Why Can’t You Do That HAL?
Explaining Unsolvability of Planning Tasks

Sarath Sreedharan’, Siddharth Srivastaval, David Smith?, Subbarao Kambhampati'
!CIDSE, Arizona State University, Tempe, AZ 85281 USA

PSresearch
ssreedh3 @asu.edu, siddharths @asu.edu, david.smith@psresearch.xyz, rao @asu.edu

Abstract

Explainable planning is widely accepted as a pre-
requisite for autonomous agents to successfully
work with humans. While there has been a lot of
research on generating explanations of solutions to
planning problems, explaining the absence of so-
lutions remains a largely open and under-studied
problem, even though such situations can be the
hardest to understand or debug. In this paper, we
show that hierarchical abstractions can be used
to efficiently generate reasons for unsolvability of
planning problems. In contrast to related work on
computing certificates of unsolvability, we show
that our methods can generate compact, human-
understandable reasons for unsolvability. Empirical
analysis and user studies show the validity of our
methods as well as their computational efficacy on
a number of benchmark planning domains.

1 Introduction

The ability to explain the rationale behind a decision is widely
seen as one of the basic skills needed by an autonomous agent
to truly collaborate with humans. At the very least we would
want our autonomous assistants to be capable of explaining
why a particular action/plan was chosen to achieve some ob-
jective and be able to explain why they consider some objec-
tives to be unachievable. For example, consider an automated
taxi scheduling system. A user asks for a taxi to pick up her
and three of her friends and the service comes back by say-
ing that it is not possible, and recommends instead using two
different taxis. In this scenario, the user would want to know
why a single taxi can’t pick up all four of them.

Most earlier works in explanation generation for planning
problems have focused on the problem of explaining why
a given plan or action was chosen, but do not address the
problem of explaining the unsolvability of a given planning
problem. The few works that have tried to address unsolv-
ability have mostly looked at generating certificates or proofs
of unsolvability (cf. [Eriksson, Roger, and Helmert, 2018;
2017]) or identify some modification of the planning prob-
lem that could make the problem solvable, i.e, an excuse
for the unsolvability of the problem (c.f [Gobelbecker et al.,
2010]). Unfortunately the certificates/proofs considered by

these works are geared towards automatic verification rather
than human understandability and for complex domains ex-
cuses generated by such systems may not be enough to un-
derstand why a problem was unsolvable in the first place.

In this paper, we present a new approach for explaining
unsolvability of planning problems that builds on the well
known psychological insight that humans tend to decompose
sequential planning problems in terms of the subgoals they
need to achieve [Donnarumma, Maisto, and Pezzulo, 2016;
Cooper and Shallice, 2006; Simon and Newell, 1971]. We
will thus help the user understand the infeasibility of a given
planning problem by pointing out unreachable but necessary
subgoals. For example, in the earlier case, “Holding three pas-
sengers” is a subgoal that is required to reach the goal, but
one that can no longer be achieved due to new city regula-
tions. Thus the system could explain that the taxi can’t hold
more than two passengers at a time (and also notify the user
about the new city ordinance).

Unfortunately, this is not so straightforward, since by the
very nature of the problem, there exist no solutions and hence
its hard to extract meaningful non-trivial subgoals for the
problem. We can find a way around this issue by noting the
fact that the user is asking for an explanation for unsolvability
either due to a lack of understanding of the task or because of
limitations in their inferential capabilities. Therefore, we can
try to capture the user’s expectations by considering abstrac-
tions of the given problem. In particular, we use state abstrac-
tions to generate potential solutions and subgoals at higher
levels of abstractions. Such an approach was used by [Sreed-
haran, Srivastava, and Kambhampati, 2018] to compute ex-
planations for user queries attuned to the level of expertise of
the user.

In section 3, we present our basic framework and discuss
how we can identify the appropriate level of abstraction and
unachievable subgoals for an unsolvable classical planning
problem. In the real world, a more challenging version of this
problem arises when the user provides plan advice (which
may include temporal preferences) on the type of solutions
expected. In section 4, we will see how explaining unsolv-
ability of planning problems with plan advice (c.f [Myers,
1996]) could be seen as establishing unsolvability of planning
problems with additional plan constraints. This is a capabil-
ity that is necessary to capture the fact that these explana-
tions are being provided within the context of a conversation.

M,y

-
By e
» ek
» D>
Projecting out rocks e Projecting out soil
samples
&, a -
. ;- Y
- e
> o @ > a -
u, % < ":‘Pz’ M,
Projecting out soil Projecti t rock
capina "“’. rojecting out rocks
-
\‘:“’0 i
o <2
T

M,y

Figure 1: A sample abstraction lattice. The lattice consists
of models generated by projecting out rocks or soil samples.
Dark blobs are locations for soil samples, gray objects are
rocks, and the goal is marked in green. The problem is un-
solvable in the most concrete model but solvable in models
where rocks are projected out.

The presence of this additional plan advice could either re-
flect cases (1) where the original problem was solvable, but
the user’s requirements (i.e. expressed in the advice) renders
it unsolvable and (2) where the original problem was unsolv-
able and the user presents an outline for a solution in the form
of advice. Even in the second case, by taking into account
the human’s expected solution, we can provide a more tar-
geted explanation. Such additional advice are quite common
within the context of contrastive explanations [Miller, 2018],
where these advice specify alternative foils (in this case al-
ternative plans) expected by the user. By supporting refuta-
tion of such advice we also allow the possibility of leverag-
ing our approach for contrastive explanations. For evaluating
our approach, we will present a user study we ran to validate
the usefulness of such explanations for unsolvable problems
(with plan advice) and also note the computational efficiency
of our method for some standard planning benchmarks.

