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ABSTRACT
Automatic detection of tumorous tissue in MRI scans plays an im-
portant role in computer-aided diagnosis. We present a novel deep
fully convolutional encoding architecture for semantic segmenta-
tion of brain MRI scans termed, FR-MRInet. This trainable encoder
works with a corresponding decoder of a fully connected network.
The 32 layer deep encoding architecture is inspired by VGG16 and
InceptionV3. The novelty of FR-MRInet is its architectural design
that efficiently reduces input to a lower resolution feature map(s).
The encoder uses strides instead of pooling in various layers to re-
duce feature maps without loosing spacial information. We used a
non-overlapping sliding window with and a novel activation func-
tion called, Relu-RGB to train the model so that the model di-
rectly produces the final output instead of a mask. We compared
our model with well know imagenets such as Alexnet and VGGnet,
other recent models proposed by researchers testing for pixel wise
accuracy, intersection over union (IoU) and mean square loss value.
We conducted our experiment on BRATS dataset for benchmarking
and one of the latest dataset which was proposed in 2016 consisting
of, 3064 T1-weighted contrast-enhanced images from 233 patients.
We also show that FR-MRINet provides an impressive performance
on live images detecting tumors as well. To further investigate the
matter, we have consulted with an MD about the usefulness and
the future of these kind of projects. Our code is open sourced and
freely available at github.com/farshidrayhanuiu/FR-MRInet.
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1. INTRODUCTION
Nowadays, the usage of digital images for medical diagnosis are
increasing rapidly. MRI scan is a kind of brain test results of which
can lead to identifying presence of tumor in brains. Even though
there are other kinds of tests for this same purpose, MRI is most
popular among them for its zero exposure to ionizing and high
soft-tissue contrast. Regardless of the convenience of MRI scans,

the brain tumor identification and classification still remains a chal-
lenging task. The conventional method requires a radiologist to re-
view and analyze the MRI scan and provide proper interpretation
of the test results. One of the major down side of this system is the
involvement of human analyst. The whole process of tumor detec-
tion and classification depends solely in the skills and expertise of
the radiologist. Moreover, this is also a very impractical solution
where large numbers of data are involved. Therefore, computer as-
sisted diagnosis are highly desirable for addressing this problem.
The task primarily consists of two sub problems: (1) Identification
of abnormal tissue, i.e, whether the brain contains any tumor cells
or not. (2) Classification of the tumor type.
Automatically categorizing the tumor type is a relatively more chal-
lenging task comparing to the binary classification of normal and
abnormal tissue and convolutional networks are found to be very
successful in biological tasks [13, 53]. Thus currently studies aims
to develop an approach that can classify and discriminate differ-
ent pathological tumor type. Researchers have proposed many au-
tomatic and semi-automatic techniques for detection and identi-
fication of brain tumors [17, 25, 72]. Typically the process fol-
lows are certain pattern, first the tumor is detected and segmented
then the segmented part is classified. The classification task in-
volves two task, feature extraction and classification. Since clas-
sification accuracy is highly dependent of informative features, re-
searches have proposed various ways such as, intensity and tex-
ture based features [49, 24], Gabor filters [25], wavelet transform
[27], GLCM [80] to extract features for better classification accu-
racy. In [25], the authors proposed a 3D vortex based segmenta-
tion and classification method using Gabor features and adaBoost
classifier. In [58], an automatic classification models based on least
squares SVM was presented to identify normal and abnormal tis-
sues. Texture based features with fuzzy weighting and SVM were
employed in [24] for multi-class classification. The authors of [27]
used discrete GLCM [80] and wavelength for detection and classi-
fication. Patch based BoW representations have also been a notable
representation scheme where the pixels are replaced with image
patches and vector quantization are replaced with scaler quantiza-
tion. Generally features extracted by BoW, GLCM are computed in
a global scale which inevitably ignores spatial informations. There
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have been several approaches proposed to address this issue as well
[26, 59, 20, 33].
In order to research on a topic a rich collection of dataset is re-
quired. For the task brain tumor detection and classification from
MRIs many researcher have open sourced their datasets. Among
them CT scan, X-Ray, MRI scan of various parts of human body
are available. Open-Access Medical Image Repositories [3] is one
for the most largest on-line source for data collection. This reposi-
tory not only contains its own datasets but also datasets from other
recognized organizations like Cancer Imaging Archive [1], Oasis
Brains [2]. It also contains datasets proposed by individual re-
searchers as well [47, 77]. Regardless of the quality of datasets,
researchers have to choose datasets very cautiously. Many of the
datasets are outdated and others fall outside the scope of intended
research goal. Due to the rapid improvement of scan quality it is of-
ten advised to use datasets not older that 5 years in order to keep the
research up to date. Recently in [11], a dataset was created and open
sourced for the purpose of further research in to the specific topic of
brain tumor detection and classification. The dataset contains 3064
images (image resolution 512 * 512 * 1) containing three typical
brain tumors: (a) meningioma; (b) glioma; and (c) pituitary tumor.
It was acquired from Guangzhou, Nanfang Hospital, Tianjing Med-
ical University and General Hospital of China. This dataset recently
have been receiving attention of other researchers as well [78, 4].
In our research, we use the mentioned dataset with a slight modifi-
cation.
The contributions of this paper are the following,

—We demonstrate a novel Encoding architecture for MRI scans
with conclusive experimental results in support of its effective-
ness.

—Manipulate the original dataset for better effectiveness.
—We use a non overlapping sliding window to work on the actual
512 × 512 × 3 sized images instead of resizing them to a lower
resolution.

—We demonstrate comprehensive comparison between the effec-
tiveness of using De-convolution and Fully Connected Networks
as decoder using several top imagenets including our proposed
encoding network.

—We propose a novel activation function that allows to generate
output images accurately without the need of pixel-wise classifi-
cation.

—We analyze FR-MRInet’s performance on not only the whole
dataset but also on several subset of the dataset and draw conclu-
sions on the effect of each sub sets.

—We also compare our method with recent deep learning model
which were designed for pixel wise segmentation.

—We also convert some of the recent deep architectures that works
on brain MRI scans to pixel wise image segmentation network
which were not originally designed for tumor segmentation then
compare and analyze theirs performance as well.

—Furthermore, we employ Neighborhood Cleaning Rule as a
smoothening method on the output images which boosts up the
performance significantly.

—Finally, we have also consulted with an MD for professional
opinion on several aspects of the project.

The article is structured as follows, in section 2 we discuss about
important related works done so far. In section 3 we go further in
details about image segmentation. In the following section, we dis-
cuss the materials used in our experiment and its importance. The
methods used in this experiment, including our proposed encoding

architecture, are discussed in section 5. Section 6 describes the pro-
cess of constructing training data and various configurations of the
experimental setup. We provide our results in section 7 with de-
tailed discussion. Finally, we provide some possible future works
in section 8 and conclude the paper.

