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ABSTRACT

Unsupervised image-to-image translation aims to learn a mapping between sev-
eral visual domains by using unpaired training pairs. Recent studies have shown
remarkable success in image-to-image translation for multiple domains but they
suffer from two main limitations: they are either built from several two-domain
mappings that are required to be learned independently and/or they generate low-
diversity results, a phenomenon known as model collapse. To overcome these
limitations, we propose a method named GMM-UNIT based on a content-attribute
disentangled representation, where the attribute space is fitted with a GMM. Each
GMM component represents a domain, and this simple assumption has two promi-
nent advantages. First, the dimension of the attribute space does not grow linearly
with the number of domains, as it is the case in the literature. Second, the con-
tinuous domain encoding allows for interpolation between domains and for ex-
trapolation to unseen domains. Additionally, we show how GMM-UNIT can be
constrained down to different methods in the literature, meaning that GMM-UNIT
is a unifying framework for unsupervised image-to-image translation.

1 INTRODUCTION

Translating images from one domain into another is a challenging task that has significant influ-
ence on many real-world applications where data are expensive, or impossible to obtain and to
annotate. Image-to-Image translation models have indeed been used to increase the resolution of
images (Dong et al., 2014), fill missing parts (Pathak et al., 2016), transfer styles (Gatys et al.,
2016), synthesize new images from labels (Liu et al., 2017), and help domain adaptation (Bousmalis
et al., 2017; Murez et al., 2018). In many of these scenarios, it is desirable to have a model mapping
one image to multiple domains, while providing visual diversity (i.e. a day scene ↔ night scene
in different seasons). However, the existing models can either map an image to multiple stochastic
results in a single domain, or map in the same model multiple domains in a deterministic fashion. In
other words, most of the methods in the literature are either multi-domain or multi-modal.

Several reasons have hampered a stochastic translation of images to multiple domains. On the
one hand, most of the Generative Adversarial Network (GAN) models assume a deterministic map-
ping (Choi et al., 2018; Pumarola et al., 2018; Zhu et al., 2017a), thus failing at modelling the correct
distribution of the data (Huang et al., 2018). On the other hand, approaches based on Variational
Auto-Encoders (VAEs) usually assume a shared and common zero-mean unit-variance normally
distributed space (Huang et al., 2018; Zhu et al., 2017b), limiting to two-domain translations.

In this paper, we propose a novel image-to-image translation model that disentangles the visual con-
tent from the domain attributes. The attribute latent space is assumed to follow a Gaussian mixture
model (GMM), thus naming the method: GMM-UNIT (see Figure 1). This simple assumption al-
lows four key properties: mode-diversity thanks to the stochastic nature of the probabilistic latent
model, multi-domain translation since the domains are represented as clusters in the same attribute
spaces, scalability because the domain-attribute duality allows modeling a very large number of
domains without increasing the dimensionality of the attribute space, and few/zero-shot generation
since the continuity of the attribute representation allows interpolating between domains and extrap-
olating to unseen domains with very few or almost no observed data from these domains. The code
and models will be made publicly available.
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Figure 1: GMM-UNIT working principle. The content is extracted from the input image (left, purple box),
while the attribute (turquoise box) can be either sampled (top images) or extracted from a reference image
(bottom images). Either way, the generator (blue box) is trained to output realistic images belonging to the
domain encoded in the attribute vector. This is possible thanks to the disentangled attribute-content latent
representation of GMM-UNIT and the generalisation properties associated to Gaussian mixture modeling.

2 RELATED WORK

Our work is best placed in the literature of image-to-image translation, where the challenge is to
translate one image from a visual domain (e.g. summer) to another one (e.g. winter). This problem
is inherently ill-posed, as there could be many mappings between two images. Thus, researchers
have tried to tackle the problem from many different perspectives. The most impressive results
on this task are undoubtedly related to GANs, which aim to synthesize new images as similar as
possible to the real data through an adversarial approach between a Discriminator and a Generator.
The former continuously learns to recognize real and fake images, while the latter tries to generate
new images that are indistinguishable from the real data, and thus to fool the Discriminator. These
networks can be effectively conditioned and thus generate new samples from a specific class (Chen
et al. (2016)) and a latent vector extracted from the images. For example, Isola et al. (2017) and
Wang et al. (2018) trained a conditional GAN to encode the latent features that are shared between
images of the same domain and thus decode the features to images of the target domain in a one-to-
one mapping. However, this approach is limited to supervised settings, where pairs of corresponding
images in different domains are available (e.g. a photos-sketch image pair). In many cases, it is too
expensive and unrealistic to collect a large amount of paired data.

Unsupervised Domain Translation. Translating images from one domain to another without a
paired supervision is particularly difficult, as the model has to learn how to represent both the con-
tent and the domain. Thus, constraints are needed to narrow down the space of feasible mappings
between images. Taigman et al. (2017) proposed to minimize the feature-level distance between
the generated and input images. Liu et al. (2017) created a shared latent space between the do-
mains, which encourages different images to be mapped in the same latent space. Zhu et al. (2017a)
proposed CycleGAN, which uses a cycle consistency loss that requires a generated image to be
translated back to the original domain. Similarly, Kim et al. (2017) used a reconstruction loss ap-
plying the same approach to both the target and input domains. Mo et al. (2019) later expanded the
previous approach to the problem of translating multiple instances of objects in the same image. All
these methods, however, are limited to a one-to-one domain mapping, thus requiring training multi-
ple models for cross-domain translation. Recently, Choi et al. (2018) proposed StarGAN, a unified
framework to translate images in a multi-domain setting through a single GAN model. To do so,
they used a conditional label and a domain classifier ensuring network consistency when translating
between domains. However, StarGAN is limited to a deterministic mapping between domains.