2 Background

We will assume that the autonomous agent uses a STRIPS
planning model [Fikes and Nilsson, 1971] that can be repre-
sented as a tuple of the form M = (F, A, I, G), where F is
a set of propositional fluents that define the state space Sy,
for the model, A gives the set of actions the robot has access
to, I defines the initial state and G the goal. A state S € Sy
corresponds to a unique value assignment for each state flu-
ent and can be represented by the set of fluents that are true
in that state. Each action a € A is further defined by a tuple
a = (prec”,adds®,dels”) and a plan is defined as an action
sequence of the form 7 = (ay,...,ay). A plan is said to be
valid for M, if the result of executing a plan from the ini-
tial state satisfies the goal (denoted as w(I) [=a¢ G). For the
model M, we will represent the set of all valid plans as II 4.
Each planning model M also corresponds to a transition sys-
tem 7 = (Sm, I,Sq, A, T), where S¢ is the subset of Sy,
where the goal G is satisfied and 7' C Spq X A X Sy, such
that (S,a,S’) € T (denoted as S % S’) if S C prec® and
a(S) = S’. Each valid plan has a corresponding path in the

transition system from I to some state in S¢.

In this work, we will be focusing on state and action ab-
stractions induced by projecting out fluents. Thus a model
M is said to be an abstraction of M (denoted by M; C
M) if model M, can be formed from M by projecting out
a set of fluents. Formally, M; T M if there exists some
P C F, such that the transition system of My is defined
as T2 = (Sm,, I2,Sa,, A, Tz). Where, for every S € Sy,
there exist a state S \ P € Sa,, I = I\ P, Sg, is the
subset of Sy, that satisfy G’ = G\ P and for every transi-
tion (S,a, S’y € T, there exist (S \ P,a,S" \ P) € To. We
will denote an abstraction formed by projecting out P from
the model M as fp(M). An abstraction fp(M) is consid-
ered logically complete if for every 7 such that 7(I) = G,
we have 7(Is,(m)) Frpam) Grpo(m)- In this work, we will
only be looking at logically complete abstractions. For clas-
sical planning models, logically complete abstractions can be
formed by simply removing the abstracted out fluents from
the domain model and problem descriptions.

Sreedharan, Srivastava, and Kambhampati (2018) note that
given a model M and a set of propositions P we can define
an abstraction lattice, denoted as Ly p = (M, E, ¢), where
each model in M is an abstraction of M formed by project-
ing out some subset of fluents from P (where P C F') and
M € M. There exist an edge (M1, Ms) € E with label
(M1, Mz) = p, if fr3(M1) = Ma, thus this structure
provides a way of capturing the ordering induced by C (where
elements higher up in the lattice are more abstract than the
ones at the bottom). Note that in the most general case, the
lattice need not be complete, that is [M| # 2/”1. In fact we
do not assume that there is a single most abstract supremum
but rather the structure could have multiple maximal elements
(thus making it a meet semi-lattice rather than a pure lattice).

For convenience, we will treat the abstraction function f
for a given lattice as invertible and use f;l(./\/l) to repre-
sent the unique concrete node in the lattice that could have
been abstracted (by projecting out P) to generate M. We
will refer to f5' (M) as the concretization of M for P. Fig-
ure 1 presents a simple conceptualization of an abstraction
lattice for the rover domain. The edges in the lattice corre-
spond to projecting out the presence of rocks or soil samples.
Earlier works have used such abstraction lattices to estimate
the user’s level of understanding of the given task, by search-
ing for the level of abstraction where an incorrect alternative
raised by the user (or foil) could be supported.

3 Ouwur Approach

Before we start discussing the technical details of our ap-
proach, let us look at a possible explanatory scenario.

Example 1. Consider the following scenario where a rover
is tasked with collecting a rock sample and a soil sample
from the region illustrated in Figure 2. The rover can only tra-
verse the region via the waypoints marked on the map and its
maneuverability is affected by the conditions of the terrain.
The rover cannot easily traverse the region between P3 and
P4 without special precautions as the region is quite rocky.
Suppose a mission control operator is also keeping track of
the rover’s plan but may not have access to a map with the

same level of fidelity or may have incomplete knowledge of
the rover’s capabilities. The rover reports to the mission con-
troller that in fact the task can not be solved. The mission
control operator is confused by the rover’s response and could
even ask

“Why don’t you collect the rock sample from P4 and Soil sam-
ple from P7?”

Here if the rover wants to explain the reason as to why it
couldn’t achieve the goal a possible way would be to clarify
that certain parts of the map are hard to traverse (particularly
the region around the rock sample) and because of this issue
it can never reach the location of the rock sample. Thus the
explanation in this case consist of two distinct parts, infor-
mation about the problem (i.e traversability of certain paths)
and the required subgoal that can no longer be achieved in the
light of this new information. In the proceeding sections, we
will layout our framework and discuss how we could leverage
it to generate such explanations.

The input to our approach thus includes an unsolvable
problem Mpz = (Fgr, Agr,Ir,GRr) (in the above example
this would correspond to the complete rover model) and an
abstraction lattice Laq,, p = (M, E, ¢), where M represents
the space of possible models that could be used to capture the
human’s understanding of the task (i.e by assuming the user
may or may not be aware of the fluents in the set P C F'r). In
Example 1, P could include fluents related traversability of
various paths or fluents related to various rover capabilities.
Given this setting, our method for identifying explanations,
includes the following steps

* Identify the level of abstraction at which the explanation
should be provided (Section 3.1)

* Identify a sequence of necessary subgoals for the given
problem that can be reasoned about at the identified level
of abstraction (Section 3.2)

¢ Identify the first unachievable subgoal in that sequence
(Section 3.3)

Intuitively, one could understand the three steps mentioned
above as follows. First, identify the level of detail at which un-
solvability of the problem needs to be discussed. The higher
the level of abstraction, the easier the user would find it to un-
derstand and reason about the task, but the level of abstraction
should be detailed enough that the problem is actually unsolv-
able there. In most cases, this would mean finding the highest
level of abstraction where the problem is still unsolvable.