2. RELATED WORKS
Object detection in images has been an area of research interest for
over a decade. Haar features were first introduced by P V oila in
2001 for rapid object detection using boosted cascade [67]. Follow-
ing that, researchers have been proposing better and faster object
detection methods ever since. Haar like features with boosted clas-
sifiers [68, 57, 52, 51] received a lot of attention [36, 35] for its
accurate and real time detection but due to its limited capability to
scale it started to lose its applicability for more complex tasks.
Before convolutional networks, many methods have been proposed
by researchers for image classification like, Class-specific hough
forests [14], Bayesian modeling [60], ensemble SVMs [39], Multi-
ple kernels [66]. Theses works can be divided in to two categories,
(1) Feature extraction method and (2) Classification method. In fea-
ture extraction methods authors have proposed several ways to ex-
tract informative features that was aimed to improve classification
accuracy. In the classification methods the goal was to propose bet-
ter classifiers to improve classification quality. Despite of their im-
pressive performances, each of those methods had one primary lim-
itation, that is the methods ofter failed to generalize. Which means
even though their performance on datasets were impressive, the
methods often performed poorly in real world applications.
In the recent years, deep convolutional-nets started to receive a lot
of attention for its ability to extract features and classify images
with great accuracy. Even though convolutional nets are compu-
tationally quite costly, its impressive capability to generalize of-
ten out weights that limitation. Object detection task has two sub-
tasks (1) Objected segmentation, the task of locating the object in
the image, (2) object classification, the task of classifying the lo-
cated object. Segmented object is also known as Region Of Interest
(ROI) where the object to be located is regarded as the interested
region. The task of finding ROI from an image is comparatively
more complex than classifying it. For image classification, the task
is to classify the image only. Researchers have proposed many con-
volutional network for image classification, among them some of
the notable image classifiers are Alex-net [31], VGG-net [62] and
google’s Inception-net [64]. While theses nets are able to classify
images with great accuracy they do not indicate the location of the
object in a image. For the task of finding ROI in a image, several
convolutional architectures have been proposed known as Region
Proposal Networks or RPN. Theses networks are especially aimed
to locate objects in images and trained in a end to end scheme.
These methods became well accepted in the computer vision com-
munity for its ability to scale without compromising quality and
speed [65, 23, 19].
In 2014, a model named R-CNN was introduced which merged the
task of locating objects with image classification for a fully au-
tomated object detection model that can not only identify the lo-
cation of an object but also classify [16]. Later improved version
of the mentioned model was introduced named Fast R-CNN [15],
Faster R-CNN [54] and Mask R-CNN [22]. Faster R-CNN was the
first model to use RPNs for location proposing which significantly
improved the speed of detection. The methods were trained in the
following way, given an image as input and the output was an ar-
ray containing the X , Y co-ordinates of the object with height and
width followed by a confidence indicator ranging from 0 to 1. The
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Network Decoder Dataset Mean Square Loss (train) Accuracy (train) Accuracy (validation)
Alexnet FCD Top view 12.3 69.2 69.5
Alexnet Deconvolution Top view 16.5 70.0 60.2
VGGnet FCD Top view 8.3 72.6 63.1
VGGnet Deconvolution Top view 9.7 72.3 62.9

FR-MRInet FCD Top view 3.9 80.8 83.0
FR-MRInet Deconvolution Top view 4.5 81.5 81.8

Table 1. : Table containing accuracy on train and validation set of top view using Alexnet, VGGnet and FR-MRInet with both FCD and
Deconvolutional decoder

Network Decoder Dataset Mean Square Loss (train) Accuracy (train) Accuracy (validation)
Alexnet FCD Side view 12.3 70.2 71.6
Alexnet Deconvolution Side view 16.5 69.1 71.3
VGGnet FCD Side view 8.3 72.1 72.2
VGGnet Deconvolution Side view 9.7 72.1 72.4

FR-MRInet FCD Side view 3.9 75.7 75.9
FR-MRInet Deconvolution Side view 4.5 74.0 73.8

Table 2. : Table containing accuracy on train and validation set of top view using Alexnet, VGGnet and FR-MRInet with both FCD and
Deconvolutional decoder

X, Y co-ordinates with high and width forms a rectangular shaped
box around the indented object. These rectangular shaped boxes
are know as anchor boxes. The shape and size of the box remains
another challenging area of research interest [61, 22].
Recently, pixel-wise object classification or image segmentation
have been receiving a lot of attention. In 2015, an image segmen-
tation method named SEGnet [7] mainstreamed the concept of
pixel classification. Image segmentation is a training process where
instead of trying to find X , Y height and width of the object’s lo-
cation, each pixel’s probability of belonging to that object is fed to
the network. One of the benefit of this process is that it allows seg-
mentation independent of any anchor box shapes [42, 40]. In the
last few years, variants of deep CNN models have been proposed
for image segmentation. In [42], 6 separate CNN layers were used
from there different neighborhood to predict labels of each pixel.
A network for 2 class patch-wise prediction was proposed in [41]
where the final fully connected network outputs 16× 16 patches of
pairwise labels. A detailed comparison between Fully Connected
Networks (FCNs) and per pixel CNNs have been done in [69].
Anatomically Constrained Neural Networks or ACNNs have been
applied to cardiac image enhancement and segmentation [48]. In
[28], a similar comparison was reported with use of one upsam-
pling layer. In both cases [48, 28], the results stayed below state of
the art because the encoder-decoder networks lacked skipped con-
nections to fully support the upsampling steps and also the results
were in favor of FCNs. Atrous Convolution along with CNNs and
FCNs was also found very useful for semantic image segmentation
[10].
In [11], an automatic classification method for classifying tissue
type was proposed which was able to propose ROIs accurately
82.31% for intensity histogram, 84.75% for GLCM and 88.19%
for BoW model. They used their feature extraction method with
SVM, K-Nearest Neighbor (KNN) and sparse representation-based
classification (SRC) [71] to check and verify the features ability
extract informative features. In the article [80], the authors have

also open sourced their dataset constructed with 233 real life pa-
tient’s brain MRI scans. In 2016, the same datasets was used in
[73] where the authors proposed spatial pyramid matching kernels
to address the problem. In the following year, a method was pro-
posed titled Non Sub-sampled Contourlet Transform Based Feature
Extraction Technique for the purpose of for differentiating Glioma
Grades Using MRI Images of the mentioned dataset [79]. In [78],
the authors proposed a rectangular window based image cropping
method to generalize brain neoplasm classification systems using
the dataset of [11]. In [4], the authors employed Capsule Networks
(also referred as CapsNets [56] ) on the dataset proposed in [11] and
showed a comparison between CNNs and CapsNets on the task of
brain tumor classification problem, where the results were in favor
of CapsNets. Our experiment is most similar with the one proposed
in [50] where convolutional neural networks were used to segment
brain tumors from MRI scans. But the difference is that, our model
takes only the MRI scan as input where the method proposed in
[50] requires the MRI scan as well as the masked file of that scan.
This also makes our model more real life applicable. In [32] an
automatic brain tumor stage classification was proposed by using
probabilistic neural network where segmentation process was done
by using K-means clustering. A method using convolutional nets
to find region of interest, ie. the tumor, was proposed in [5] where
the tumor was cropped by a rectangular shaped design and clas-
sified afterwards. Proposed method in [21] is also quite similar to
our method, the difference being that their model classifies tumor
types (edema/enhanced/tumor/necrosis/non-enhanced/tumor) from
T1, T2, T1-enhanced, Flair plates and our model does semantic
segmentation of the tumor. In the article [6] a brain tumor segmen-
tation model was proposed which was claimed state of the art by the
authors. The model was tasked with both patchwise segmentation
and pixelwise segmentation.
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Network Decoder Dataset Mean Square Loss (train) Accuracy (train) Accuracy (validation)
Alexnet FCD Back view 11.4 69.7 70.1
Alexnet Deconvolution Back view 9.1 69.1 70.0
VGGnet FCD Back view 7.1 72.3 72.7
VGGnet Deconvolution Back view 6.1 71.0 72.1