Style transfer. A related problem is style transfer, which aims to transform the style of an image but
not its content (e.g. from a photo to a Monet painting) to another image (Gatys et al., 2015; Huang
& Belongie, 2017; Tenenbaum & Freeman, 1997; Donahue et al., 2018). Differently from domain
translation, usually the style is extracted from a single reference image. We willshow that our model
could be applied to style transfer as well.

Multi-modal Domain Translation. Most existing image-to-image translation methods are deter-
ministic, thus limiting the diversity of the translated outputs. However, even in a one-to-one domain
translation such as when we want to translate people’s hair from blonde to black, there could be
multiple hair styles that are not modeled in a deterministic mapping. The straightforward solution
would be to inject noise in the model, but it turned out to be worthless as GANs tend to ignore this
injected noise (Mathieu et al., 2015; Isola et al., 2017; Zhu et al., 2017b). To address this prob-
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lem, Zhu et al. (2017b) proposed BicycleGAN, which encourages the multi-modality in a paired
setting through GANs and Variational Auto-Encoders (VAEs). Almahairi et al. (2018) have instead
augmented CycleGAN with two latent variables for the input and target domains and showed that
it is possible to increase diversity by marginalizing over these latent spaces. Huang et al. (2018)
proposed MUNIT, which assumes that domains share a common content space but different style
spaces. Then, they showed that by sampling from the style space and using Adaptive Instance Nor-
malization (AdaIN) (Huang & Belongie, 2017), it is possible to have diverse and multimodal outputs.
In a similar vein, Ma et al. (2019) focused on the semantic consistency during the translation, and
applied AdaIN to the feature-level space. Recently, Mao et al. (2019) proposed a mode seeking loss
to encourage GANs to better explore the modes and help the network avoiding the mode collapse.

Altogether, the models in the literature are either multi-modal or multi-domain. Thus, one has
to choose between generating diverse results and training one single model for multiple domains.
Here, we propose a unified model to overcome this limitation. Concurrent to our work, DRIT++
(Lee et al. (2019)) also proposed a multi-modal and multi-domain model using a discrete domain
encoding and assuming, however, a zero-mean unit-variance Gaussian shared space for multiple
modes. We instead propose a content-attribute disentangled representation, where the attribute space
fits a GMM distribution. A variational loss forces the latent representation to follow this GMM,
where each component is associated to a domain. This is the key to provide for both multi-modal
and multi-domain translation. In addition, GMM-UNIT is the first method proposing a continuous
encoding of the domains, as opposed to the discrete encoding used in the literature. This is important
because it allows for domain interpolation and extrapolation with very few or no data (few/zero-shot
generation). The main properties of GMM-UNIT compared to the literature are shown in Table 1.

Table 1: A comparison of the state of the art methods for domain to domain translation.

Method Unpaired Multi-domain Multi-modal Domain
(MDom) (MMod) encoding

CycleGAN (Zhu et al., 2017a) X None
BicycleGAN (Zhu et al., 2017b) X None
MUNIT (Huang et al., 2018) X X None
StarGAN (Choi et al., 2018) X X Discrete
DRIT++ (Lee et al., 2019) X X X Discrete
GMM-UNIT (Proposed) X X X Continuous

3 GMM-UNIT

GMM-UNIT is an image-to-image translation model that maps an image to multiple domains in a
stochastic fashion. Following recent seminal works (Huang et al., 2018; Lee et al., 2018), our model
assumes that each image can be decomposed in a domain-invariant content space and a domain-
specific attribute space. In this paper, we model the attribute latent space through Gaussian Mixture
Models (GMMs), formally with a K-component Z-dimensional GMM:

p(z) =

K∑
k=1

φkN (z;µµµk,ΣΣΣk) (1)

where z ∈ RZ denotes a random attribute vector sample, φk, µµµk and ΣΣΣk denote respectively the
weight, mean vector and covariance matrix of the k-th GMM component (φk ≥ 0,

∑K
k=1 φk = 1,

µµµk ∈ RZ and ΣΣΣk ∈ RZ×Z is symmetric and positive definite). p(z) denotes the probability density
of this GMM at z. In the proposed representation, the domains are Gaussian components in a
mixture. This simple yet effective model has two prominent advantages. Differently from previous
works where each domain is a category and the one-hot vector representation grows linearly with the
number of domains, we can encode many more domains than the dimension of the latent attribute
space Z. Moreover, the continuous encoding of the domains we are introducing in this paper allows
us to navigate in the attribute latent space, thus generating images corresponding to domains that
have never (or very little) been observed and allowing to interpolate between two domains.

