)
MER 49.7 (±2.97) 0.19 (±0.03) 45.5 (±1.49) 0.15 (±0.01)
ER-Ring 56.2 (±1.93) 0.13 (±0.01) 49.0 (±2.61) 0.12 (±0.02)
HAL (ours) 60.4 (±0.54) 0.10 (±0.01) 51.6 (±2.02) 0.10 (±0.01)

Clone-and-finetune 60.3 (±0.55) 0.0 50.3 (±1.00) 0.0
Multitask 68.3 0.0 63.5 0.0

4.3 RESULTS

Table 1 summarizes the main results of our experiments. First, our proposed HAL is the method
achieving maximum Accuracy (Eq. 2) and minimal Forgetting (Eq. 3) at all benchmarks. This does
not include oracle baselines Multitask (which has access to all data simultaneously) and Clone-and-
finetune (which trains a separate model per task). Second, the relative gains from the second-best
method ER-Ring to HAL are significant, confirming that the anchoring objective (Eq. 5) allows
experience-replay methods to generalize better from the same amount of episodic memory.

Figure 1 shows a more fine grained analysis of average accuracy as new tasks are learned on Permuted
MNIST and Split CIFAR. HAL preserves the performance of a predictor more effectively than other
baselines.

Table 2 shows the Accuracy of methods that employ an episodic memory, when we allow the size
of this memory to increase; 3 or 5 examples per class per task, resulting in a total memory size
of 600 or 1000 for MNIST experiments, and 255 or 425 for CIFAR and ImageNet experiments.
The corresponding numbers for Forgetting are given in Appendix Table 4. HAL outperforms all
competitors at all benchmarks.

Figure 2 provides the training time of all the continual learning baselines on MNIST benchmarks.
Although HAL adds a overhead on top of experience replay baseline, it is significantly faster than,
MER, another meta-learning approach to reduce forgetting.

Finally, Table 3 summarizes the results of an ablation study to better understand the impact of anchor
selection. We compare selecting anchors as random noise (Random-Anchors), as a random example
for the associated class and task (Data-Anchors), or our proposed optimization in hindsight procedure
(HAL). Our results confirm that optimizing anchors in hindsight is the most effective strategy in
terms of both accuracy and forgetting metrics.

6

Under review as a conference paper at ICLR 2020

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tasks

0.6

0.7

0.8

Av
g

Ac
cu

ra
cy

(a) Permuted MNIST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tasks

0.40

0.45

0.50

0.55

0.60

0.65

Av
g

Ac
cu

ra
cy

HAL
EWC
FINETUNE
ER-Ring
AGEM
MER

(b) Split CIFAR

Figure 1: Evolution of Accuracy (Eq. 2) as new tasks are learned. When used, episodic memories
contain up to one example per class per task.

Table 2: Accuracy (Eq. 2) results for large (3 to 5 examples per class per task) episodic memory sizes.
Here we only compare methods that use an episodic memory. Averages and standard deviations are
computed over five random seeds.

Method Permuted MNIST Rotated MNIST
|M| = 600 |M| = 1000 |M| = 600 |M| = 1000

AGEM 63.2 (±1.47) 64.1 (±0.74) 49.9 (±1.49) 53.0 (±1.52)
MER 74.9 (±0.49) 78.3 (±0.19) 76.5 (±0.30) 77.3 (±1.13)
ER-Ring 73.5 (±0.43) 75.8 (±0.24) 74.7 (±0.56) 76.5 (±0.48)
HAL (ours) 76.2 (±0.52) 78.4 (±0.27) 77.0 (±0.66) 78.7 (±0.97)

Method Split CIFAR Split miniImageNet
|M| = 255 |M| = 425 |M| = 255 |M| = 425

AGEM 56.9 (±3.45) 59.9 (±2.64) 51.6 (±2.69) 54.3 (±1.56)
MER 57.7 (±2.59) 60.6 (±2.09) 49.4 (±3.43) 54.8 (±1.79)
ER-Ring 60.9 (±1.44) 62.6 (±1.77) 53.5 (±1.42) 54.2 (±3.23)
HAL (ours) 62.9 (±1.49) 64.4 (±2.15) 56.5 (±0.87) 57.2 (±1.54)

5 RELATED WORK

Permutations Rotations
MNIST Experiments

0

50

100

150

200

250

W
al

l C
lo

ck
 T

im
e

(s
)

Finetune
EWC
AGEM
MER
ER-Ring
HAL

Figure 2: Training time (s) of MNIST experiments
for the entire continual learning experience. MER
and HAL both use meta-learning objectives to re-
duce forgetting.