FR-MRInet FCD Back view 2.1 80.0 84.5
FR-MRInet Deconvolution Back view 3.0 79.8 81.4

Table 3. : Table containing pixel wise accuracy on train and validation set of back view using Alexnet, VGGnet and FR-MRInet with both
FCD and Deconvolutional decoder

3. IMAGE SEGMENTATION
Image segmentation is task where each pixel of an image is classi-
fied with the probability of its belonging to a object. This method
is regarded highly in the computer vision society because of (1)
its simplistic training procedure and (2) ability to detect multiple
object. One of the many of training scheme goes as follows, an im-
age is fed (preferably RGB) as input and the output is a grayscale
image (for subject and object detection) with the background col-
ored black and the subject in white. A dataset proposed in [34] is
regarded as one of the benchmark for image segmentation task. Ta-
ble 4 shows some of the train and test images.
Traditionally, an auto encoder is used where the encoder is tasked to
encode the image and the decoder decodes that to the desired output
image. Various imageNets such as Alexnet, VGGnet are some of
the most used network as encoder where the final fully connected
layer for classification is replaced with a decoder [10, 7].
In order to make the network end to end trainable the segmented
image is considered as an numeric array where each of the element
is considered as class value. Our experiment is highly influenced
by Segnet [7] which is a deep convolutional encoder-decoder for
image segmentation which uses VGG16 as the encoder. In [46], a
similar method was proposed where the VGG16 was used as en-
coder and the authors proposed a deconvolution network and used
that as the decoder. Another convolutional neural network for im-
age segmentation was proposed in [38] where Alexnet and VGGnet
were the encoder and fully connected layers were used to decode
the image.

3.1 Binary Segmentation
Binary image segmentation is a sub category of general image seg-
mentation. In this case, there is only one type of object considered
as subject in the image and the rest of the image is considered as
background [18, 75]. This scheme is very common in medical im-
ages where the subject is the tumor and the rest is background. This
also makes training process much simpler as the output is a 1D ar-
ray of 0s and 1s. For our project, the masked image is a binary
image where the tumor covered area is denoted by 1s and others by
0s.

4. MATERIALS
The benchmark datasets used in this experiment are from Brain
Tumor Image Segmentation Challenge(BRATS) 2013 and 2015
[30, 43] . We used the BRATS 2013 dataset which contains 30 pa-
tient datasets and 50 synthetic datasets from 2013/2014 and BRATS
2015 dataset. Both of them contains hand labeled ground truths and
four labels necrosis, edema, non-enhancing tumor, enhancing tu-
mor and everything else. But in our experiments we mainly focus

on the segmentation task rather than the classification task. We use
2 common metrics known as pixel wise accuracy and IoU (Inter-
section over Union) for measuring and comparing the performance
of our model with others.
The dataset which we exhaustively focus on was created by the au-
thors of [11, 12] in 2015/6. The dataset consists of 30 T1-weighted
contrast-enhanced image. 233 patients were randomly chosen from
hospitals in China to collect the samples. The mentioned 3064 MRI
scans consists of 708 slices of meningioma, 1426 slices of glioma
and 930 slices of pituitary tumor. This dataset is organized in MAT-
LAB’s .mat data format and openly available here1 .

4.1 Modification
One of the shortcoming of the mentioned dataset is that all the im-
ages in the dataset contains any of the 3 tumor. But we want our
model to be able to conclude when there is a no tumor present,
which makes it more real life applicable. Since the actual dataset
do not contain any image without any tumor we have manually in-
serted 10 tumor-less images. This has allowed us to train our model
to be able not only locate a tumor but also give a probability of its
possibility of being a real tumor.
While designing a model for the purpose of tumor detection it very
important to provide a confidence value with output results. Other-
wise, it will become very difficult if not impossible to make use of
this model in real life.

5. METHODS
In this section, we are going to discuss the models we have exper-
imented with as encoders and decoders. We are also going to dis-
cuss our proposed architecture and its effectiveness. We will also
discuss some of the possible reasons of why our encoder performs
better than other state of the art imagenets. The intuition to com-
pare FCNs as decoder instead of either convolution or deconvolu-
tion was based on the evidence showed in [41, 28] where it was
found that FCNs perform better as decoder than CNNs.

5.1 Encoder Variants
In this subsection, we will discuss the types of encoders we have
used in this experiment including the proposed convolutional en-
coder, FR-MRInet.

5.1.1 Alexnet. Alexnet was proposed in [31] as a image classi-
fier for Oxford Flower Dataset [44, 44, 45]. The network had 14
layers including 5 convolutional layers, 3 max pool layers, 3 local
response normalization layer and 2 FCNs with 4096 neurons each.

1https : //figshare.com/articles/braintumordataset/1512427
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Table 4. : From each images Objects are segmented and are colored lighter in the segmented image while the rest of the image is colored
black to represent the background.

Network Pixel2Pixel Accuracy (train) Pixel2Pixel Accuracy (validation) IoU(train) IoU(validation)
Alexnet + FCD 67.4% 67.7% 0.75 0.75

Alexnet + Deconvolution 67.4% 67.1 % 0.76 0.75
VGGnet + FCD 75.2% 76.2 % 0.81 0.82

VGGnet + Deconvolution 75.8% 76.0 % 0.81 0.82
[21] + FCD 74.8% 75.1 % 0.77 0.77

[21] + Deconvolution 74.9% 75.1 % 0.75 0.78
DeepNat + FCD 52.1% 50.2 % 0.68 0.70

DeepNat + Deconvolution 51.8% 49.8 % 0.71 0.71
[6] + FCD 82.7% 86.2 % 0.86 0.87

[6] + Deconvolution 83.2% 86.1 % 0.85 0.87
FR-MRInet+ FCD 90.6% 91.2 % 0.9 0.9

FR-MRInet+ Deconvolution 90.1% 90.8 % 0.9 0.9

Table 5. : Table contains Pixel2Pixel accuracy and IoU on train and validation set on BRATS 2013 dataset using different encoder variants
with both FCD and Deconvolutional decoder.

For our experiment we removed all the FCNs of the original design
and used that as an encoder for the task.