Now even if the system was to present the problem at this
desired level of abstraction, the user may be unable to grasp
the reason for unsolvability. Again, our method involves help-
ing the human in this process by pointing out a necessary
subgoal (i.e., any valid solution to that problem must achieve
the subgoal) that can’t be achieved at the current abstraction
level. Thus the second point relates to the challenge of finding
a sequence of subgoals (defined by state fluents present at the
explanatory level) for a given problem. In the third step, we
try to identify the first subgoal in the sequence that is actually
unsolvable in the given level.

Given our approach, the final explanatory message pro-
vided to the user would include model information that brings

their understanding of the task to the required level and infor-
mation on the specific subgoals (and previous ones that need
to be achieved first) that can no longer be achieved. In cases
where the unachievable subgoals are hard to understand for-
mulas or large disjunctions, we can also use these subgoals
to produce exemplar plans in the more abstract models and
illustrate their failures alongside the unachievable subgoals.

3.1 Identifying the Minimal Level of Abstraction
Required for Explanation

Following [Sreedharan, Srivastava, and Kambhampati, 2018],
we will assume that the human’s understanding of the
task could be approximated by a model My =
(Fy,Ap,Ig,Gg), such that, the model is part of the ab-
straction lattice (Mgr C My and My € M). While the
earlier work is able to use alternative plan provided by the
user to identify the human model, we instead use the fact that
the user expected the problem to be solvable to identify M g,
i.e., E|7T,7T(IMH) }:MH GMH'

We now need to abstract this human model to a level where
the problem is unsolvable (i.e the explanation level) by pro-
viding information about a certain subset of fluents previously
missing from the human model (i.e information on their truth
values in the initial and goal state, and how they affect various
actions etc...). In the case of Example 1, this would include in-
formation on whether various paths are traversable and how
the traversability of a path is a precondition for the robot to
move across it. We will refer to the set of fluents that the hu-
man needs to be informed about as explanatory fluents (£)
and for Example 1, it will be £ = {can_traverse(?x, 7y)}.

Definition 1. Given a human model My, we define a set
of propositions & to be explanatory fluents if ' (Mp) is
unsolvable, i.e, |Hf£1(MH)| = 0.

Unfortunately, this is not an operational definition as we do
not have access to M g . Instead, we know that M g must be
part of the lattice, and thus there exists a subset of the max-
imal elements of the lattice (denoted as M%) that is more
abstract than M g. In this section, we will show how the ex-
planatory fluents for models in this subset of M?** would sat-
isfy Mg as well.

The first useful property to keep in mind is that if M; is
more concrete than My then the models obtained by con-
cretizing each model with the same set of fluents would main-
tain this relation (although they may get concretized to the
same model), i.e.,

Proposition 1. Given models M1, My and a set of fluents
¢, if My C Mo, then f7H(My) C f7H(My).

Next, it can be shown that any given set of explanatory
fluents for an abstract model will be a valid explanatory fluent
set for a more concrete model

Proposition 2. Given models M1, Ms, if M1 E Mo, then
any explanation £ for Ms must also be an explanation for
1.

To see why this proposition is true, let’s start from the
fact that fz ' (M) C fz'(M>) and therefore oy €
II FoH (My): From the definition of explanation we know that

Robot model

Human model

P4

P3 Pr_| P3 | PT_|
Pe N P .
P1 £e P1 i
T N
—#: Rover * Soil £ Rock Rough Terrain
- sample sample

Figure 2: The map for the rover mission planning problem. The rover is required to collect a rock sample and a soil sample and
then return to the original position P1. One of the rock samples is located in rough terrain (gray) that can not be traversed by
the rover. The mission control operator who is monitoring the plan is currently unaware of this detail.

the concretization with respect to explanatory fluents would
render the problem unsolvable (i.e |TI £ M2)| = 0) and thus

|Hfgl(My))| must also be empty and hence £ is an explana-
tion for M.

Definition 2. Given an abstraction lattice L, let MI*** be its
maximal elements. Then the minimum abstraction set is de-
fined as M, = {M|M € M A |T1 x| > 0}.

Note that for any model M; € M,,in, Mg T My,
this means by Proposition 2, any explanation that is valid
for models in M,,,;,,, should lead Mg to a node where the
problem is unsolvable. Now we can generate the explanation
(even the optimal one) by searching for a set of fluents that
when introduced to the models M & M,,;, will render
the problem fz'(M) unsolvable. In this work, we will
mostly consider the use of uniform cost search to find the
least costly set of explanatory fluent, where the cost of each
fluent reflects the cost of communicating information about
a particular fluent. In this case, the search state consists of
sets of models (with M,,,;,, being the initial state), the actions
consist of the various fluent concretizations, the edges of
the lattice define the successor functions and the goal test
involves verifying whether the problem is solvable in each
possible model in the current state.

3.2 Generating Subgoals of a Given Problem

Note that it would be hard to identify non-trivial subgoals for
the given problem in the node at which the problem was found
to be unsolvable (i.e fg Y (M4)) since there are no valid
plans in that model. Fortunately, we can use models more ab-
stract than fg *(M;,i,) to generate such subgoals. We will
use planning landmarks [Hoffmann, Porteous, and Sebastia,
2004] extracted from M, where [I1 4| > 0, as subgoals. Intu-
itively, state landmarks (denoted as A = (®, <)) for a model
M can be thought of as a partially ordered set of formulas,
where the formulas and the ordering need to be satisfied by
every plan that is valid in M. We will only be considering
sound orderings (c.f [Richter, Helmert, and Westphal, 2008])
between landmarks, namely, (1) natural orderings (<nqt) -
@ <nat ¢, then ¢ must be true before ¢’ is made true in ev-
ery plan, (2) necessary orderings (<nec) - if @ <pec @ then

¢ must be true in the step before ¢’ is made true every time
and (3) greedy necessary orderings (<gnec) - if ¢ <gnec @'
then ¢ must be true in the step before ¢’ is made true the first
time. The landmark formulas may be disjunctive, conjunctive
or atomic landmarks.

