
Workshop track - ICLR 2018

STACKED FILTERS STATIONARY FLOW FOR

HARDWARE-ORIENTED ACCELERATION OF DEEP

CONVOLUTIONAL NEURAL NETWORKS

Gao Yuechao, Liu Nianhong & Zhang Sheng ∗

Department of Microelectrics and Nanoelectrics
Tsinghua University
Beijing, 100084, China
{gyc15,lnh15}@mails.tsinghua.edu.cn

ABSTRACT

To address memory and computation resource limitations for hardware-oriented
acceleration of deep convolutional neural networks (CNNs), we present a com-
putation flow, stacked filters stationary flow (SFS), and a corresponding data en-
coding format, relative indexed compressed sparse filter format (CSF), to make
the best of data sparsity, and simplify data handling at execution time. Compar-
ing with the state-of-the-art result (Han et al., 2016b), our methods achieve 1.11×
improvement in reducing the storage required by AlexNet, and 1.09× improve-
ment in reducing the storage required by SqueezeNet. Moreover, using these ap-
proaches, chip area for logics handling irregular sparse data access can be saved.
Comparing with the 2D-SIMD processor structures in DVAS, ENVISION, the
processing element (PE) array utilization rate improves from 26.4% to 96.5%,
using our methods on the data from Deep Compression on AlexNet.

1 INTRODUCTION

CNNs have achieved substantial progress during the past years. But hardware resource limitations
have hindered their wide usage in embedded devices. Various efforts have been made to address this
issue, such as ShiftCNN (Gudovskiy & Rigazio, 2017), Ristretto (Gysel, 2016), Eyeriss (Chen et al.,
2017), Deep Compression (Han et al., 2016b) and EIE (Han et al., 2016a). Through compressing
deep neural networks with pruning, trained quantization and Huffman coding, Deep Compression
(Han et al., 2016b), the best paper of ICLR 2016, achieved state-of-the-art result in reducing storage
requirement of neural networks without affecting their accuracy.

In spite of the great progress achieved till now, there are still many problems to be solved. The
first problem is manipulating compressed sparse data need considerable extra logics. Eyeriss uses
network on chip to handle sparsity by only performing data reads and MACs on nonzero values;
DVAS (Moons & Verhelst, 2015) and ENVISION (Moons et al., 2017) use input guard memories
and guard control units to handle data sparsity. Several sparse matrix encoding formats have been
proposed, such as CSC, CSR and CISR (Fowers et al., 2014). But existing encoding formats com-
plex the computation at runtime due to their irregular memory access characteristics. This results in
inefficiency in parallelizing computation and bigger chip area. For example, EIE use Pointer Read
Units (accounting for about 19.1% chip area) and a Sparse Matrix Read Unit (accounting for about
73.57% chip area) to handle compressed sparse data. Therefore, it would be desirable if the sparse
data can be easily handled during execution without complex transformations, lookups and compu-
tation. The second one is, for deeply compressed sparse networks, the PE array utilization rate of
recently proposed hardware acceleration designs, such as Eyeriss, DVAS, ENVISION, DNPU (Shin
et al., 2017), etc., is fairly low. In this paper we present a novel computation flow SFS, and a corre-
sponding data encoding format CSF that data can be straightforwardly handled at run time. We also
propose a three dimensional Single Instruction Multiple Data (3D-SIMD) processor architecture to
illustrate how to accelerate deep CNNs by taking advantage of the SFS flow and CSF format.

∗Corresponding author. zhang sh@tsinghua.edu.cn

1

Workshop track - ICLR 2018

2 STACKED FILTERS STATIONARY FLOW (SFS) AND RELATIVE INDEXED

COMPRESSED SPARSE FILTER (CSF) FORMAT

Computations of convolutional and fully connected layers in CNNs can be unified into one formula
Eq.1 (ignoring biases). Eq. 2-6 illustrate the approach SFS. Vo, Vi and Wf are the matrices of
output feature maps, input feature maps and filters, respectively. S,C,K,M,M ′,m is a given
stride size, channel number, filter kernel size, total filter number, number of batches and batch size.

Filters are firstly grouped into M ′ batches with batch size m, and each Wf
(n) is then reshaped to

Wf ′

(n). One channel of feature data will convolute with m filters from the same channel in parallel

(Eq.4, j = 0, ...,m − 1, pseudo code is illustrated in figure 2). At the end of computation, Vo′
(0) -

Vo′
(M ′

−1) are concatenated back to Vo.