In continual learning (Ring, 1997), also called
lifelong learning (Thrun, 1998), a learner ad-
dresses a sequence of changing tasks without
storing the complete datasets of these tasks. This
is in contrast to multitask learning (Caruana,
1997), where the learner assumes simultaneous
access to data from all tasks. The main chal-
lenge in continual learning is to avoid catas-
trophic interference or forgetting (McCloskey
& Cohen, 1989; McClelland et al., 1995; Good-
fellow et al., 2013), that is, the learner forget-
ting previously acquired knowledge when learn-
ing new tasks. The state-of-the art methods in
continual learning can be categorized into three
classes.

First, regularization approaches discourage up-
dating parameters important for past tasks (Kirk-
patrick et al., 2016; Aljundi et al., 2018; Nguyen
et al., 2018; Zenke et al., 2017). While efficient
in terms of memory and computation, these ap-
proaches suffer from brittleness due to feature drift as the number of tasks increases (Titsias et al.,

7

Under review as a conference paper at ICLR 2020

Table 3: Impact of anchor selection, where we compare random-noise anchors (Random-), one
random example-per-class anchors (Data-), and our optimized anchor selection (HAL).

Anchor type Permuted MNIST Split CIFAR
Accuracy Forgetting Accuracy Forgetting

ER-Ring 70.2 0.12 56.2 0.13
Random-Anchors 72.7 0.10 57.8 0.13
Data-Anchors 73.2 0.10 59.0 0.12
HAL (ours) 73.6 0.09 60.4 0.10

2019). Additionally, these approaches are only effective when we can perform multiple passes over
each dataset (Chaudhry et al., 2019a), a case deemed unrealistic in this work.

Second, modular approaches use different parts of the prediction function for each new task (Fernando
et al., 2017; Aljundi et al., 2017; Rosenbaum et al., 2018; Chang et al., 2018; Xu & Zhu, 2018;
Ferran Alet, 2018). Modular approaches do not scale to a large number of tasks, as they require
searching over combinatorial space of module architectures. Another modular approach (Rusu et al.,
2016; Lee et al., 2017) adds new parts to the prediction function as new tasks are learned. By
construction, modular approaches have zero forgetting, but their memory requirements increase with
the number of tasks.

Third, episodic memory approaches maintain and revisit a small episodic memory of datum from past
tasks. In some of these methods (Li & Hoiem, 2016; Rebuffi et al., 2017), examples in the episodic
memory are replayed and predictions are kept invariant by means of distillation (Hinton et al., 2014).
In other approaches (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Aljundi et al., 2019b)
the episodic memory is used as an optimization constraint that discourages increases in loss at past
tasks. More recently, several works (Hayes et al., 2018; Riemer et al., 2019; Rolnick et al., 2018;
Chaudhry et al., 2019b) have shown that directly optimizing the loss on the episodic memory, also
known as experience replay, is cheaper than constraint-based approaches and improves prediction
performance. Our contribution in this paper has been to improve experience replay methods with task
anchors learned in hindsight.

There are other definitions of continual learning, such as the one of task-free continual learning. The
task-free formulation does not consider the notion of tasks, and instead works on undivided data
streams (Aljundi et al., 2019a,b). We have focused on the task-based definition of continual learning
and, similar to many recent works (Lopez-Paz & Ranzato, 2017; Hayes et al., 2018; Riemer et al.,
2019; Chaudhry et al., 2019a), assumed that only a single pass through the data was possible.

Finally, our gradient-based learning of anchors bears a similarity to (Simonyan et al., 2014) and
(Wang et al., 2018). In Simonyan et al. (2014), the authors use gradient ascent on class scores to find
saliency maps of a classification model. Contrary to them, our proposed hindsight learning objective
optimizes for the forgetting metric, as reducing it is necessary while learning continually. Dataset
distillation (Wang et al., 2018) proposes to encode the entire dataset in a few synthetic points at a
given parameter vector by a gradient-based optimization process. Their method requires access to the
entire dataset of a task for optimization purposes. We, instead, learn anchors in hindsight from the
replay buffer of past tasks after training for current task. While Wang et al. (2018) aim to replicate
the performance of the entire dataset from the synthetic points, we focus on reducing forgetting of an
already learned task.