Our use of landmarks as the way to identify subgoals is
further justified by the fact that logically complete abstrac-
tions conserve landmarks. Formally

Proposition 3. Given two models My and Mo, such that
My E My, let Ay = <(I)1,<1> and Ay = <(b2,<2> be the
landmarks of My and M respectively. Then for all ¢}, ¢} €
@1, such that ¢} =<1 (25]1 (where < is some sound ordering),
we have ¢? and qb? in @y, where ¢} =5 ¢}, ¢} = ¢F and
5 k= &

This is true because ¢? < qﬁf holds over all the plans
that are valid in M, and therefore must also hold over all
plans in M. Though in M; these landmark instances may be
captured by more constrained formulas, and additionally M1
may also contain landmarks that were absent from Ms. Now
if we can show that in a particular model, a landmark gener-
ated from a more abstract model is unachievable (or the order-
ing from the previous level is unachievable) then ¢} becomes
L (thereby meeting the above requirement). Thereafter, for
any model more concrete than M, the formula correspond-
ing to that landmark must be L. In other words, if for any
model a landmark is unachievable, then that landmark can’t
be achieved in any models more concrete than the current one.

So given the explanatory level, we can move one level up
in the lattice and make use of any of the well established
landmark extraction methods developed for classical plan-
ning problem to generate a sequence of potential subgoals for

R-

3.3 Identifying Unachievable Sub-Goals

Now we need to find the first subgoal from the sequence that
can no longer be achieved in the models obtained by apply-
ing the explanatory fluents (fg Y (Mln4n)) which will then
be presented to the user. For example, in the case of Figure
1, the unachievable subgoal would correspond to satisfying
at_rover(5,4) (marked in red in My).

It is important to note that finding the first unachievable
subgoal is not as simple as testing the achievability of each
subgoal at the abstraction level identified by methods dis-
cussed in section 3.1. Instead, we need to make sure that
each subgoal is achievable while preserving the order of all
the previous subgoals. To test this we will introduce a new
compilation that allows us to express the problem of testing
achievement of a landmark formula as a planning problem.
Consider a planning model M and the landmarks A = (®, <)
extracted from some model M’, where M T M’. We will
assume that the formulas in ® are propositional logic for-
mulas over the state fluents and are expressed in DNF. Each
¢ € ® can be represented as a set of sets of fluents (i.e, ¢ =
{c1,...,cr} and each ¢; set takes the form ¢; = {p1,..pm}),
where each set of fluents represent a conjunction over those
fluents. For testing the achievability of any landmark ¢ € @,
we make an augmented model My = (F? A? I? G?),
such that the landmark is achievable iff [IIrq,| > 0. The
model M, can be defined as follows: F® = F U pmeta
where F™¢'% contains new meta fluents for each possible
landmark ¢’ € ® of the form

* achieved(¢’) keeps track of a landmark being achieved
and never gets removed

* unset(@') Says that the landmark has not been achieved
yet, usually set true in the initial state unless the land-
mark is true in the initial state

o first_time_achieved(¢') Says that the landmark has
been achieved for the first time. This fluent is set true
in the initial state if the landmark is already true there

The new action set A?, will contain a copy of each action
in A. For each new action corresponding to ¢ € A, we add
the following new effects to track the achievement of each
landmark

« for each ¢’ € ® if the action has existing add effects for
a subset of predicates ¢; fora c; € @', then we add the
conditional effects cond; (¢') — {achieved(¢’)} and
condy(¢') — { first_time_achieved(¢’)}, where

condy(¢") =¢ \ & U{dld € DA (D <nec ¢')}U
{achieved()|¢ <nat ¢'} and
conda(¢') = condi (¢)U{@|d <gnec ¢’ }U{unset(¢)}

e We add a conditional delete effect to every ac-
tion of the form first_time_achieved(¢') —
(not(first_time_achieved(¢')))

The new goal would be defined as G¢ =
{first_time_achieved(¢)}.

This formulation allows us to test each landmark in the
given sequence and find the first one that can no longer be
achieved. To ensure completeness, we will return the final
goal if all the previously extracted landmarks are still achiev-
able in f (M4). Now given an ordered set of landmarks,
we can identify the first unsolvable landmark by testing the
solvability of the F'# for each landmark in the order they ap-
pear in the sequence.

Since the above formulation is designed for DNF, we can
generate compilation for cases where the landmarks use ei-

ther un-normalized formulas or CNF by converting them first
into DNF formulas.

4 Planning Problems with Plan Advice

Let us now discuss how we could extend the methods pre-
sented in earlier sections to cases where the user provides plan
advice. In such cases,the user imposes certain restrictions on
the kind of solution they expect, either as an alternative to
the solution the system may come up with on its own or as
a guide to help the system come up with solutions when it
claims unsolvability.

As pointed out in [Myers, 1996], such advice can be
compiled into plan constraints in the original problem. A
number of approaches have been proposed to capture and
represent plan constraints [Bacchus and Kabanza, 2000;
Nau et al., 2001; Kambhampati, Knoblock, and Yang, 1995;
Baier and Mcllraith, 2006], and each of these representational
choices has its unique strengths and weaknesses. In general,
we can see that these plan constraints as specify a partition-
ing of the space of all valid plans to either acceptable (i.e it
satisfies the constraints) or unacceptable. So we can define,
constraints as follows

Definition 3. The partition specified by a constraint o on a
given set of plans that is specified by a membership function
o : 11 — [0, 1], where I1 is the set of all plans.

