Under review as a conference paper at ICLR 2019

AN EXPERIMENTAL STUDY OF LAYER-LEVEL TRAIN-
ING SPEED AND ITS IMPACT ON GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

How optimization influences the generalization ability of a DNN is still an active
area of research. This work aims to unveil and study a factor of influence: the
speed at which each layer trains. In our preliminary work, we develop a visual-
ization technique and an optimization algorithm to monitor and control the layer
rotation rate, a tentative measure of layer-level training speed, and show that it
has a remarkably consistent and substantial impact on generalization. Our experi-
ments further suggest that weight decay’s and adaptive gradients methods’ impact
on both generalization performance and speed of convergence are solely due to
layer rotation rate changes compared to vanilla SGD, offering a novel interpreta-
tion of these widely used techniques, and providing supplementary evidence that
layer-level training speed indeed impacts generalization. Besides these fundamen-
tal findings, we also expect that on a practical level, the tools we introduce will
reduce the meta-parameter tuning required to get the best generalization out of a
deep network.

1 INTRODUCTION

Generalization and gradient propagation are two popular themes in the deep learning literature.
Concerning generalization, it has been observed that a network’s ability to generalize depends on
a subtle interaction between the optimization procedure and the training data (Zhang et al., [2017a}
Arpit et al.,2017). Concerning gradient propagation, several works have shown that the norm of gra-
dients can gradually increase or decrease as a function of layer depth (i.e. vanishing and exploding
gradients (Bengio et al.,|1994; Hochreiter, |1998; |(Glorot & Bengiol [2010)), so that some layers are
trained faster than others. This work explores an interaction between generalization and the intricate
nature of gradient propagation in deep networks, and focuses on the following research question:
how does the speed at which each layer trains influence generalization?

Our endeavour is motivated by the following intuition: if the training data influences a neural net-
work’s generalization ability when using gradient-based optimization (Zhang et al., [2017a; |Arpit
et al.l 2017), the input and feedback signals that a layer receives (during the network’s forward
and backward passes) could also influence the generalization ability induced by the layer’s training.
These signals result from a transformation involving the other layers of the network such that, for
example, the input signals of the last layer could be more conducive to good generalization if the
first layers have been significantly updated already, instead of being randomly initialized (cfr. the
works on transfer learning (Donahue et al., 2014} |Oquab et al.| [2014)). More generally, the speed
at which each layer trains during the network’s training, since it directly influences how the input
and feedback signals of the other layers evolve over training, could have an impact on generaliza-
tion. Figure[I] supports our intuition with a toy example where training a single layer of an 11 layer
MLP network, although always reaching 100% train accuracy, results in different test accuracies
depending on the layer’s localisation in the network architecture.

Our study starts from an educated guess about how to measure layer-level training speed appropri-
ately: we measure it through layer rotation rates, i.e. the rates at which the weight vectors of layers
rotate (another approach would be to measure the norm of the weight updates at each training step,
as is done in Bengio et al.|(1994); Hochreiter| (1998));(Glorot & Bengio|(2010); [Pascanu et al.| (2013));
Arjovsky et al.[(2016)). The study is then composed of the three following steps:

Under review as a conference paper at ICLR 2019

1. Developing tools to monitor and control layer rotation rates;

2. Using our controlling tool to systematically explore layer rotation rate configurations, vary-
ing the layers which are prioritized (first layers, last layers, or no prioritization) and the
global rotation rate value (high or low rate, for all layers)ﬂ

3. Using our monitoring tool to study the layer rotation rates that emerge from standard train-
ing settings.'

The outcomes of our study, supported by an extensive amount of experiments, are the following:

(i) layer rotation rates have a consistent and substantial impact on generalization;

(i) weight decay is a key ingredient for enabling the emergence of beneficial layer rotation
rates during SGD training;

(iii) adaptive gradient methods’ impact on generalization and training speed does not result
from parameter-level, but rather from layer-level adaptation of the learning rate;

While the influence of layer-level training speed on generalization has remained unstudied, our
observations thus suggest that its impact is ubiquitous in current deep learning applications. Our
preliminary work offers useful guidance for meta-parameter tuning and novel insights around two
widely used techniques: weight decay and adaptive gradient methods. Moreover, while layer rota-
tion rate as a measure of layer-level training speed originated from an educated guess, the impressive
consistency of its impact on generalization supports the pertinence of this choice. Our work thus
also contributes to the open problem of correctly measuring layer-level training speed.

To encourage further validation of our claims, the tools and source code used to create all the fig-
ures of this paper are provided at -github link hidden to preserve anonymity- (code uses the Keras
(Chollet et al.,2015) and TensorFlow (Agarwal et al.,[2016])) libraries). We also encourage interested
readers to browse the supplementary material of this paper, as additional results are presented and
discussed.

Test accuracy
e e e
o NN
v o wv

[]
.
[]
o

o
o
<]

'

o
0
el

0123456 7829
Layer index

Figure 1: An eleven layer MLP network composed of 10 identical layers (each containing 784 ReLU
neurons (Nair & Hinton|, 2010)) is applied on a reduced MNIST dataset (LeCun et al., [1998)), such
that training any of the 10 layers in isolation is sufficient to get 100% training accuracy. But will
training of each layer result in the same test accuracy? This figure shows the test accuracy in function
of the index of the trained layer (in forward pass ordering), after averaging over 10 experiments. In
this specific example, the test accuracy mostly degrades with the depth of the trained layer, with a
final difference of nearly 20%. The generalization ability induced by a layer’s training is thus heavily
affected by how the other layers transform the input and feedback signals it receives (everything else
being equal for each layer index). Section (in Supp. Mat.) provides further discussion of this
experiment.