We note that the state of the art models can be traced back as a particular case of GMMs. Existing
multi-domain models such as Choi et al. (2018) or Pumarola et al. (2018) can be modelled with
K = |domain in the training data| and ∀k ΣΣΣk = 0, thus only allowing the generation of a single
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Figure 2: Overview of the GMM-UNIT framework: a) Training phase to translate an image from domain AAA
to BBB. The generator uses the content of the input image (extracted by Ec) and the attribute of the target image
(extracted by Ez) to train the network to fit the GMM. b) Testing with target attributes sampled from the GMM
distribution of the attributes of domainBBB; c) Testing with an attribute extracted from an image belonging to the
target domain BBB. The style of this image is inspired from Zhu et al. (2017b).

result per domain translation. Then, when K = 1, µµµ = 0, and ΣΣΣ = I it is possible to model the state
of the art approaches in multi-modal translation (Huang et al., 2018; Zhu et al., 2017b), which share
a unique latent space where every domain is overlapped, and it is thus necessary to train N(N − 1)
models to achieve the multi-domain translation. Finally, we can obtain the approach of Lee et al.
(2019) by separating the latent space from the domain code. The former is a GMM with K = 1,
µµµ = 0, and ΣΣΣ = I, while the latter is another GMM with K = |domain in the training data| and
∀k ΣΣΣk = 0. Thus, our GMM-UNIT is a generalization of the existing state of the art. the In the
next sections, we formalize our model and show that the use of GMMs for the latent space allows
learning multi-modal and multi-domain mappings, and also few/zero-shot image generation.

3.1 THE CONTENT-ATTRIBUTE DISENTANGLING APPROACH

GMM-UNIT follows the generative-discriminative philosophy. The generator inputs a content latent
code c ∈ CCC = RC and an attribute latent code z ∈ ZZZ = RZ , and outputs a generated image G(c, z).
This image is then fed to a discriminator that must discern between “real” or “fake” images (Dr/f),
and must also recognize the domain of the generated image (Ddom). For an image xn from domain
XXXn (i.e. xn ∼ pXXXn ), its latent attribute zn is assumed to follow the n-th Gaussian component of
the GMM, zn ∼ N (µµµn,ΣΣΣn), thus K = N . The attribute and content latent representations need
to be learned, and they will be modeled by two architectures, namely a content extractor Ec and an
attribute extractor Ez . See Figure 2 for a graphical representation of GMM-UNIT.

In addition to tackling the problem of multi-domain and multi-modal translation, we would like
these two extractors, content and attribute, to be disentangled. This would constrain the learning
and hopefully yield better domain translation, since the content would be as independent as possible
from the attributes. Formally, the following two properties must hold:

Sampled attribute translation
G(Ec(x

m), zn) ∼ pXXXn ∀ zn ∼ N (µµµn,ΣΣΣn), xm ∼ pXXXm , n,m ∈ {1, . . . , N}. (2)

Extracted attribute translation
G(Ec(x

m), Ez(x
n)) ∼ pXXXn ∀ xn ∼ pXXXn , xm ∼ pXXXm , n,m ∈ {1, . . . , N}. (3)
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3.2 TRAINING THE GMM-UNIT

The encoders Ec and Ez , and the generator G need to be learned to satisfy three main properties.
Consistency: When traveling through the network, the generated/extracted codes and images must
be consistent with the original samples. Fit: The distribution of the attribute latent space must follow
a GMM. Realism: The generated images must be indistinguishable of real images. In the following
we discuss different losses used to force the overall pipeline to satisfy these properties.

In the textbfconsistency term, we include image, attribute and content reconstruction, as well as
cycle consistency. More formally, we use the following losses:

Self-reconstruction of any input image from its extracted content and attribute vectors:

Ls/rec =

N∑
n=1

Ex∼pXXXn

[
‖G(Ec(x), Ez(x))− x‖1

]
(4)

Content reconstruction from an image, translated into any domain:

Lc/rec =
N∑

n,m=1

Ex∼pXXXn ,z∼N (µµµm,ΣΣΣm)

[
‖Ec(G(Ec(x), z))− Ec(x)‖1

]
(5)

Attribute reconstruction from an image translated with any content:

La/rec =

N∑
n,m=1

Ex∼pXXXn ,z∼N (µµµm,ΣΣΣm)

[
‖Ez(G(Ec(x), z))− z‖1

]
(6)

In practice, this loss needs to be complemented with an isometry loss:

Liso =

N∑
n,m=1

Ex∼pXXXn ,z,z′∼N (µµµm,ΣΣΣm)

[
|‖Ez(G(Ec(x), z))−Ez(G(Ec(x), z′))‖1−‖z−z′‖1|

]
(7)

Cycle consistency when translating an image back to the original domain:

Lcyc =

N∑
n=1

∑
m 6=n

Ex∼pXXXn ,z∼N (µµµm,ΣΣΣm)

[
‖G(Ec(G(Ec(x), z)), Ez(x))− x‖1

]
(8)

In the fit term we encourage both the attribute latent variable to follow the Gaussian mixture distri-
bution and the generated images to follow the domain’s distribution. We set two loss functions.

Kullback-Leibler divergence between the extracted latent code and the model. Since the KL diver-
gence between two GMMs is not analytically tractable, we resort on the fact that we know from
which domain are we sampling and define:

LKL =

N∑
n=1

Ex∼pXXXn [DKL(Ez(x)‖N (µµµn,ΣΣΣn))] (9)

where DKL(p‖q) = −
∫
p(t) log p(t)

q(t)dt is the Kullback-Leibler divergence.