We will slightly abuse notation and for a given set of plans
IT we will use o(IT') to denote {r|7 € I A o(r) = 1} (i.e
the subset of II’ that satisfies the constraint). If we can as-
sume some upper bound on the possible length of plans in
o(ITaq) (which is guaranteed when we restrict our attention
to non-redundant plans for standard classical planning prob-
lems), then we can assert that there always exists a finite state
machine that captures the space of acceptable plans

Proposition 4. Given a constraint o and a model M, there
exists a finite state automaton FoM = (¥, S ro.m, Sy, 6, E),
where ¥ is the input alphabet, S ro,»m defines the FSA states,
So is the initial state, ¢ is the transition function and E is the
set of accepting states, such that o (Tl pg) = L(F7M)N Ty,
where L(F7M) is the set of strings accepted by F7™M.

The existence of F7*™ can be trivially shown by consider-
ing an FSA that has a path for each unique plan in 7M. We
believe that this formulation is general enough to capture al-
most all of the plan constraint specifications discussed in the
planning literature, including LTL based specifications, since
for classical planning problems these formulas are better un-
derstood in terms of LT Ly [De Giacomo and Vardi, 2015]
which can be compiled into a finite state automaton.

We can use 7™ to build a new model o(M) such that
a plan is valid in o(M) if and only if the plan is valid
for M and satisfies the given specification o, i.e., Vr,m €
o) iff m € o(Tnm)

For M = (F,A,I,G), we can define the new model
o(M) =(F,,A,,I,,G,) as follows

e F, = FU {in-state-{S}|S € Sro.r}

e A, =AUA;s

o I, = I U {in-state-{So}}

— Satellite
Rover
Storage /

AN

Time taken (secs)
\

2 3) 5 G 7 s
Number of fluent used for lattice

Figure 3: The graph compares the time taken to generate the
explanation for three of the domains for increasing size of
lattices.

* G, = GU {in-state-{S}|S € E}

As are the new meta actions responsible for simu-
lating the transitions defined by § Srpom X ¥ —
pow(SFo,am). For example, if 6(S1,a) = {S1,S2}, where
a corresponds to an action in A, then we will have two
new actions aélya = (prec® U {in-state-{S; }}, adds® U
{in-state-{S5}}, dels® U {in-state-{S1}}) and a3 , =
(prec® U {in-state-{S1 } }, adds®, dels®}). In cases like LTL,
the FSA state transitions may be induced by the satisfaction
of some formula, so the new meta action may have precondi-
tions corresponding to that formula, with no other effects but
changing the fluent corresponding to the state transition.

The above formulation merely points out that there always
exists a way of generating o (M) from the given specification
o and M. For many constraint types, there may exist more
efficient ways of generating models that satisfy the require-
ments of o(M).

Once we have access to o (M), we should be able to use the
methods discussed in earlier sections to explain unsolvability
of 0(M) and hence why the constraint isn’t feasible. To facil-
itate such explanation, we will build an abstraction lattice for
the constrained problems L, o, p such that PN (F7\ F) = ¢,
i.e the abstraction lattice only affects the fluents from the orig-
inal problem and not the new ones introduced as part of the
compilation. In fact, we can induce such a lattice by consider-
ing the lattice generated for the original problem and then re-
placing each node in the lattice with the corresponding com-
piled problem, to see why this would induce a valid abstrac-
tion lattice, consider the following property

Proposition 5. Given models My, My and a constraint
specification o, if M1 C Mo, then (M) E o(Mas).

To see why this is true, just assume that the reverse was
true, that o(Ms) is not a logically complete abstraction of
o(My). This means that there are plans in I1,(q,) that are
not part of IT,(a,). From the definition of o(M3), we know
that TT;(aq,) = Mg, N L(F). If there exista m € Ty aq,)s
such that ¢ II,(a,), then m & I xq,. Which means My £
M, hence contradicting our assumptions.

Revisiting Example 1, the question asked by the user could
be seen as an advice, where the corresponding constraint
covers all plans where the rover performs the actions col-
lect_rock_sample P4, collect_soil_sample P7, irrespective of

the exact position and order in which the actions appears in
the plan. More generally, we could think of this plan advice as
being a special case of advice where the user wants to ensure
presence of certain actions in the plan with some partial or-
dering among them (eg: “Why don’t you pickup block B and
then C?”, “Make sure that you have cleared Room1 before
you move on to Room2 and Room3” etc..). Such advice could
be represented as partial plans [Kambhampati, Knoblock, and
Yang, 19951, which in general can be captured as a partially
ordered multiset of the form' # = (A, <), where A is a mul-
tiset over grounded actions and < defines ordering constraints
over these grounded actions. A plan 7 = (a1, ..., a,) is said
to be a candidate plan for the given partial plan 7, if there
exists a mapping function z : A — [1,|x]] that maps each
actionina € Atoa position in the plan such that a = a,,(,)

and if @ < b for a,b € A, then p(a) < p(b). Such partial
plans can be fairly easily compiled into a classical planning
model (such that it satisfies o(M)) by extending the com-
pilation methods discussed in [Ramirez and Geffner, 2010],
without relying on an intermediate finite state machine.