5.1.2 VGGnet. The VGG net was proposed in 2014 in the arti-
cle [62]. It was initially targeted for classification of flower dataset
[44, 44, 45]. Unlike Alexnet, the VGGnet is quite simple in design.
It takes RGB image with the size of 224 × 224 and passes them
through a series of maxpool operation with stride 2 and convolu-
tion operation with filter size 3. It follows the following structure,
2 convolution layer 64 filters and a maxpool operation. Then the
same 3 layers again but this time the number of filters are increased
to 128. Following that, there are 3 convolution layers with 256 fil-
ters and a maxpool operation then the same set of layers twice with
512 filters each time. The original network had 2 FCNs with 4096
neurons before the output layer but for our task we replaced the
FCNs for the purpose of using it as an encoder.

5.1.3 FR-MRInet. Figure 2 shows our proposed architecture of
the encoding network. It is a 33 layer deep model consisting of
only convolutional layer and merge layer that takes input images
with resolution of 256× 256× 3. Our design was motivated from
”inception” imagenet[65, 64] which merged tensors after convolu-
tional operation with different filter sizes. We have used the similar
methodology in several layers of FR-MRInet. From the input layer,
we take the input and employ convolutional operation with filter

sizes 2, 3, and 5. Similar methodology was applied throughout the
network where before each convolution act with any filter size, we
used a conv operation with filter size of 1 to reduce the compu-
tational complexity. It was found in [37] that using a convolution
operation with filter 1 reduces computational cost significantly with
little to no affect on the performance. Table 11 shows a detailed de-
scription of the network. For example, lets consider layer 2 to 4.3.
In layer 2 and 3, two consecutive conv operation happens with 128
filters each filter with size of 3. Following that, layer 4.1.a, 4.1.b and
4.1.c does convolution operation with filter size of 1 and 4.2.a, 4.2.b
and 4.2.c does the same with filter size of 2, 3 and 5 respectively.
Finally, in layer 4.3, they are merged together. The rest of network
follows similar pattern with occasional change in the stride value
to 2.

5.2 Decoder Variants
In this subsection, we will discuss two most common type of de-
coder which we have used in our experiment.

5.2.1 Fully Connected Decoder. Fully connected decoder(FCD)
is a group of fully connected networks(FCN) used for decoding the
encoded network before the final layer. Many types of FCDs have
been proposed the researchers and they argue that in a system with
encoder-decoder the decoder is more challenging area of interest
[28]. In our experiment, we use 3 layers of FCN with 512, 6144 and
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Network Pixel2Pixel Accuracy (train) Pixel2Pixel Accuracy (validation) IoU(train) IoU(validation)
Alexnet + FCD 68.4% 68.4% 0.73 0.74

Alexnet + Deconvolution 68.7% 68.4 % 0.71 0.71
VGGnet + FCD 73.9% 73.7 % 0.81 0.82

VGGnet + Deconvolution 73.0% 73.2 % 0.86 0.81
[21] + FCD 71.1% 71.1 % 0.73 0.73

[21] + Deconvolution 71.2% 71.1 % 0.79 0.78
DeepNat + FCD 58.8% 57.5 % 0.61 0.6

DeepNat + Deconvolution 58.8% 47.9 % 0.78 0.68
[6] + FCD 89.1% 89.6 % 0.89 0.88

[6] + Deconvolution 89.4% 90.1 % 0.81 0.84
FR-MRInet+ FCD 94.5% 95.9% 0.91 0.93

FR-MRInet+ Deconvolution 94.8% 93.7 % 0.89 0.9

Table 6. : Table contains Pixel2Pixel accuracy and IoU on train and validation set on BRATS 2015 dataset using different encoder variants
with both FCD and Deconvolutional decoder.

Network Pixel2Pixel Accuracy (validation) Pixel2Pixel Accuracy (test)
Alexnet + FCD 70.3 % 72.6 %

Alexnet + Deconvolution 70.2 % 71.4 %
VGGnet + FCD 75.2 % 73.1 %

VGGnet + Deconvolution 74.1 % 71.3 %
[21] + FCD 71.5 % 70.7 %

[21] + Deconvolution 69.1 % 70.1 %
DeepNat + FCD 65.2 % 63.1 %

DeepNat + Deconvolution 67.5 % 61.8 %
[6] + FCD 78.2 % 80.1 %

[6] + Deconvolution 78.1 % 80.3 %
FR-MRInet+ FCD 84.6 % 85.6 %

FR-MRInet+ Deconvolution 83.9 % 83.8 %

Table 7. : Table containing pixel wise accuracy on validation and test set of total dataset using Alexnet, VGGnet and FR-MRInet with both
FCD and Deconvolutional decoder

4096 neurons respectively (see figure 4). The most common FCDs
consists of 2 FCN with 4096 neurons each. Our choice of selected
number of neurons were found by fine-tuning for this problem.

5.2.2 Deconvolutional Decoder. Deconvolution is transpose
operation of convolution operation which arguably can de-
convolutionize a convolution operation [9]. Researchers have pro-
posed various types of deconvolution layers and made arguments
that since an encoder uses convolution to encode the image, a de-
convolution operation can effectively decode the information [76].
We used 2 de-convolutional layer and between them were 2 upsam-
pling layer(using nearest neighbor) with stride of 2.

6. IMPLEMENTATION DETAILS AND
CONFIGURATION

In our experiment, we used a Tensorflow wrapper API called
TFLearn using python 3.5 and Tensorflow version 1.5. The bench-
mark dataset used in this experiment was proposed in [11, 12] in
2015 and 2016 respectively which is the latest dataset for Brain

MRI tumors detection. Although we have made some changes to
make it more appropriate to design a real life applicable method.
We quantify the performance of FR-MRInet on the dataset using
our Tensorflow implementation. Instead of predicting the black
and white mask we aimed to predict the whole input image us-
ing semantic segmentation. The dataset contains 3 types of tumor
(meningioma, glioma, pituitary) with 3 types of views such
as top, side and back. Table 10 shows some input, masked, output
images along with predictions by the proposed network.

6.1 Training Data Construction
For the training data construction, we use MATLAB’s image pro-
cessing tool [63] to generate the ground truth(GT) images. We take
the grayscale MRI scan with the respective mask file of the image
and use the imfuse function to create the GTs. The function takes 2
images and overlays them. We create the ground truth images with
the help of gray scale mask images so that we can avoid using them
as inputs which significantly limits the applicability of the model.
Also it is much more comforting to receive an output highlighting
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Fig. 1: Preprocessing of creating an end to end trainable image segmentation network where the image on the left is fed and input and the 1D
array at the right is the expected output.