6 CONCLUSION

We introduced HAL, a meta-learning objective for continual learning. In our approach, we learn
one “anchor point” per class per task, where predictions are requested to remain invariant. These
anchors are learned using gradient-based optimization, and represent points that would maximize the
forgetting of the current task throughout the entire learning experience. We simulate the forgetting
that would happen during the learning of future tasks in hindsight, that is, by taking temporary
gradient steps across a small episodic memory of past tasks. As shown in our experiments, anchoring

8

Under review as a conference paper at ICLR 2020

in hindsight complements and improves the performance of continual learning methods based on
experience replay, achieving a new state of the art on four standard continual learning benchmarks.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In CVPR, pp. 7120–7129, 2017.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In CVPR,
pp. 11254–11263, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Online continual learning with no
task boundaries. arXiv preprint arXiv:1903.08671, 2019b.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically composing
representation transformations as a means for generalization. In ICML workshop Neural Abstract
Machines and Program Induction v2, 2018.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint arXiv:1902.10486, 2019b.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Leslie P. Kaelbling Ferran Alet, Tomas Lozano-Perez. Modular meta-learning. arXiv preprint
arXiv:1806.10166v1, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. arXiv preprint arXiv:1809.05922, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS, 2014.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. arXiv preprint
arXiv:1802.10269, 2018.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. PNAS, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Jeongtae Lee, Jaehong Yun, Sungju Hwang, and Eunho Yang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

10

Under review as a conference paper at ICLR 2020

Zhizhong Li and Derek Hoiem. Learning without forgetting. In ECCV, pp. 614–629, 2016.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continuum learning. In
NIPS, 2017.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation, 24:109–165, 1989.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
ICLR, 2018.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2018, 2018.

S-V. Rebuffi, A. Kolesnikov, and C. H. Lampert. iCaRL: Incremental classifier and representation
learning. In CVPR, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In ICLR,
2019.

Mark B Ring. Child: A first step towards continual learning. Machine Learning, 28(1):77–104, 1997.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
replay for continual learning. CoRR, abs/1811.11682, 2018. URL http://arxiv.org/abs/
1811.11682.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. In ICLR, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. In ICLR, 2014.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space embedding for
distributions. In ALT, pp. 13–31. Springer, 2007.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning using gaussian processes. arXiv preprint
arXiv:1901.11356, 2019.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NIPS, pp. 3630–3638, 2016.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In arXiv preprint arXiv:1805.12369v1,
2018.

F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In ICML, 2017.

11

http://arxiv.org/abs/1811.11682
http://arxiv.org/abs/1811.11682

Under review as a conference paper at ICLR 2020

APPENDIX

In Section A, we are report the forgetting 3 metric when large episodic memories are used. Section B
provides the grid considered for hyper-parameters. Section C provides pseudo-code for HAL.

A MORE RESULTS

Table 4: Forgetting (Eq. 3) results for large (3 to 5 examples per class per task) episodic memory
sizes. Here we only compare methods that use an episodic memory. Averages and standard deviations
are computed over five random seeds.

Method Permuted MNIST Rotated MNIST
|M| = 600 |M| = 1000 |M| = 600 |M| = 1000

AGEM 0.20 (±0.01) 0.19 (±0.01) 0.41 (±0.01) 0.38 (±0.01)
MER 0.14 (±0.01) 0.09 (±0.01) 0.12 (±0.01) 0.11 (±0.01)
ER-Ring 0.09 (±0.01) 0.07 (±0.01) 0.15 (±0.01) 0.13 (±0.01)
HAL (ours) 0.07 (±0.01) 0.05 (±0.01) 0.12 (±0.01) 0.11 (±0.01)

Method Split CIFAR Split miniImageNet
|M| = 255 |M| = 425 |M| = 255 |M| = 425

AGEM 0.13 (±0.03) 0.10 (±0.02) 0.10 (±0.02) 0.08 (±0.01)
MER 0.11 (±0.01) 0.09 (±0.02) 0.12 (±0.02) 0.07 (±0.01)
ER-Ring 0.09 (±0.01) 0.06 (±0.01) 0.07 (±0.02) 0.08 (±0.02)
HAL (ours) 0.08 (±0.01) 0.06 (±0.01) 0.06 (±0.01) 0.06 (±0.01)

B HYPER-PARAMETER SELECTION

In this section, we report the hyper-parameters grid considered for experiments. The best values for
different benchmarks are given in parenthesis.

• Multitask

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

• Clone-and-finetune

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

• Finetune

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

• EWC

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

– regularization: [0.1, 1, 10 (MNIST perm, rot, CIFAR,
miniImageNet), 100, 1000]

• AGEM

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

• MER

12

Under review as a conference paper at ICLR 2020

– learning rate: [0.003, 0.01, 0.03 (MNIST, CIFAR,
miniImageNet), 0.1, 0.3, 1.0]

– within batch meta-learning rate: [0.01, 0.03, 0.1
(MNIST, CIFAR, miniImageNet), 0.3, 1.0]

– current batch learning rate multiplier: [1, 2, 5 (CIFAR,
miniImageNet), 10 (MNIST)]

• ER-Ring

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

• HAL

– learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
0.1 (MNIST perm, rot), 0.3, 1.0]

– regularization (λ): [0.01, 0.03, 0.1 (MNIST perm, rot),
0.3 (miniImageNet), 1 (CIFAR), 3, 10]

– mean embedding strength (γ): [0.01, 0.03, 0.1 (MNIST
perm, rot, CIFAR, miniImageNet), 0.3, 1, 3, 10]

C HAL ALGORITHM

Algorithm 1 provides pseudo-code for HAL.