The corresponding partial plan for the question specified
above would be
7 = ({collect_rock_sample P4, collect_soil_sample P7},)
Let us assume that in this case the observer could be un-
aware of certain domain constraints such as the rover’s in-
ability to traverse certain regions on the map the fact that not
all rovers are capable of collecting rock and soil samples or
that they are not always equipped to store these samples. In
this case, possible user models can be captured by a lattice
build using the following fluents P = {(can_traverse ?x ?y),
(equipped_for_soil_sample ?r), (equipped_for_rock_sample ?r),
(store_of ?r)}. Now our approach would identify the user need
to be made aware of the fact that not all regions of the map are
equally traversable (i.e inform the user about can_traverse ?x
?y) and how its a precondition for move action), furthermore
given this property the robot can no longer reach the waypoint
4 which is required to complete this task (i.e the unreachable
landmark is (at rover0 waypoint4)).

5 Evaluations
5.1 User Studies

Our first concern with evaluating explanations based on land-
marks was to establish that they constitute meaningful expla-
nations for naive users. As a simple alternative to our explana-
tions, we consider providing to the user a set of potential solu-
tions (generated from a higher level of abstraction) and their
individual failures. For the study, we recruited around 120
master turkers from Amazon’s Mechanical Turk and tested
the following hypotheses

* H1 - Users prefer concise explanations over ones that
enumerate a set of possible candidates for a given piece
of plan advice

'We are presenting a simplified definition of a partial plan.
The full definition allows for the representation of more complex
constraints than mere ordering constraints, such as contiguity con-
straints and interval protection constraints.

Domain Name | |P| | Average Runtime (secs) | Explanation Cost | Cost of explaining Mg
Blocksworld 4 8.141 11.6 30.2

Satellite 8 19.15 6 43.6

Depots 5 20.229 13 51

Rover 8 263.635 7.5 15.75

Storage 7 50.348 20 55.8
Over-Rover* 8 2047.360 29.8 92.6
Over-tpp™ 8 1065.542 842.8 881.2
Bottleneck™ 3 504.431 60.8 66.2

Table 1: Table showing runtime for explanations generated for standard IPC domains. The explanation costs capture the number
of unique model updates (changes in effects/precondition etc..) corresponding to each explanation

* H2 - Users prefer concise explanations that contain in-
formation about unachievable landmarks over ones that
only show the failure of a single exemplary plan

For the hypotheses, we presented the study participants with
a sample dialogue between two people over a logistics plan
to move a package from one location to another. The dia-
logue included a person (named Bob) presenting a plan to
another (named Alice), and Alice asks for an alternative pos-
sibility (i.e specifies a constraint on the solution). Now the
challenge for Bob is to explain why the constrained problem
is unsolvable. For example, in one example Bob presents a
rather convoluted plan that involves the package being trans-
ferred through multiple trucks to a train and then to the final
destination. This leads to Alice asking the package to be de-
livered via an airplane.

For H1, in addition to some model information that Bob
was unaware of, the potential explanations included either (a)
the information on the unachievable landmark, (b) landmark
information with the failure details of a specific exemplary
plan or (c) a set of plans that satisfy the constraints and their
corresponding failures. For the earlier example this meant
Bob explains to Alice the limited availability of Truck fuel
and (a) the impossibility of getting the package to the airport
or (b) the the impossibility of getting the package to the air-
port and a specific plan (eg: truckl picks up package moves
to location two then to three ...) along with its point of failure
(eg: truckl runs out of fuel when it reaches location three) or
(c) three example plans involving various trucks trying to get
the package to the airport and their specific points of failures
(each of which fails at different steps but before reaching the
airport).

For this study, we used 45 participants and each participant
was assigned one of three possible maps for each hypothesis
and was paid $1.25 for 10 mins. We used a control question
to filter participant responses, so as to ensure their quality.
Out of the 39 remaining responses, we found 94.8% of users
chose to select the more concise explanation (i.e (a) or (b)),
and 51.28% of the users chose explanations that involved just
landmarks.

For H2, we used 75 participants and presented each par-
ticipant with explanations that include (a) just landmark in-
formation, (b) landmark information with failure details of
an exemplary plan and (c) just the exemplary plan failure.
Here participants were paid $1 for 10 mins for H2 as the ex-
planatory options were much simpler. After filtering using

the control question, we found that out of 60 valid entries
75.4% of participants preferred explanations that included
landmark information ((a) or (b)) and 44.2% wanted both
landmarks and exemplary plan (i.e (b)). The supplementary
file at http://bit.1ly/2HQ5sTv contains more details
on the study setup.

5.2 Empirical Studies

In this section, we will present the results of an empirical
evaluation of the computational characteristics of our ap-
proach. One big concern with the methods discussed in this
work is the fact that they involve solving multiple planning
problems. Thus we were interested in identifying the run-
time for generating explanations on a set of standard planning
benchmarks.

To evaluate our methods, we considered eight planning do-
mains and chose five problem instances for each of the do-
mains. For each domain, we used a subset of the domain
predicates to generate the abstraction lattice (i.e we set the
subset as the set of fluents P used to define the lattice). The
first five domains and their problem instances consisted of
standard IPC domains and problem instances used in previ-
ous IPC competitions [International Planning Competition,
2011]. Each problem instance was made unsolvable by in-
cluding plan constraints that avoid a specific landmark of the
original problem. The constraints were coded using domain
control programs [Baier, Fritz, and Mcllraith, 2007] of the
form
while —¢ A —(goal_completed)
do any
done

Where ¢ is the landmark formula and (goal_completed)
is the goal fluent (generated by a new goal_action whose
preconditions are the original goals of the problem). The con-
straints ensure that any valid plan must avoid the landmark ¢
and thereby rendering it unsolvable. The next three domains
were selected from the set used for the 2016 unsolvability
competition [Unsolvability International Planning Competi-
tion, 2016] (these domains are marked with an asterix in the
results table). All instances were run with a timeout of 100
minutes (all problems were solvable under this time limit) and
all landmarks were generated using the fast-downward imple-
mentation of [Keyder, Richter, and Helmert, 2010] (where we
set the subset sizes to one for the first five domains and to two
for the rest).