Vo[cho][y][x] =
C−1∑

chi=0

K−1∑

r=0

K−1∑

c=0

Wf [cho][chi][r][c]× Vi[chi][Sy + r][Sx+ c] (1)

Wf = [Wf
(0),Wf

(1), ...,Wf
(M ′

−1)],Wf ′ = [Wf ′

(0),Wf ′

(1), ...,Wf ′

(M ′
−1)] (2)

Wf ′

(n)[chi][r][c][j] = Wf
(n)[j][chi][r][c] (3)

Vo′
(n)[j][y][x] =

C−1∑

chi=0

K−1∑

r=0

K−1∑

c=0

Wf ′

(n)[chi][r][c][j]× Vi[chi][Sy + r][Sx+ c] (4)

Vo = [Vo′
(0),Vo′

(1), ...,Vo′
(M ′

−1)] (5)

M ′ = M/m, 0 ≤ n < M ′, 0 ≤ j < m, 0 ≤ cho < M. (6)

As to the encoding format CSF, this approach is to further rearrange the memory layout of the
grouped m filters illustrated in figure 1-a, storing the elements column by column. So in computation
flow SFS, when each element in the feature map multiplies with a column of data from m filters
(figure 2), the filter weights could be loaded sequentially. The first line in figure 1-b illustrates the
changing. In figure 1-b, if there is any weight value equals to 0, just remove that value and its index,
add one to the relative index of the next value, and subtract one to the pointer of the next column.
The nonzero value number (includes padding zeros) of a column is given by the pointer of the next
column. Column pointer is 0 means all the values in the column before the column of this pointer
equal to 0. Relative column pointer is not needed when parameters are stored in files.

Filter 1 W1,11 W1,12 W1,13 W1,21 … W1,33

...

Filter m Wm,11 Wm,12 Wm,13 Wm,21 … Wm,33

Virtual weight value W1,11 W2,11 … Wm,11 … W1,kk W2,kk … Wm,kk

Relative filter index 0 0 … 0 … 0 0 … 0

Relative column pointer 0 m … m m

a) b)

Figure 1: Memory layout a) for m filters with kernel size 3 from a single channel. b) in CSF format.

3 3D-SIMD PROCESSOR ARCHITECTURE

The SFS flow and the CSF encoding format are two key features of the proposed 3D-SIMD processor
architecture, see figure 3. In this architecture, after feature data are loaded into the line buffer and

[] [] []
() ()

' '

() ()

' '

 0, 1 , 0, 1 0, 1

 1

{

0 : [0][][] [][][][0] [][][]

: [1][][] [][][][1] [][][

]

n n

o f i

n n

o f i

outch V y x W chi r c V chi Sy

for chi i

r Sx c

outch V y x W chi r c V chi Sy r

n C r in K c in K

Sx c

+ = ´ + +

+ = ´ +

- -

+

-

() ()

' '1: [1][][

] [][][]

 [1] [][][

}

]n n

o f ioutch m V m y x W chi r c m V chi Sy r Sx c- - + = - ´ + +

Figure 2: SFS parallel computing pseudo code.

Local output registers

Global

feature

buffer

Global

filter

buffer

Global output feature buffer NL

Pool

Output

data

format

Center controller

Line buffer

Window registers

Main process unit

PE ARRAY

…

Computation

FIFO

PE

Array

PE

Array

PE

Array

Local filter buffer

RAM

RAM

Figure 3: 3D-SIMD processor architecture.

2

Workshop track - ICLR 2018

window registers from a single channel of input feature map, and m filter data from the same channel
are loaded into the local filter buffer, each element in the window will multiply with a column of
data from m filters at the same position (figure 2). So data in CSF format can be straightforwardly
handled without complex transformations, lookups and computation and loaded sequentially at run
time, and zeros are skipped as designed. This demonstration shows that these two approaches can
greatly simplify sparse data handling, saving zero bypassing and data lookup time. There are no
complex sparse data handling logics needed comparing with former works (Moons & Verhelst, 2015;
Moons et al., 2017; Han et al., 2016a).