Domain classification of generated and original images. For any given input image x, we would like
the method to classify it as its original domain, and to be able to generate from its content an image
in any domain. Therefore, we need two different losses, one directly applied to the original images,
and a second one applied to the generated images:

LDdom =

N∑
n=1

Ex∼pXXXn ,dXXXn [− logDdom(dXXXn |x)], (10)

LGdom =

N∑
n,m=1

Ex∼pXXXn ,z∼N (µµµm,ΣΣΣm),dXXXm [− logDdom(dXXXm |G(Ec(x), z))], (11)
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where dXXXn is the label of domain n. Importantly, while the generator is trained using the second
loss only, the discriminator Ddom is trained using both.

The realism term tries to making the generated images indistinguishable from real images; we adopt
the adversarial loss to optimize both the real/fake discriminator Dr/f and the generator G:

LDGAN =

N∑
n,m=1

Ex∼pXXXn [− logDr/f(x)] + Ex∼pXXXm ,z∼N (µµµn,ΣΣΣn)[− log(1−Dr/f(G(Ec(x), z)))]

(12)

LGGAN =

N∑
n,m=1

Ex∼pXXXm ,z∼N (µµµn,ΣΣΣn)[− log(Dr/f(G(Ec(x), z)))] (13)

The full objective function of our network is:

LD = λGANLDGAN + λdomLDdom (14)

LG =λGANLGGAN + λs/recLs/rec + λc/recLc/rec + λa/recLa/rec+

λcycLcyc + λKLLKL + λisoLiso + λdomLGdom

(15)

where {λGAN, λs/rec, λc/rec, λa/rec, λcyc, λKL, λiso, λdom} are hyper-parameters of weights for corre-
sponding loss terms. The value of most of these parameters come from the literature. We refer
to Appendix A for the details.

4 EXPERIMENTS

We perform extensive quantitative and qualitative analysis in three real-world tasks, namely: edges-
shoes, digits and faces. First, we test GMM-UNIT on a simple task such as a one-to-one domain
translation. Then, we move to the problem of multi-domain translation where each domain is in-
dependent from each other. Finally, we test our model on multi-domain translation where each
domain is built upon different combinations of lower level attributes. Specifically, for this task, we
test GMM-UNIT in a dataset containing over 40 labels related to facial attributes such as hair color,
gender, and age. Each domain is then composed by combinations of these attributes, which might
be mutually exclusive (e.g. either male or female) or mutually inclusive (e.g. blonde and black hair).

Additionally, we show how the learned GMM latent space can be used to interpolate attributes and
generate images in previously unseen domains, thus showing the first example of few- or zero-shot
generation in image-to-image translation. Finally, GMM-UNIT will be applied to the Style transfer
task.

We compare our model to the state of the art of both multi-modal and multi-domain image transla-
tion problems. In the former, we select BicycleGAN (Zhu et al., 2017b), MUNIT (Zhu et al., 2017a)
and MSGAN (Mao et al., 2019). In the latter, we compare with StarGAN (Choi et al., 2018) and
DRIT++ (Lee et al., 2019), which is the only multi-modal and multi-domain method in the litera-
ture. However, since StarGAN is not multi-modal we additionally test a simple modification of the
model where we inject noise in the network. We call this version StarGAN*. More details are in
Appendix A.

4.1 METRICS

We quantitatively evaluate the performance of our method through image quality and diversity of
generated images. The former is evaluated through the Fréchet Inception Distance (FID) Heusel
et al. (2017) and the Inception Score (Salimans et al., 2016). We evaluate the latter through the
LPIPS Distance (Zhang et al., 2018), NDB and JSD (Richardson & Weiss, 2018) metrics. In
addition, we also show the overall number of parameters used for all domains (Params).
FID We use FID to measure the distance between the generated and real distributions. Lower FID
values indicate better quality of the generated images. We estimate the FID using 100 input images
and 100 samples per input v.s. randomly selected 10000 images from the target domain.
IS To estimate the IS, we use Inception-v3 (Szegedy et al., 2016) fine-tuned on our specific
datasets as classifier for 100 input images and 100 samples per input image. Higher IS means higher
generated image quality.
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LPIPS The LPIPS distance is defined as the L2 distance between the features extracted by a
deep learning model of two images. This distance has been demonstrated to match well the human
perceptual similarity (Zhang et al., 2018). Thus, following Zhu et al. (2017b); Huang et al. (2018);
Lee et al. (2018), we randomly select 100 input images and translate them to different domains.
For each domain translation, we generate 10 images for each input image and evaluate the average
LPIPS distance between the 10 generated images. Finally, we get the average of all distances.
Higher LPIPS distance indicates better diversity among the generated images.
NDB and JSD These are measuring the similarity between the distributions of real and generated
images. We use the same testing data as for FID. Lower NDB and JSD mean the generated data
distribution approaches better the real data distribution.