Network Decoder Dataset Mean Square Loss (train) Accuracy (train) Accuracy (validation)
Alexnet FCD Total 12.3 70.2 70.3
Alexnet Deconvolution Total 16.5 10.2 70.2
VGGnet FCD Total 8.3 73.1 75.2
VGGnet Deconvolution Total 9.7 72.8 74.1

[21] FCD Total 8.4 83.1 71.5
[21] Deconvolution Total 10.2 84.1 69.1

DeepNat [70] FCD Total 9.7 83.7 65.2
DeepNat [70] Deconvolution Total 8.4 88.1 67.5

[6] FCD Total 15.3 78.3 78.2
[6] Deconvolution Total 16.3 78.4 78.1

FR-MRInet FCD Total 3.9 80.7 84.6
FR-MRInet Deconvolution Total 4.5 80.3 83.9

Table 8. : Table containing pixel wise accuracy on train and validation set of total dataset using Alexnet, VGGnet and FR-MRInet with both
FCD and Deconvolutional decoder

the tumor instead of getting a gray scale mask. For each of the MRI
scan containing a tumor is trained with confidence value 1 and the
scans without any tumor is trained with 0. This allows us to choose
threshold level manually to check if there is a tumor or not. In our
experiment we chose 0.5 as the threshold value where any output
containing confidence level below or equal to 0.5 is considered as
non-tumor. Each training image is 512 × 512 × 3 resolution and
the output is 512 × 512 × 3. Our gpu could not process the whole
512×512×3 sized images so we improvised with sliding window.
We divided each image into 4 equal non-overlapping sub-images
sized 256 × 256 × 3 and fed them to the model sequentially. We
took the outputs sequentially as well and merge all 4 equal non-
overlapping sub-images to generate the final output image. The pro-
cess is visually described in figure: 3. Instead of dividing merging
the images in each iteration, we created a whole new dataset using
this methodology where each input is a one quarter of the original
image stored sequentially. The same method was applied to the out-
puts as well. But since accuracy on one quarter of a input doesn’t
make any sense, through out the rest of the paper, all the results are
calculated on the whole output image. We used 5% data for testing
and of the 95% training data 0.2% were used for validation.

6.2 Configuration
We implement the proposed network, FR-MRInet based on TFlearn
API of Tensorflow framework. The Adam optimizer is employed
for optimization, where initial learning rate is set to 0.0001. We
used 3 learning rates for fine tuning the weights and biases of the
network. The 1st 200 epochs were trained with lr 0.0001 and the

weights were stored. Then we employed transfer learning to load
the weights and trained 200 epochs with learning rate 0.00001 and
stored the weights again. Finally, we reloaded the the weights and
trained with 0.000001 learning rate. We initialized the weights of
the proposed convolution network using zero-mean Gaussian. We
used 0.8 keep probability values in each dropout layer of fully con-
nected decoding network. The network converges after approxi-
mate 600 epochs. We used the Root-Mean-Square error as the loss
function, RELU as activation and a mini batch of size 10 was used
to train and validate the network. The training takes approximately
5 days on a single Nvidia GTX 980ti over-clocked with 6GB mem-
ory.

7. RESULTS AND DISCUSSION
In this section, we discuss, analyze and provide possible reasons
for certain phenomenons and outcomes. To compare the quantita-
tive performance of FR-MRInet with different decoders, we used
performance measures like IoU, local accuracy for measuring the
percentage of pixels correctly classified in the validation set and
global accuracy for measuring in the test set. We also show the
loss value in both train and validation set as well. There are three
types of images available in the dataset. We first only considered
the scans of top views of the brain. Table 1 shows the Mean Square
loss in the training phase for each imagenet with different decoder
variants. It also shows the accuracy on validation and test set of
each networks.
In table 5 and 6, we provide the performance of our model and
other models in term of pixel to pixel accuracy and Intersection
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Network Pixel2Pixel Accuracy (test) IoU
Alexnet + FCD 73.1 % 84%

Alexnet + Deconvolution 71.8 % 86%
VGGnet + FCD 73.3 % 87%

VGGnet + Deconvolution 71.4 % 87%
[21] + FCD 71.0 % 78%

[21] + Deconvolution 70.7 % 78%
DeepNat + FCD 63.2 % 69%

DeepNat + Deconvolution 61.7 % 68%
[6] + FCD 81.7 % 91%

[6] + Deconvolution 81.1 % 89 %
FR-MRInet+ FCD 91.4 % 94 %

FR-MRInet+ Deconvolution 88.6 % 93 %

Table 9. : Table contains accuracy on test set using different encoder variants with both FCD and Deconvolutional decoder after smoothening
the output images with NCL.

Fig. 2: Proposed convolutional Encoder

over Union (IoU). The first thing noticeable is that except for Deep-
Nat every models performance on validation set slightly increased
or remained same as the train which means the models were able to
generalize well. We also observe that each individual model shows
quite similar performance on both BRATS 2013 and 2015 dataset
while sometimes the metrics show that model performed slightly
better on 2015 dataset. This is because the 2015 dataset includes all
the data from 2013 along with some new ones and also it contains
more images than 2013 dataset. So due to the increased number
of data the the models were able to perform slightly better on the
dataset of 2015. On both datasets, FR-MRInetwere able to achieve
the highest accuracy and IoU on both train set and test set.
In table 1, Alexnet obtained an accuracy of 69.2 in train set and
69.5 in validation set with a loss of 12.3 using the FCD. But the
performance deteriorated with the use of de-convolutional decoder.
Similar pattern was found using VGGnet and FR-MRInet. The VG-
Gnet obtained a accuracy of 72.6 in train set and 73.1 in validation
set employing FCD with a loss value of 8.3. The accuracy reduced
to 72.3 (train) and 72.9 (validation) and the loss value increased to
9.7 when the de-convolutional decoder was used. The proposed net-
work, FR-MRInet, achieved the the highest accuracy in both valida-
tion and test set with lowest loss value using FCD. The second best
score was also achieved by FR-MRInet using the de-convolutional
decoder. This not only resemblance that FR-MRInetis an efficient
encoder but also shows that FCD performs generally better as de-
coder than de-convolutional decoder, aligning with similar conclu-
sion drawn in [48, 28].
Table 3 and 2 illustrates the Mean Square loss value with accu-
racy on train and validation set. Following the pattern of table 1,
Alexnet performs with lower loss values and higher accuracy with
fully connected decoder compared with deconvolutional decoder. It
obtained 12.3 loss value and accuracy of 70.2 on train and 71.6 on
validation set in table 2 and 11.4 loss value and accuracy of 69.7
on train and 70.1 on validation set in table 3. VGGnet performed a
bit higher accuracy scores on both sets with lower loss value. FR-
MRInet was able to obtain the highest accuracy value on both sets
with the lowest Mean Square loss value.
Finally, we trained the model on all three types of images and the
results are displayed in table 8. Alexnet, VGGnet and FR-MRInet
showed their better scores in all aspects comparing with table 1, 2
and 3. This is probably because when we used the whole dataset
for training, the larger number of data enabled the network to learn
more efficiently. Following the pattern of table 1, 2 and 3, Alexnet’s
performance was lower than VGGnet and the proposed network
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Fig. 3: Each of the input image is divided into 4 equal non-overlapping sub-images (highlighted by the yellow lines). Those 4 images are then
fed to the network. The outputs are corresponding images of those 4 equal non-overlapping sub-images. They are finally merged together to
generate the final output.