Table 1 presents the results of our tests on these domains.
It shows the number of fluents used to generate the lattice
(|P|), the average runtime, the cost of the generated expla-
nations and the cost of presenting the most concrete model
to the user. For each scenario, we created a complete lattice
for all the fluents considered for abstraction (i.e |M]| = 2!71).
The cost of the explanation captures the amount of informa-
tion to be provided to the user as part of the explanation. This
could include information regarding the various explanatory
fluents and is here captured roughly by the number of places
within the domain definition where these fluents appear. The
cost also reflects the inferential overhead demanded from the
user (since providing more information translates to the user
needing to understand the domain at a much more concrete
level).

For a sample explanation, consider the overconstrained
rover domain, where the rovers’ actions are limited by their
energy levels and the energy of the rover isn’t enough to fin-
ish the task. In one of the instances where the rover energy
level is at 33 and the original problem had a goal consisting
of eight propositions (each referring to the need for commu-
nicating a particular soil sample, rock sample or sending an
image for different objectives), our approach was able to iden-
tify that the user needs to understand fluents related to energy
((energy ?x ?y) and (energycost ?x ?y ?z)) and identified two
subgoals out of the eight that it could not achieve.

Figure 3 presents the variations in average runtime for three
of the domains as the size of the lattice were increased (the X-
axis represents the number of fluents that were used to build
the lattice and Y the runtime in seconds). Note that, in gen-
eral, the runtime increases as the lattice size increase due to
the increase in the search space, but in all three domains there
are points where the runtime decrease when the lattice size in-
creases. This is expected since with an increase in the size of
lattice, the planning problems whose unsolvability are being
tested becomes simpler.

6 Related Work

As discussed earlier, our methods for identifying the level of
explanations are based on the expertise level modeling ap-
proaches introduced in [Sreedharan, Srivastava, and Kamb-
hampati, 2018]. These two works are quite closely connected
and in fact, the contrastive explanations of the type studied in
the earlier paper, where the user presents alternative plans (i.e
the foils for the explanations) that are then refuted by the sys-
tem, is a special case of our approach for handling problems
with plan advice. The problems studied in that earlier paper
can be thought of as capturing cases where the advice only
allows for a single plan. Also, one could argue that people
would be more comfortable giving advices as foils rather than
full plans. Part of our explanations also try to reveal to the
user information about the current task that was previously
unknown to them. Thus our methods could also be under-
stood as an example of explanation as model-reconciliation
[Chakraborti et al., 2017]. Since our methods use abstrac-
tions, our approach doesn’t make too many demands on the
inferential capabilities of the user and hence can be applied
to much larger and more complex domains.

Another closely related direction has been the work done
on explaining unsynthesizability of hybrid controllers for a
given set of high-level task specifications [Raman and Kress-
Gazit, 2013]. The work tries to identify the subformulas of
the given specification that lead to the unsynthesizability.
This particular approach is specific to the planning frame-
work detailed in [Finucane, Jing, and Kress-Gazit, 2010] and
the objective of the work parallels the goals of work like
[Gobelbecker et al., 2010].

Outside of explanation generation, the work done in the
model checking community is closely related to our current
problem [Grumberg and Veith, 2008]. In fact, the hierarchical
approach to identifying a model that can invalidate the given
foil specification, can be seen as a special case of the CE-
GAR based methods studied in the model-checking commu-
nity [Clarke et al., 2000]. Most work in this field focuses on
developing methods for identifying whether a given program
meets some specifications and failures to meet specification
are generally communicated via counterexamples.

Another related problem is that of identifying whether a
given problem is unsolvable. In our setting, we assume that
the system is capable of correctly identifying whether a given
problem is unsolvable or not and in general this can be a time
consuming process. Thankfully the problem of efficiently
identifying whether a given planning problem is unsolvable is
an active research area (cf. [Steinmetz and Hoffmann, 2017;
Kolobov, Weld, and others, 2010]) and solutions to this prob-
lem can be easily leveraged by our approach to improve the
overall efficiency of the system.

7 Conclusion and Future Directions

The work presented in this paper investigates the problem of
generating explanations for unsolvability of a given planning
problem. We also saw how the same methods apply when
dealing with problems with plan constraints. In addition to
extending these methods to more expressive domains, an in-
teresting extension would be to try tackling cases where the
current problem is solvable but all the solutions are too ex-
pensive. While this additional cost threshold could be seen as
a constraint, the setting becomes a lot more interesting when
the action costs are affected by the abstractions (c.f state de-
pendent costs [GeiBer, Keller, and Mattmiiller, 2016]). With
respect to contrastive explanations, this would correspond to
cases where the alternative posed by the user is more expen-
sive than the plan proposed by the robot. Finally, an obvious
challenge to fully realize this method in practical scenarios
is to develop methods to convert user questions to plan con-
straints. Methods like [Tenorth et al., 2010] can be used to
convert natural language statements to constraints like partial
plans. Expert users can also directly write LTL and procedu-
ral programs as a way of interrogating the system.

Acknowledgments

This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-2840,
the AFOSR grant FA9550-18-1-0067, the NASA grant
NNX17AD06G, NSF grant 1844325 and a JP Morgan Al
Faculty Research grant.

References

[Bacchus and Kabanza, 2000] Bacchus, F., and Kabanza, F.
2000. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116(1-
2):123-191.

[Baier and Mcllraith, 2006] Baier, J. A., and Mcllraith, S. A.
2006. Planning with first-order temporally extended goals
using heuristic search. In AAAI, 788-795.

[Baier, Fritz, and Mcllraith, 2007] Baier, J. A.; Fritz, C.; and
Mcllraith, S. A. 2007. Exploiting procedural domain con-
trol knowledge in state-of-the-art planners. In /CAPS.