4.2 EDGES↔ SHOES: TWO-DOMAINS+ TRANSLATION

We first evaluate our model on a simpler task than multi-domain translation: two-domain translation
(e.g. edges to shoes). We use the dataset provided by Isola et al. (2017); Zhu et al. (2017a) containing
images of shoes and their edge maps generated by HED (Xie & Tu, 2015). We train a single model
for edges↔ shoes without using paired information. Figure 3 displays examples of shoes generated
from the same sketch by GMM-UNIT. Table 2 shows the quantitative evaluation and comparison
with the state-of-the-art. Our model generates images with high diversity and quality using half the
parameters of the state of the art. We refer to Appendix B.1 for additional results on this task.

Table 2: Benchmark on the Edges→ Shoes dataset. MMod/MDom stand for multi-modal/domain.

Method MMod MDom IS↑ FID↓ NDB↓ JSD↓ LPIPS↑ Params§↓
MUNIT X 2.874 54.52 34.67±3.68 .098±.006 .227±0.107 23.52M×2
MSGAN 3.125 111.19 35.67±2.62 .121±.001 .220±.118 65.03M×2
StarGAN* X 3.479 140.41 62.33±1.25 .192±.002 .002±.007 53.23M×1
DRIT++ X X 3.038 123.87 41.33±4.50 .148±.006 .236±.113 54.06M×1
GMM-UNIT X X 3.245 80.78 31.33±2.62 .098±.001 .209±.110 23.52M×1

§ Number of all parameters for the models trained in all the domains.

Input Outputs

Figure 3: Examples of edges→ shoes translation with the proposed GMM-UNIT.

4.3 DIGITS: SINGLE-ATTRIBUTE MULTI-DOMAIN TRANSLATION

We then evaluate our model in a multi-domain translation problem where each domain is com-
posed by digits collected in different scenes. We use the Digits-Five dataset introduced in Xu et al.
(2018), from which we select three different domains, namely MNIST (LeCun et al., 1998), MNIST-
M (Ganin & Lempitsky, 2014), a colorized version of MNIST for domain adaptation, and Street
View House Numbers (SVHN) (Netzer et al., 2011). We compare our model with the state-of-the-
art on multi-domain translation, and we show in Figure 4 and Table 3 the qualitative and quantitative
results respectively.

From these results we conclude that StarGAN* fails at generating diversity, thus confirming the
findings of previous studies that adding noise does not increase diversity (Mathieu et al., 2015;
Isola et al., 2017; Zhu et al., 2017b). GMM-UNIT instead generates images with higher quality
and diversity than all the state-of-the-art models. We note, however, that StarGAN* achieves a
higher IS, probably due to the fact that it solves a simpler task. Additional experiments carried out
implementing a StarGAN*-like GMM-UNIT (i.e. setting σσσk = 0, ∀k) indeed produced similar
results. Specifically, the StarGAN*-like GMM-UNIT tends to generate for each input image one
single (deterministic) output and thus the corresponding LPIPS scores are around zero. We refer to
Appendix B.2 for additional results on this task.
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Table 3: Benchmark on the Digits dataset. 1FID fails in some domains because of low diversity.

Method MMod MDom IS↑ FID↓ NDB↓ JSD↓ LPIPS↑ Params ↓
StarGAN* X 3.35 88.89 62.55±3.59 .14±.03 .005±.016 11.18×1
DRIT++ X X 3.06 –1 77.2±3.49 .27±.01 .055±.046 24.49M×1
GMM-UNIT X X 3.23 64.96 58.33±3.96 .12±.00 .107±.076 16.37M×1

1 FID fails in some of the domains because of the low diversity in the results.

Input SVHN MNIST-M Input MNIST MNIST-M

Figure 4: Samples of domain translation of GMM-UNIT trained on Digits.

4.4 FACES: MULTI-ATTRIBUTE MULTI-DOMAIN TRANSLATION

We also evaluate GMM-UNIT in the complex setting of multi-domain translation in a dataset of fa-
cial attributes. We use the CelebFaces Attributes (CelebA) dataset (Liu et al., 2015), which contains
202,599 face images of celebrities where each face is annotated with 40 binary attributes. We resize
the initial 178×218 size images to 128×128. We randomly select 2,000 images for testing and use
all remaining images for training. This dataset is composed of some attributes that are mutually
exclusive (e.g. either male or female) and those that are mutually inclusive (e.g. people could have
both blonde and black hair). Thus, we model each attribute as a different GMM component. For
this reason, we can generate new images for all the combinations of attributes by sampling from
the GMM. As aforementioned, this is not possible for state-of-the-art models such as StarGAN and
DRIT++, as they use one-hot domain codes to represent the domains. For the purpose of this exper-
iment we show five binary attributes: hair color (black, blond, brown), gender (male/female), and
age (young/old). These five attributes allow GMM-UNIT to generate 32 domains.

Figure 5 shows some generated results of our model. We can see that GMM-UNIT learns to trans-
late images to simple attributes such as blonde hair, but also to translate images with combinations
of them (e.g. blonde hair and male). Moreover, we can see that the rows show different realizations
of the model thus demonstrating the stochastic approach of GMM-UNIT. These results are corrob-
orated by Table 4 that shows that our model is superior to StarGAN* in both quality and diversity
of generated images. We also note in this experiment that the IS is higher in StarGAN*. Additional
results are on Appendix B.3.

Table 4: Benchmark on the CelebA dataset. 1FID fails in all domains because of low diversity.