Fig. 4: Fully connected decoder used with each imagenet used in this ex-
periment

was able to learn with the lowest loss value with highest accuracy
on both sets. An important fact to note is that while FR-MRInet
takes images with resolution of 256×256×3, Alexnet and VGGnet
are given input size of the original design which is 227 × 227 × 3
and 224×224×3. It is quite fascinating to observe that FR-MRInet
was able show superior performance while working on a part of a
image at each time. This is likely because of the usage of pool-
ing layer in both Alexnet and VGGnet. Whenever any type of pool
operation occurs it reduces the feature map for computational ben-
efit but also looses spacial information in the process. FR-MRInet
avoids this by using stride of 2 in various layers (see table 11) of
the encoding architecture. Also Alexnet have fixed filter size of 11,
5 and 3 and VGGnet uses filter size 3 in all layers. The proposed
network uses the inception-like module with filter size of 2, 3 and

5. The original design proposed in [65] used filter sizes of 2, 3 and
5 with a pooling layer. In our design, we removed the pooling layer
so that the network is forced to choose information from the 3 cho-
sen filter sizes that doesn’t loose spatial information in the process.
This also allows the network to choose the appropriate filter size
automatically and assign weights and biases accordingly.
Many recent articles showed that they were able to classify the tu-
mor type as well after detection [78, 4, 79]. In our research, we fo-
cused more on the visual aspect of the problem than the biological
aspect. This is why we have separately observed results on scans
with top, side and back view before merging them and drawing fi-
nal conclusion instead of trying to classify the tumor type. Many
researchers have proposed methods showing that their method can
classify various tumor type from 2D MRI scans accurately. While
their accuracy in classification was quite high, the methods often
failed to generalize therefore performing poorly in real life [17].
Classification with 3D scans showed more promise but it suffers
from the same problem [29]. Thus instead of trying to classify the
tumor type [74], segmenting tumor from MRI scans was found
more challenging and applicable in real world [50]. Also in real
life, tumor classifications are made with the help of MRI scans plus
the symptoms of the patients which are absent in datasets.
To furthers investigate in this matter, we asked an MD the fol-
lowing questions, (1) Is it possible to classify brain tumors just
using MRI scans? (2) How relevant are the symptoms for tu-
mor classification with T1-weighted MRIs? (3) What is your
professional risk assessment on diagnosing tumor types using
only MRI scans? (4) How much do you think a project like this
can help radiologists?. We presents here some of the key lines of
our consultation respectively and the whole answer to each ques-
tions are given in the appendix. The answer to the questions are
(1) ”...MRIs are usually considered insufficient for definite diag-
nosis by itself, however, in some cases it can be used to confirm
the diagnosis...” (2) ”Very relevant. MRIs are most often evaluated
with context, and the scan itself is almost certainly never initiated
without context. It is the symptoms that lead to an MRI scan...” (3)
”.....The MRI film itself is usually rather straightforward to evalu-
ate, but cannot and should not be used as a definite diagnosis.....The
exact type of brain tumor is generally not diagnosed with certainty
without a biopsy to confirm the type.....”. (4) ”A ratio analyzer that
detects and evaluates disproportionate areas of the brain. To a hu-
man eye, small disproportions can be missed, but a ratio analyzer
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Fig. 5: Performance comparison on pixel wise accuracy metric of each of the model on validation and test set. The blue colored columns
resembles performance on validation set and red the color illustrates performance on test set. The X axis represents accuracy ranging from 0
to 100%

Fig. 6: Performance comparison on pixel wise accuracy metric of each of the model on test set before and after applying NCL. The blue
colored columns resembles performance before using NCL and red the color illustrates performance afterwards. The X axis represents
accuracy ranging from 0 to 100%

would point out irregularities.......if this project can be expanded in
the future to also evaluate the malignancy of the tumor based on its
appearance in the MRI, this can be of greater help to students...”.
From the comparison shown in table 8, we see that FR-MRInet was
able to achieve the highest accuracy with FCD. The model from

[21] was able to achieve impressive accuracy in the train set but was
unable to reproduce that performance in the test set. This suggests
that the model has over-fitted probably due to the fact that the model
was not originally designed for classification purpose. The model
only has three convolutional layer (encoding section) with channel

10



International Journal of Computer Applications (0975 - 8887)
Volume * - No.*, ——– 2018

Fig. 7: After each of the model predicted their final output, each of the output contained noises on the final image. We used the Neighborhood
Cleaning Rule (NCL) to identify anomalies on the image and replace them with its neighbor pixels. With yellow circles we denote some of
the unintentional changes made by NCL.

a) Epoch vs Loss during training (b) Epoch vs Loss on validation set

Fig. 8: Epoch vs Loss curves of training and validation set. Point A and B on curve (b) denotes where the learning rate was reduced.

sizes of 64, 160 and 224 which wasn’t nearly enough to learn for
it to generalize. The same conclusion can be drawn for DeepNat
[70] as well, as DeepNat only uses 3 convolutional operation with
some max-pooling and batch normalization in between. Both of
these model’s number of parameter pales in comparison with that
of Alexnet, VGGnet and FR-MRInet which is probably why they
performed poorly on the validation set. However, the model from
[6] was not only able to generalize but also provide an impressive
accuracy value as well. This was because of the deep nature of the
architecture and the usage of softmax in the last layer for pixel wise
classification. Unlike [6], our model do not use try to do pixel wise
classification rather it tries to generate the tumor highlighted image
straight from the input image. Although it may sound counter in-

tuitive, we used this method for output generation because in our
case the output image is a simple RGB image where there are only
3 colors, green for the brain, pink for the tumor and black for back-
ground. Pixel wise classification are more efficient when there are
more classes/objects are involved [7].
Finally, in table 7, pixel to pixel accuracy of each variant of encoder
with both decoder types are illustrated. We have also tested our
model against other DNN (Deep-neural Networks). Although they
were’t meant for image segmentation, we discarded the last fully
connected layer of the original network and replaced it with the 2
variant decoder used in this experiment. We used architecture from
[21, 70] and [6] as well as some commonly used architecture like
the AlexNet and VGGnet. While every variant was able to achieve
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Input from Web Cam Ground Truth Output

Fig. 9: Examples of Input images, masked image, Ground truth and predictions of FR-MRInet

over 60% detection accuracy, the proposed network with FCD was
able to achieve the highest, 85.6% in the test set(ref table 8).
Figure 5 shows some outputs considering only the best perfor-
mances of each model variant of table 7. From here we can observe
that FR-MRInet clearly produces more satisfactory results compar-
ing with other models. FR-MRInet, Alexnet and [6] were able to
produce better score in the test set which means the models was
able to generalize while DeepNat failed miserably. The highest ac-
curacy was achieved by FR-MRInet with FCD in the test set which
is just slightly higher than that of FR-MRInet with Deconvolutional
decoder. The method from [6] performed very well which is due to
the fact that it was originally designed for segmentation purpose,
just not for brain MRI. It was able to show similar performance with
both types of decoder which means the type of decoder has very lit-
tle effect on the total performance. From this chart, we also see that
generally encoder variants with FCD seems to perform slightly bet-
ter when compared to deconvolutional decoder which aligns with
the conclusion from [69, 48, 10] and [28].
Note that after each the model produced masks, each contained
some anomalies. By anomaly, we mean some random small areas
which are predicted as tumorous by mistake. This significantly re-
duces capability of each of the model. To overcome that we used
a cleaning procedure called Neighborhood Cleaning Rule (NCL)
[55]. The method was originally proposed to assist imbalanced data
learning approaches [8] but we used its ability to detect anomaly in
data-space to clean the output images. Figure 7 shows a visual ex-
ample on how NCL smoothen the output for better efficiency. These
anomalies occur as each of the model had positive loss value and
none of them were able to converge to zero loss. Instead of further
training we used this less computationally expensive method to ad-
dress the problem. But as a by product, the smoothening process
sometimes distort some of the pixel which were not anomalies (lo-
cated by yellow circles in fig 7). Since we are more interested on
the tumorous area, distortion of some not tumorous areas posses
little harm. We used neighbour, k = 9 (tuned as hyper parameter)
as parameter for NCL. Table 9 shows the change in performance
on the test set of each encoder with both types of decoder variants.