[Chakraborti et al., 2017] Chakraborti, T.; Sreedharan, S.;
Zhang, Y.; and Kambhampati, S. 2017. Plan explana-
tions as model reconciliation: Moving beyond explanation
as soliloquy. In IJCAI

[Clarke et al., 2000] Clarke, E.; Grumberg, O.; Jha, S.; Lu,
Y.; and Veith, H. 2000. Counterexample-guided abstrac-
tion refinement. In International Conference on Computer
Aided Verification, 154-169. Springer.

[Cooper and Shallice, 2006] Cooper, R. P., and Shallice, T.
2006. Hierarchical schemas and goals in the control of
sequential behavior. Psychological Review.

[De Giacomo and Vardi, 2015] De Giacomo, G., and Vardi,
M. Y. 2015. Synthesis for 1tl and 1dl on finite traces. In
1JCAI, volume 15, 1558-1564.

[Donnarumma, Maisto, and Pezzulo, 2016] Donnarumma,
F.; Maisto, D.; and Pezzulo, G. 2016. Problem solving
as probabilistic inference with subgoaling: explaining
human successes and pitfalls in the tower of hanoi. PLoS
computational biology 12(4):¢1004864.

[Eriksson, Roger, and Helmert, 2017] Eriksson, S.; Roger,
G.; and Helmert, M. 2017. Unsolvability certificates for
classical planning. In ICAPS.

[Eriksson, Roger, and Helmert, 2018] Eriksson, S.; Roger,
G.; and Helmert, M. 2018. A proof system for unsolv-
able planning tasks. In ICAPS.

[Fikes and Nilsson, 1971] Fikes, R. E., and Nilsson, N. J.
1971. Strips: A new approach to the application of the-
orem proving to problem solving. Artificial intelligence
2(3-4):189-208.

[Finucane, Jing, and Kress-Gazit, 2010] Finucane, C.; Jing,
G.; and Kress-Gazit, H. 2010. Ltlmop: Experimenting
with language, temporal logic and robot control. In IROS,
1988-1993. IEEE.

[GeiBer, Keller, and Mattmiiller, 2016] GeiBer, F.; Keller, T.;
and Mattmiiller, R. 2016. Abstractions for planning with
state-dependent action costs. In ICAPS.

[Gobelbecker et al., 2010] Gobelbecker, M.; Keller, T.; Eye-
rich, P.; Brenner, M.; and Nebel, B. 2010. Coming up with
good excuses: What to do when no plan can be found. In
ICAPS.

[Grumberg and Veith, 2008] Grumberg, O., and Veith, H.
2008. 25 years of model checking: history, achievements,
perspectives, volume 5000. Springer.

[Hoffmann, Porteous, and Sebastia, 2004] Hoffmann, J.;
Porteous, J.; and Sebastia, L. 2004. Ordered landmarks in
planning. JAIR 22:215-278.

[International Planning Competition, 2011] International
Planning Competition. 2011. IPC Competition Domains.
https://goo.gl/i35bxc.

[Kambhampati, Knoblock, and Yang, 1995] Kambhampati,
S.; Knoblock, C. A.; and Yang, Q. 1995. Planning as
refinement search: A unified framework for evaluating

design tradeoffs in partial-order planning. Artificial
Intelligence 76(1):167-238.

[Keyder, Richter, and Helmert, 2010] Keyder, E.; Richter,
S.; and Helmert, M. 2010. Sound and complete landmarks
for and/or graphs. In ECAL

[Kolobov, Weld, and others, 2010] Kolobov, A.; Weld, D.;
et al. 2010. Sixthsense: Fast and reliable recognition of
dead ends in mdps. In AAAL

[Miller, 2018] Miller, T. 2018. Explanation in artificial in-
telligence: Insights from the social sciences. Artificial In-
telligence.

[Myers, 1996] Myers, K. L. 1996. Advisable planning sys-
tems. Advanced Planning Technology 206-2009.

[Nau et al., 2001] Nau, D.; Cao, Y.; Lotem, A.; and Munoz-
Avila, H. 2001. The shop planning system. Al Magazine
22(3):91.

[Raman and Kress-Gazit, 2013] Raman, V., and Kress-
Gazit, H. 2013. Towards minimal explanations of
unsynthesizability for high-level robot behaviors. In
IROS, 757-762. IEEE.

[Ramirez and Geffner, 2010] Ramirez, M., and Geffner, H.
2010. Probabilistic plan recognition using off-the-shelf
classical planners. In AAAI, 1121-1126.

[Richter, Helmert, and Westphal, 2008] Richter, S.; Helmert,
M.; and Westphal, M. 2008. Landmarks revisited. In
AAAI volume 8, 975-982.

[Simon and Newell, 1971] Simon, H. A., and Newell, A.
1971. Human problem solving: The state of the theory
in 1970. American Psychologist 26(2):145.

[Sreedharan, Srivastava, and Kambhampati, 2018]
Sreedharan, S.; Srivastava, S.; and Kambhampati, S.
2018. Hierarchical expertise-level modeling for user
specific contrastive explanations. In IJCAL

[Steinmetz and Hoffmann, 2017] Steinmetz, M., and Hoff-
mann, J. 2017. Search and learn: On dead-end detectors,
the traps they set, and trap learning. In IJCAI, 4398—4404.

[Tenorth et al., 2010] Tenorth, M.; Nyga, D.; Beetz, M.; et al.
2010. Understanding and executing instructions for every-
day manipulation tasks from the world wide web. In ICRA.

[Unsolvability International Planning Competition, 2016]
Unsolvability International Planning Competi-
tion. 2016. IPC Competition Domains. https:
//unsolve-ipc.eng.unimelb.edu.au/.