Method MMod MDom IS↑ FID↓ NDB↓ JSD↓ LPIPS↑ Params ↓

StarGAN* X 3.345 –1 66.33±2.58 .185±.012 .003±.004 53.24×1
GMM-UNIT X X 2.67 72.04 56.11±1.65 .143±.007 .062±.041 23.52M×1

1 FID fails in all the domains because of the low diversity in the results.

Input Black hair Blonde hair Brown hair Blonde + Male Blonde + Old

Figure 5: Facial expression synthesis results on the CelebA dataset with different attribute combinations. Each
row represents a different output sampled from the model.
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4.5 STYLE TRANSFER

We evaluate our model on style transfer, which is a specific task where the style is usually extracted
from a single reference image. Thus, we randomly select two input images and synthesize new
images where, instead of sampling from the GMM distribution, we extract the style (through Ez)
from some reference images. Figure 6 shows that the generated images are sharp and realistic,
showing that our method can also be effectively applied to Style transfer.

Input R
ef
er
en
ce

Figure 6: Examples of GMM-UNIT applied on the Style transfer task. The style is here extracted from a single
reference images provided by the user.

4.6 DOMAIN INTERPOLATION AND EXTRAPOLATION

In addition, we evaluate the ability of GMM-UNIT to synthesize new images with attributes
that are extremely scarce or non present in the training dataset. To do so, we select three
combinations of attributes consisting of less than two images in the CelebA dataset: Black
hair+Blonde hair+Male+Young, Black hair+Blonde hair+Female+Young and Black hair+Blonde
hair+Brown+Young.

Input Black+Blonde+Female+Young Black+Blonde+Male+Young

Figure 7: Generated images in previously unseen combinations of attributes.

Figure 7 shows that learning the continuous and multi-modal latent distribution of attributes allow
to effectively generate images as zero- or few-shot generation. At the best of our knowledge, we are
the first ones being able to translate images in previously unseen domains. This can be extremely
important in tasks that are extremely imbalanced.

Finally, we show that by learning the full latent distribution of the attributes we can do attribute
interpolation both intra- and inter-domains. In contrast, state of the art methods such as Lee et al.
(2019) can only do intra-domain interpolations due to their discrete domain encoding. Figure 8
shows some generated images through a linear interpolation between two given attributes, while in
Appendix B.3 we show that we can also do intra-domain interpolations.

4.7 ABLATION STUDY

We compare GMM-UNIT with three variants of the model that ablate Lcyc, Ld/rec and Liso in the
Digits dataset. Table 5 shows the results of the ablation. As expected, Lcyc is needed to have
higher image quality. When Ld/rec is removed image quality decreases, but Liso still helps to learn
the attributes space. Finally, without Liso we observe that both diversity and quality decrease, thus
confirming the need of all these losses. We refer to Appendix B.4 for the additional ablation results
broken down by domain.
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Input Black hair ←→ Blonde hair

Blonde hair+Female ←→ Black hair+Male

Brown hair+Female+Young ←→ Brown hair+Male+Old

Figure 8: Examples of domain interpolation given an input image.

Table 5: Ablation study performance on the Digits dataset.

Model IS↑ FID↓ NDB↓ JSD↓ LPIPS↑
GMM-UNIT w/o Lcyc 3.03 85.78 63.44±2.48 0.174±0.004 0.138±.081
GMM-UNIT w/o Ld/rec 3.26 67.95 61.33±2.35 0.144±0.005 0.121±.008
GMM-UNIT w/o Liso 3.28 68.56 59.44±4.25 0.139±0.004 0.117±.078
GMM-UNIT 3.23 64.96 58.33±3.96 0.119±0.003 0.124±.078

5 CONCLUSION

In this paper, we present a novel image-to-image translation model that maps images to multiple
domains and provides a stochastic translation. GMM-UNIT disentangles the content of an image
from its attributes and represents the attribute space with a GMM, which allows us to have a con-
tinuous encoding of domains. This has two main advantages: first, it avoids the linear growth of
the dimension of the attribute space with the number of domains. Second, GMM-UNIT allows for
interpolation across-domains and the translation of images into previously unseen domains.

We conduct extensive experiments in three different tasks, namely two-domain translation, multi-
domain translation and multi-attribute multi-domain translation. We show that GMM-UNIT
achieves quality and diversity superior to state of the art, most of the times with fewer parame-
ters. Future work includes the possibility to thoroughly learn the mean vectors of the GMM from
the data and extending the experiments to a higher number of GMM components per domain.
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A IMPLEMENTATION DETAILS

Our deep neural models are built upon the state-of-the-art methods MUNIT (Huang et al., 2018),
BicycleGAN (Zhu et al., 2017b) and StarGAN (Choi et al., 2018), as shown in Table 6 with details.
We apply Instance Normalization (IN) (Ulyanov et al., 2017) to the content encoderEc and Adaptive
Instance Normalization (AdaIN) (Huang & Belongie, 2017) and Layer Normalization (LN) (Ba
et al., 2016) for the decoder G. For the discriminator network, we use Leaky ReLU (Xu et al., 2015)
with a negative slope of 0.2. We use the following notations: D: the number of domains, N: the
number of output channels, K: kernel size, S: stride size, P: padding size, CONV: a convolutional
layer, GAP: a global average pooling layer, UPCONV: a 2×bilinear upsampling layer followed by
a convolutional layer. Note that we reduce the number of layers of the discriminator on the Digits
dataset.