The highest performance gain was achieved by FR-MRInet with
FCD which increased from 85.6% to 91.4%. The second highest
was a 4.8% accuracy boost by FR-MRInet using deconvolutional
decoder. All the rest of the model gains 1 to 2 % accuracy gain with
the exception of DeepNat. With deconvolutional decoder DeepNat
lost 0.1% accuracy when NCL was applied. The results are visual-
ized in figure 6.
In table 10, we display some outputs generated from the testset by
different methods. We see that VGGnet and [6] are quite successful
at detecting the tumorous zone. Alexnet was also able to detect
proper zones but it also contained too much noises which remained
even after cleaning it using NCL. DeepNat was unable to learn any
pattern which is why it always predicts the center area as region
of interest (ROI). [6] and [21], both performed reasonably as they
were able to detect the correct zone but often the detected area was
much more wide spread than the actual ROI area and finally, FR-
MRInet was able to generate the most satisfactory output among all
of them.
In figure 8(a) and 8(b), the loss vs epoch is illustrated. We have used
three learning rate(lr) using transfer learning. The initial learning
rate was 0.0001 and after 200 epochs we stopped and stored the
weights. Then lr was reduced to 0.00001 for training the stored
weights and after 200 epoch it was again reduced to 0.000001. We
used this scheme as an alternative to the decayed learning rate value
in order to reduce the hyper-parameter, decay rate from the training
process. Although in figure 8(a), the loss value reduces gradually,
in figure 8(b) the changes are more noticeable. There are two stages
in figure 8(b) noted as A and B which shows are sudden change in
the loss value due to lowering the lr. The green line in the figure
8(b) shows the predicted trajectory which points to a much higher
loss function then the actual loss value. Therefore by using 3 dif-
ferent learning rates we were able to converge the model with less
number of epochs. In our research, we have tested the model fur-
ther lowering the lr but it was found not helpful. Thus we came to
conclude that the mentioned learning rates already converged the
model to its best and further training will only cause over fitting
and worse performance.
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Fig. 10: Relu-RGB activation function

In several sections of the paper, we have mentioned that although
the other models first generates the mask which is then overlay-
ed on the original image to get the desired output (see table 10),
our model generates the final output directly. We do that by hav-
ing 3 channel as output in the final layer where each pixel value
is between 0 to 255. To accomplish this task we propose a novel
activation, called RGB-relu, which is a slight modification of the
original Relu activation. We cut off the upper limit by 255 thus if
X is greater than 255 the output will be 255 (see fig 10). Although
limiting the upper value brings up the possibility of vanishing gra-
dient problem, the model was able to overcome that as RGB-relu
was only used once in the whole network.
Lastly, we have tested our model with an web camera to see if it
can identify the tumor live, even though it wasn’t designed with
that intend. We placed a camera that feeds 512 × 512 × 3 images
to the model and held a MRI image in front of the camera with a
phone. In figure 9, we show some examples of input images with
ground truth and the prediction. Although the outputs are not very
precise, they are quite visually accurate in locating the tumor.

8. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed an encoder and demonstrated its
performance against state of the art imagenets with several decoder
variants which addresses the problem of locating tumor from a MRI
scan of a brain. This aims to help respected radiologists in their field
and reduce some dependency of skills and expertise from the radi-
ologist. The novelty of our encoder is its architectural design which
performed well with fully connected networks as decoder. We have
provided conclusive evidence by illustrating several experimental
results which shows that FR-MRInet is a very effective encoder.
We have also provided detailed analysis of the results as well as
possible reasons for the proposed network’s success. We have also
used a non-over lapping sliding window technique to work on the
whole 512× 512× 3 image instead of resizing them. We have also
compared the effectiveness of fully connected decoder and decon-
volutional decoder where the results in favor of FCD. We have also
discussed effectiveness of this project with reputed professional in
respective field.
We address the problem of detecting 3 types of brain tumor from
T1 weighted MRI scans. We use pixel by pixel image classification
to locate the tumor in the MRIs. Since MRI technology evolves
rapidly, thus despite of having a lot of open sources brain MRI
datasets, we chose the dataset from [11] which is one of the lat-
est dataset designed for this particular problem. Using our encod-

ing model with Fully Connected Decoder, we were able to achieve
31.4 % pixel by pixel accuracy on finding the location. One of
the shortcoming of this method is that the output image is gen-
erated at the size of 512 × 512 × 3 using a sliding window which
was a choice made due to computational limitation. For that lim-
itation, we could not compare the performance of the network
with and without the sliding window. Many researchers have pro-
posed methods that can classify the tumor types as well but we
argue that without symptoms of the patient, the tumor classifi-
cation is highly unrealistic for real life application. For that rea-
son, we have consulted with a professional about the importance
of the symptoms for identifying tumor types and how a project
like ours can be useful in practical applications.Our dataset and
codes are open sourced for future research and freely available
here: https://github.com/farshidrayhanuiu/FR-MRInet.
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VAN GOOL, L. Convolutional oriented boundaries: From im-
age segmentation to high-level tasks. IEEE transactions on

14



International Journal of Computer Applications (0975 - 8887)
Volume * - No.*, ——– 2018

pattern analysis and machine intelligence 40, 4 (2018), 819–
833.

[41] MARCU, A., AND LEORDEANU, M. Dual local-global con-
textual pathways for recognition in aerial imagery. arXiv
preprint arXiv:1605.05462 (2016).

[42] MARMANIS, D., SCHINDLER, K., WEGNER, J. D., GAL-
LIANI, S., DATCU, M., AND STILLA, U. Classification
with an edge: improving semantic image segmentation with
boundary detection. ISPRS Journal of Photogrammetry and
Remote Sensing 135 (2018), 158–172.