Algorithm 1 Training of HAL on sequential data D = {D1, · · · ,DT }, with total replay buffer size
‘mem sz’, learning rate ‘α’, regularization strength ‘λ’, mean embedding decay ‘β’, mean embedding
strength ‘η’.
1: procedure HAL(D,mem sz, α, λ, β)
2: M← {} ∗mem sz
3: {e1, · · · , eT } ← {}
4: for t ∈ {1, · · · , T} do
5: φt ← ~0
6: for B ∼ Dt do . Sample a batch from current task

7: BM ∼M . Sample a batch from episodic memory

8: θ̃ ← θ − α · ∇θ `(B ∪ BM) . Temporary parameter update

9: θ ← θ − α · ∇θ
(
`(B ∪ BM) + λ ·

∑
t′<t (fθ(et′ , t

′)− fθ̃(et′ , t
′))

2
)

. Anchoring objective (Eq. 5)

10: φt ← β · φt + (1− β) · φ(B) . Running average of mean embedding

11: M← UpdateMemory(M,B) . Add samples to a ring buffer

12: end for
13: et, θ ← GetAnchors(M, θ, φt, η) . Get anchors for current task

14: end for
15: return θ,M
16: end procedure

1: procedure GETANCHORS(M, θt, φt, γ)
2: θ ← θt
3: for BM ∼M do
4: θ ← θ − α · ∇θ`(BM) . Finetune θt by taking SGD steps on the episodic memory

5: end for
6: θM ← θ . Store the updated parameter

7: et ← rand() . Initialize the task anchors

8: for 1, · · · , k do
9: et ← et + α · ∇et

(
`(fθM(et, t), yt)− `(fθt(et, t), yt)− γ(φ(et)− φt)2

)
. Maximize forgetting (Eq. 9)

10: end for
11: return et, θt
12: end procedure

13

Under review as a conference paper at ICLR 2020

D APPROXIMATION OF ANCHORING GRADIENT

Here we derive the approximation of anchoring objective (Eq. 5) gradient. In particular, we are more
interested in the regularization part of the anchoring objective that involves second-order terms. We
refer to this gradient as ganch. We follow similar arguments as (Nichol & Schulman, 2018).

Let θ0 be the parameter vector before the temporary update, `ce be the cross-entropy loss, and `L2
be the L2 loss in the anchoring objective (Eq. 5 in the main paper). We will use the following
definitions:

g0 = `′ce(θ0) (gradient of cross-entropy loss at initial point on B ∪ BM)

H0 = `′′ce(θ0) (Hessian of cross-entropy loss at initial point on B ∪ BM)

g1 = `′L2(θ0) (gradient of L2 loss at initial point on anchors)

H1 = `′′L2(θ0) (gradient of L2 loss at initial point on anchors)

Let U0 = θ0 − αg0 be the operator giving a temporary update in the two-step process of (Eq. 5), and
let θ1 be the temporary update (note that θ̃ is used in the main paper). The ganch is given by:

ganch =
∂

∂θ0
`L2(U0)

= U ′0 · `′L2(θ1)
=
(
I − αH0

)
· `′L2(θ1) (10)

Let’s calculate the first order Taylor’s approximation of `′L2(θ1)

`′L2(θ1) = `′L2(θ0) + `′′L2(θ0) · (θ1 − θ0) +O(||θ1 − θ0||2)
= g1 +H1 · (θ0 − αg0 − θ0) +O(α2)

= g1 − αH1 · g0 +O(α2) (11)

Putting Eq. 11 in Eq. 10 and simplifying yields:

ganch = g1 − αH1 · g0 − αH0 · g1 +O(α2) (12)

This form is very similar to second-order MAML gradient formulation, Eq. 25 in (Nichol & Schulman,
2018). Further simplification of terms like (H1 · g0) would yield inner product between the gradients
g0 and g1. However, unlike MAML (Finn et al., 2017), Reptile (Nichol & Schulman, 2018) or
MER (Riemer et al., 2019), in anchoring objective these gradients correspond to different losses.

14

	Introduction
	Continual learning setup
	Hinsdight Anchor Learning (HAL)
	Experiments
	Datesets and tasks
	Baselines
	Results

	Related work
	Conclusion
	More Results
	Hyper-parameter Selection
	HAL Algorithm
	Approximation of Anchoring Gradient