We use the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.5, β2 = 0.999, and an initial learning
rate of 0.0001. The learning rate is decreased by half every 100,000 iterations. In all experiments,
we use a batch size of 1 for Edges2shoes and Faces and batch size of 32 for Digits. And we set
the loss weights to λGAN = 1, λs/rec = 10, λc/rec = 1, λa/rec = 1, λcyc = 10, λKL = 0.1, λiso = 0.1 and
λdom = 1. We use the domain-invariant perceptual loss with weight 0.1 in all experiments. Random
mirroring is applied during training.
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Table 6: Network architecture.

Part Input→ Output Shape Layer Information

Ec
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, w
4
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, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU
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, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

Ez

(h, w, 3)→ (h, w, 64) CONV-(N64, K7x7, S1, P3), ReLU
(h, w, 64)→ (h
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2
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(h
4

, w
4

, 256)→ (h
4

, w
4

, 256) Residual Block: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h
4

, w
4

, 256)→ (h
4

, w
4

, 256) Residual Block: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h
4

, w
4

, 256)→ (h
4

, w
4

, 256) Residual Block: CONV-(N256, K3x3, S1, P1), AdaIN, ReLU
(h
4

, w
4

, 256)→ (h
2

, w
2

, 128) UPCONV-(N128, K5x5, S1, P2), LN, ReLU
(h
2

, w
2

, 128)→ (h, w, 64) UPCONV-(N64, K5x5, S1, P2), LN, ReLU
(h, w, 64)→ (h, w, 3) CONV-(N3, K7x7, S1, P3), Tanh

D

(h, w, 3)→ (h
2

, w
2

, 64) CONV-(N64, K4x4, S2, P1), Leaky ReLU
(h
2

, w
2

, 64)→ (h
4

, w
4

, 128) CONV-(N128, K4x4, S2, P1), Leaky ReLU
(h
4

, w
4

, 128)→ (h
8

, w
8

, 256) CONV-(N256, K4x4, S2, P1), Leaky ReLU
(h
8

, w
8

, 256)→ ( h
16

, w
16

, 512) CONV-(N512, K4x4, S2, P1), Leaky ReLU

( h
16

, w
16

, 512)→ ( h
16

, w
16

, 1) CONV-(N1, K1x1, S1, P0)
( h
16

, w
16

, 512)→ (1, 1, n) CONV-(Nn, K h
16

x w
16

, S1, P0)

A.1 GMM

In our experiments we use a simplified version of the GMM, which satisfies the following properties:

• The mean vectors are placed on the vertices of (N − 1)-dimensional regular simplex, so
that the mean vectors are equidistant.

• The covariance matrices are diagonal, with the same on all the components. In other words,
each Gaussian component is spherical, formally: ΣΣΣk = σσσkI, where I is the identity matrix.

B ADDITIONAL RESULTS

B.1 EDGES↔ SHOES: TWO-DOMAIN TRANSLATION

In this section, we present the additional results for the one-to-one domain translation. As shown
in Figure 9, we qualitatively compare GMM-UNIT with the state-of-the-art. We observe that while
all the methods (multi-domain and not) achieve acceptable diversity, it seems that DRIT++ suffers
from problems of realism. As expected, StarGAN* does not generate diverse results. Appendix B.1
shows instead the quantitative results of paired image translation. Even though BicycleGAN solves
the much simpler task of supervised learning, GMM-UNIT surprisingly shows similar results.

B.2 DIGITS: SINGLE-ATTRIBUTE MULTI-DOMAIN TRANSLATION

Figure 10 shows the qualitative comparison with the state of the art, while Table 8 show the break-
down, per domain, of the quantitative results. We observe, as expected, that StarGAN* fails at
generating diverse results.
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Input BicycleGAN MUNIT MSGAN StarGAN* DRIT++ GMM-UNIT

Figure 1: Examples on using reference images to provide attribute representations.

2

Figure 9: Visual comparisons of state of the art methods on Edge ↔ Shoes dataset. We note that Bicycle-
GAN, MUNIT and MSGAN are one-to-one domain translation models, while StarGAN* is a multi-domain
(deterministic) model. Finally DRIT++ and GMM-UNIT are multi-modal and multi-domain methods.

B.3 FACES: MULTI-ATTRIBUTE MULTI-DOMAIN TRANSLATION

In Table 9 we show the quantitative results on the CelebA datset, broken down per domain. In
Figure 11 we show some generated images in comparison with StarGAN*. Figure 12 shows the
possibility to do attribute interpolation inside a domain.
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Table 7: Comparison between GMM-
UNIT and the reference of Paired, multi-
modal, generation (BicycleGAN) on the
Edges→ Shoes dataset.

Metric BicycleGAN† GMM-UNIT

IS↑ 2.956 3.245
FID↓ 47.43 80.78
NDB↓ 27.33±1.70 31.33±2.62
JSD↓ .089±.005 .098±.001
LPIPS↑ .196±0.091 .209±.110

Params§↓ 64.30M×2 23.52M×1
§ Number of all parameters for the mod-

els trained in all the domains.
† Trained on paired data.

Table 8: Quantitative comparison on the Digits dataset.