[43] MENZE, B., JAKAB, A., BAUER, S., KALPATHY-CRAMER,
J., FARAHANI, K., KIRBY, J., BURREN, Y., PORZ, N.,
SLOTBOOM, J., WIEST, R., LANCZI, L., GERSTNER, E.,
WEBER, M.-A., ARBEL, T., AVANTS, B., AYACHE, N.,
BUENDIA, P., COLLINS, L., CORDIER, N., CORSO, J., CRI-
MINISI, A., DAS, T., DELINGETTE, H., DEMIRALP, C.,
DURST, C., DOJAT, M., DOYLE, S., FESTA, J., FORBES,
F., GEREMIA, E., GLOCKER, B., GOLLAND, P., GUO, X.,
HAMAMCI, A., IFTEKHARUDDIN, K., JENA, R., JOHN,
N., KONUKOGLU, E., LASHKARI, D., ANTONIO MARIZ,
J., MEIER, R., PEREIRA, S., PRECUP, D., PRICE, S. J.,
RIKLIN-RAVIV, T., REZA, S., RYAN, M., SCHWARTZ,
L., SHIN, H.-C., SHOTTON, J., SILVA, C., SOUSA, N.,
SUBBANNA, N., SZEKELY, G., TAYLOR, T., THOMAS,
O., TUSTISON, N., UNAL, G., VASSEUR, F., WINTER-
MARK, M., HYE YE, D., ZHAO, L., ZHAO, B., ZIKIC, D.,
PRASTAWA, M., REYES, M., AND VAN LEEMPUT, K. The
Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS). IEEE Transactions on Medical Imaging (2014),
33.

[44] NILSBACK, M.-E., AND ZISSERMAN, A. Delving into the
whorl of flower segmentation. In Proceedings of the British
Machine Vision Conference (2007), vol. 1, pp. 570–579.

[45] NILSBACK, M.-E., AND ZISSERMAN, A. Automated flower
classification over a large number of classes. In Proceedings
of the Indian Conference on Computer Vision, Graphics and
Image Processing (Dec 2008).

[46] NOH, H., HONG, S., AND HAN, B. Learning deconvolution
network for semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision (2015),
pp. 1520–1528.

[47] OISHI, K., FARIA, A., JIANG, H., LI, X., AKHTER, K.,
ZHANG, J., HSU, J. T., MILLER, M. I., VAN ZIJL, P. C.,
ALBERT, M., ET AL. Atlas-based whole brain white matter
analysis using large deformation diffeomorphic metric map-
ping: application to normal elderly and alzheimer’s disease
participants. Neuroimage 46, 2 (2009), 486–499.

[48] OKTAY, O., FERRANTE, E., KAMNITSAS, K., HEINRICH,
M., BAI, W., CABALLERO, J., COOK, S. A., DE MARVAO,
A., DAWES, T., OREGAN, D. P., ET AL. Anatomically con-
strained neural networks (acnns): Application to cardiac im-
age enhancement and segmentation. IEEE transactions on
medical imaging 37, 2 (2018), 384–395.

[49] PATIL, S., AND UDUPI, V. A computer aided diagnostic sys-
tem for classification of brain tumors using texture features
and probabilistic neural network. Int J Comput Sci Eng Inf
Technol Res 3 (2013), 61–66.

[50] PEREIRA, S., PINTO, A., ALVES, V., AND SILVA, C. A.
Brain tumor segmentation using convolutional neural net-
works in mri images. IEEE transactions on medical imaging
35, 5 (2016), 1240–1251.

[51] RAYHAN, F., AHMED, S., MAHBUB, A., JANI, M.,
SHATABDA, S., FARID, D. M., ET AL. Cusboost: Cluster-
based under-sampling with boosting for imbalanced classifi-
cation. 2nd International Conference on Computational Sys-
tems and Information Technology for Sustainable Solution
(2017).

[52] RAYHAN, F., AHMED, S., MAHBUB, A., JANI, M.,
SHATABDA, S., FARID, D. M., RAHMAN, C. M., ET AL.
Meboost: Mixing estimators with boosting for imbalanced
data classification. 11th international Conference on Soft-
ware, Knowledge, Information Management and Applications
(SKIMA) (2017).

[53] RAYHAN, F., AHMED, S., MOUSAVIAN, Z., FARID,
D. M., AND SHATABDA, S. Frnet-dti: Convolutional neu-
ral networks for drug-target interaction. arXiv preprint
arXiv:1806.07174 (2018).

[54] REN, S., HE, K., GIRSHICK, R., AND SUN, J. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing systems
(2015), pp. 91–99.

[55] RIQUELME, J., RUIZ, R., RODRÍGUEZ, D., AND MORENO,
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Input Image

Mask

Ground Truth

AlexNet

Vggnet

[21]

DeepNat [70]

[6]

FR-MRInet

Table 10. : This table illustrates some example output of on the test set of different models. The ground truth image is created using the
original image overlay-ed by the Masks. Except for FR-MRInet, each and every other model generates the mask and the final output is
created by overlaying them. FR-MRInet directly produces the output image skipping the need of intermediate post processing step of the
other methods.
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Layer Operation Filter number Filter size Stride Remarks
1.1.a Convolution 16 1 1
1.1.b Convolution 16 1 1
1.1.c Convolution 16 1 1
1.2.a Convolution 64 2 1
1.2.b Convolution 64 3 1
1.2.c Convolution 64 5 1
1.3 Merge 192 Merging 1.2.{a + b + c}
2 Convolution 128 3 1
3 Convolution 128 3 1

4.1.a Convolution 16 1 1
4.1.b Convolution 16 1 1
4.1.c Convolution 16 1 1
4.2.a Convolution 64 2 2
4.2.b Convolution 64 3 2
4.2.c Convolution 64 5 2
4.3 Merge 192 Merging 4.2.{a + b + c}
5 Convolution 128 3 1
6 Convolution 128 3 1
7 Convolution 128 3 2

8.1.a Convolution 32 1 1
8.1.b Convolution 32 1 1
8.1.c Convolution 32 1 1
8.2.a Convolution 96 2 1
8.2.b Convolution 96 3 1
8.2.c Convolution 96 5 1
8.3 Merge 288 Merging 8.2.{a + b + c}
9 Convolution 256 3 1

10 Convolution 256 3 1
11 Convolution 256 3 2

12.1.a Convolution 32 1 1
12.1.b Convolution 32 1 1
12.1.c Convolution 32 1 1
12.2.a Convolution 128 2 1
12.2.b Convolution 128 3 1
12.2.c Convolution 128 5 1
12.3 Merge 384 Merging 12.2.{a + b + c}
13 Convolution 256 3 1
14 Convolution 256 3 1
15 Convolution 256 3 2

16.1.a Convolution 32 1 1
16.1.b Convolution 32 1 1
16.1.c Convolution 32 1 1
16.2.a Convolution 128 2 1
16.2.b Convolution 128 3 1
16.2.c Convolution 128 5 1
16.3 Merge 384 Merging 16.2.{a + b + c}
17 Convolution 512 3 1
18 Convolution 512 3 1
19 Convolution 512 3 1

20.1.a Convolution 32 1 1
20.1.b Convolution 32 1 1
20.1.c Convolution 32 1 1
20.2.a Convolution 128 2 1
20.2.b Convolution 128 3 1
20.2.c Convolution 128 5 1
20.3 Merge 384 Merging 20.2.{a + b + c}
21 Convolution 3 1 1 3 channel for RGB image output

Table 11. : Detailed description of proposed encoding model, FR-MRInet.
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