4 RESULT

The distribution of continuous zero numbers after applying the changing is first evaluated. As fig-
ure 4 shows, the distribution narrows to the left. It means that fewer bits are needed to store the
relative index values, and there will be fewer padding zeros when compressing data in encoding
formats. This will further reduce storage space. The distribution of continuous nonzero numbers
is also evaluated. It also narrows to the left, which means the computation load during execution
will be better balanced comparing to the reference work (Han et al., 2016b). The effect of batch
size m on storage space is also analyzed. It shows that there do exist an optimum batch size for
each layer. For simplicity, all the experiments in this section use filter number as the batch size.
Table 1 illustrate the improvement of extra space needed to store index and padding zeros, and the
improvement of total storage requirement after applying our method. The PE array utilization rate1

improvement of convolutional and fully connected layers on several networks are also evaluated.
On Alexnet, as illustrated in table 2, comparing with dense network processor like the 2D-SIMD
processor structures in DVAS, ENVISION, etc., the PE array utilization rate improves from 26.4%
to 96.5% (about 3.65× improvement), using the data from Deep Compression on AlexNet2. The
amount of data lookup calculation3 is also evaluated. Using the same data above, the amount of
calculation of SFS and CSF approach is about 1/20 that of the algorithm in EIE (see table 2).

1 2 3 4 5 6 7 8 9 101112131415
0

500

1000

1500

2000

2500

3000

3500

4000

C
o
u
n

t

Continuous Zero Number

 Ref

 Ours

Conv1

1 2 3 4 5 6 7 8 9 101112131415
0

5000

10000

15000

20000

25000

30000
Conv2

C
o
u
n
t

Continuous Zero Number

 Ref

 Ours

1 2 3 4 5 6 7 8 9 101112131415
0

50000

100000

150000

200000

250000

300000

350000
FC6

C
o

u
n

t

Continuous Zero Number

 Ref

 Ours

1 2 3 4 5 6 7 8 9 101112131415
0

10000

20000

30000

40000

50000

60000

Conv4

C
o
u
n
t

Continuous Zero Number

 Ref

 Ours

Figure 4: Distributions of continuous zero numbers on Alexnet, comparing with (Han et al., 2016b).

Table 1: Extra space(in bits) improvement and total storage requirement improvement

Network Nonzeros Extra space Improvement Total

AlexNet by (Han et al., 2016b) 30592056 41325956

AlexNet by SFS+CSF 30592056 34138970 1.21× 1.11×

SqueezeNet by (Han et al., 2016b) 3327368 1737628

SqueezeNet by SFS+CSF 3327368 1307160 1.33× 1.09×

Table 2: PE array utilization rate and data lookup calculation improvement (MACs in GOPS)

Total no.

of MACs

No. of nonzero

value MACs

Total no. of

MACs (CSF)

Speed-up

(CSF)

Lookup

(CSF)

Alexnet CONV layers 1.00269368 0.2744399 0.2839878 3.53× 1/13

Alexnet FC layers 0.05459595 0.0055178 0.0059305 9.21× 1/42

Alexnet CONV+FC layers 1.05728963 0.2799577 0.2899182 3.65× 1/20

PE untilization ratio 0.2647881 0.9656438

1PE array utilization rate is estimated by: no. of nonzero value MACs / total no. of MACs.
2https://github.com/songhan/Deep-Compression-AlexNet
3Single calculation of locating a batch of data is defined as a basic unit.

3

Workshop track - ICLR 2018

REFERENCES

Yu Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State
Circuits, 52(1):127–138, 2017.

Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. A high memory
bandwidth fpga accelerator for sparse matrix-vector multiplication. In IEEE International Sym-
posium on Field-Programmable Custom Computing Machines, pp. 36–43, 2014.

Denis A Gudovskiy and Luca Rigazio. Shiftcnn: Generalized low-precision architecture for infer-
ence of convolutional neural networks. 2017.

Philipp Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. 2016.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. International Confer-
ence on Computer Architecture (ISCA), 2016a.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016b.

Bert Moons and Marian Verhelst. Dvas: Dynamic voltage accuracy scaling for increased energy-
efficiency in approximate computing. In Ieee/acm International Symposium on Low Power Elec-
tronics and Design, pp. 237–242, 2015.

Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 14.5 envision: A 0.26-
to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural
network processor in 28nm fdsoi. In Solid-State Circuits Conference, pp. 246–247, 2017.

Dongjoo Shin, Jinmook Lee, Jinsu Lee, and Hoi Jun Yoo. 14.2 dnpu: An 8.1tops/w reconfigurable
cnn-rnn processor for general-purpose deep neural networks. In Solid-State Circuits Conference,
pp. 240–241, 2017.

4