Target Domain Metric Method

StarGAN* DRIT++ GMM-UNIT

MNIST

IS↑ 2.628 1.926 2.120
FID↓ 103.76 ×1 78.19
NDB↓ 62.67±3.68 82.67±0.47 57.33±4.78
JSD↓ .132±.014 .418±.012 .101±.003
LPIPS↑ .002±.006 .001±.004 .067±.058

SVHN

IS↑ 3.576 3.463 3.293
FID↓ 77.86 89.81 46.22
NDB↓ 65.67±2.49 78.33±5.44 65.33±1.70
JSD↓ .179±.006 .252±.005 .178±.002
LPIPS↑ .008±.023 .048±.040 .115±.078

MNIST-M

IS↑ 3.853 3.795 4.274
FID↓ 85.07 114.51 70.48
NDB↓ 59.33±3.30 70.67±2.62 52.33±4.64
JSD↓ .132±.000 .132±.001 .078±.004
LPIPS↑ .006±.014 .116±.070 .191±.095

Params§↓ 11.18M×1 24.49M×1 16.37M×1
1 FID fails because of the low diversity in the results

B.4 ABLATION STUDY

In Table 10 we show additional, per domain, ablation results on the Digits dataset.

C VISUALIZATION OF THE ATTRIBUTE LATENT SPACE

Figure 13 shows that the attributes sampled from the distribution and those extracted by the encoder
Ez are mapped and well projected in the latent space of the attributes.
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Input StarGAN* DRIT++ GMM-UNIT
MNIST SVHN MNISTM MNIST SVHN MNISTM MNIST SVHN MNISTM

Figure 2: Examples on digits translation.

3

Figure 10: Visual comparisons of state of the art methods on the digits dataset. We note that StarGAN*
is a multi-domain (deterministic) model, while DRIT++ and GMM-UNIT are multi-modal and multi-domain
methods.
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Input BA+FM+Y BN+FM+Y BW+FM+Y BN+M+Y BN+FM+O

StarGAN

GMM-UNIT

StarGAN

GMM-UNIT

Figure 3: Comparisons on CelebA dataset. BA: Black hair, BN: Blond hair, BW: Brown hair, M:
Male, FM: Female, Y: Young, O: Old.

4

Figure 11: Comparisons on CelebA dataset. BA: Black hair, BN: blondehair, BW: Brown hair, M: Male, FM:
Female, Y: Young, O: Old.

Input Brown hair ←→ Brown hair

Blonde hair ←→ Blonde hair

Figure 12: An example of attribute intra-domain interpolation.
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Table 9: Quantitative comparison on the CelebA dataset.

Target Domain Metric Method

StarGAN* GMM-UNIT

Black hair + Female + Young

IS↑ 3.432 2.878
FID↓ ×1 68.32
NDB↓ 63.33±3.09 51.00±1.63
JSD↓ .159±.011 .101±.011
LPIPS↑ 0.002±0.003 .060±.039

Blonde hair + Female + Young

IS↑ 3.325 2.529
FID↓ ×1 81.08
NDB↓ 72.33±2.05 64.33±1.89
JSD↓ .211±.014 .188±.003
LPIPS↑ 0.004±0.006 .072±.046

Brown hair + Female + Young

IS↑ 3.277 2.608
FID↓ ×1 66.73
NDB↓ 63.33±2.49 53.00±1.41
JSD↓ .184±.012 .142±.006
LPIPS↑ 0.003±0.005 .056±.036

1 FID fails because of the low diversity in the results.

Table 10: Ablation study performance on the Digits dataset.

Target Domain Model IS↑ FID↓ NDB↓ JSD↓ LPIPS↑

MNIST

GMM-UNIT w/o Lcyc 2.088 68.69 51.00±2.16 .073±.004 .067±.055
GMM-UNIT w/o Ld/rec 2.046 79.49 61.66±2.87 .119±.007 .063±.057
GMM-UNIT w/o Liso 2.050 81.16 61.00±3.27 .123±.006 .072±.062
GMM-UNIT 2.120 78.19 57.33±4.78 .101±.003 .067±.058

SVHN

GMM-UNIT w/o Lcyc 2.705 69.94 72.33±3.34 .247±.005 .166±.083
GMM-UNIT w/o Ld/rec 3.290 52.05 71.67±2.36 .212±.004 .110±.078
GMM-UNIT w/o Liso 3.357 49.40 68.00±2.16 .219±.001 .107±.077
GMM-UNIT 3.293 46.22 65.33±1.70 .178±.002 .115±.078

MNISTM

GMM-UNIT w/o Lcyc 4.303 118.73 67.00±1.63 .201±.002 .182±.101
GMM-UNIT w/o Ld/rec 4.457 72.32 50.67±1.67 .102±.002 .192±.101
GMM-UNIT w/o Liso 4.430 75.12 49.33±6.24 .074±.004 .172±.091
GMM-UNIT 4.274 70.48 52.33±4.64 .078±.004 .191±.095
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S1
E1
S2
E2
S3
E3

Figure 13: Visualization of the attribute vectors in a 2D space via t-SNE method. “S” refers to randomly
sampling from GMM components (1: black hair, 2: blondehair, 3: brown hair) and “E” refers to extracting
attribute vectors by the encoder Ez from the real data.
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