2 RELATED WORK

Recent works have demonstrated that generalization in deep neural networks was largely due to
the optimization procedure and its puzzling interaction with the training data (Zhang et al.| [2017aj
Arpit et al), [2017). Our paper discloses an aspect of the optimization procedure that influences
generalization in deep learning: the rate at which each layer’s weight vector is rotated. This novel

'Our preliminary study focuses on convolutional neural networks used for image classification.

Under review as a conference paper at ICLR 2019

factor complements batch size and global learning rate, two parameters that have been extensively
studied in the light of generalization (Keskar et al., 2017; |Jastrzebski et al.,2017;|Smith & Le} 2017}
Smith & Topin, |2017; |Hoffer et al., 2017; Masters & Luschi, [2018]).

The works studying the vanishing and exploding gradients problems (Bengio et al., [1994; Hochre-
iter, |1998; |Glorot & Bengiol 2010) heavily inspired this paper. These works introduce two ideas
which are central to our investigation: the notion of layer-level training speed and the fact that
SGD does not necessarily train all layers at the same speed during training. Our work explores the
same phenomena, but studies them in the light of generalization instead of trainability and speed of
convergence.

Our paper also proposes Layca, an algorithm to control the rate at which each layer’s weight is
rotated during training. It is related to the works that sought solutions to the gradient propagation
problems at optimization level (Pascanu et al.,|2013;|Hazan et al.l[2015;|Singh et al., 2015} |Arjovsky
et al.,[2016; Pennington et al., 2017). These works, however, do not use weight rotation as a measure
of layer-level training speed, and also focus on speed of convergence instead of generalization.
Recently, a series of papers proposed optimization algorithms similar to Layca and observed an
impact on generalization (Yu et al., 2017; Zhang et al., [2017b; |Ginsburg et al., [2018)). Section
in our Supplementary Material provides evidence that these methods may be equivalent to Layca in
practice, despite avoiding some of Layca’s operations. Our paper thus supplements these works by
providing an extensive study of the phenomena underlying their observations.

Several works have recently argued that weight decay’s regularization effect emerged from its ability
to increase the effective learning rate (van Laarhoven, [2017; [Hoffer et al.l|2018;|Anonymous| [2019).
A concise description of when and to what extent weight decay increases the effective learning rate
is however lacking, such that using weight decay is still necessary to benefit from its regularization
effect in practicel”| Our work also analyses weight decay, but from the perspective of layer rotation
rates instead of effective learning rates. We show that this new perspective enables a more suc-
cinct description of weight decay’s regularizing effect, that we are able to reproduce without any
additional meta-parameter tuning when using Layca, our tool for controlling layer rotation rates.

3 TOOLS FOR MONITORING AND CONTROLLING LAYER ROTATION RATES

This paper’s goal is to study the relation between layer-level training speed and generalization. How-
ever, the notion of layer-level training speed is unclear, and its control through SGD is potentially
difficult because of the intricate nature of gradient propagation (cfr. vanishing and exploding gra-
dients). Therefore, our work starts by making an educated guess about how to measure layer-level
training speed and by developing tools to monitor and control this metric during training. This sec-
tion presents the metric and tools, while the impact on generalization is studied in Sections] and

3.1 HOW CAN WE MEASURE LAYER-LEVEL TRAINING SPEED?

Training speed can be understood as the speed with which a model converges to its optimal solution
-not to be confounded with learning rate, which is only one of the parameters that affect training
speed in current deep learning applications. The notion of layer-level training speed is ill-posed,
since a layer does not have a loss of its own: all layers optimize the same global loss function. Given
a training step, how can we know by how much each layer’s update contributed to the improvement
of the global loss? Or, in other words, how can we measure at what rate relevant features are learned
by each layer individually?

Previous work on vanishing and exploding gradients focused on the norm and variance of gradients
as a measure of layer-level training speed (Bengio et al., |1994; Hochreiter, |1998;; \Glorot & Bengio,
2010). Provided the empirical work on activation and weight binarization during (Courbariaux &
David, 2015} Rastegari et al., [2016; Hubara et al., 2016)) or after training (Agrawal et al.| 2014

Zvan Laarhoven| (2017) proposes to keep the norm of the weights fixed to 1 in order to eliminate the effect
of weight decay, but not to reproduce it. |Hoffer et al.| (2018); | Anonymous| (2019) are able to reproduce the
regularizing effect of weight decay by tuning the effective learning rate, but their tuning strategy consists in
copying the effective learning rate that emerges when training the same network with weight decay.

Under review as a conference paper at ICLR 2019

Algorithm 1 Layca, an algorithm that enables control over the amount of weight rotation per step
for each layer through its learning rate parameter (cfr. Section [3.2)).

Require: o, an optimizer (SGD is the default choice)
Require: 7°, the number of training steps
L is the number of layers in the network
for 1=0 to L-1 do
Require: p;(t), a layer’s learning rate schedule
Require: w), the initial multiplicative weights of layer [

end for
t+0
while t < T do
9, ..., 571 = getStep(o, w?, ..., wE ') (get the updates of the selected optimizer)
for 1=0 to L-1 dol o
st st — % (project step on space orthogonal to w!)
L l
st Sf“‘Lll,U‘t‘!z (rotation-based normalization)
t
wyq — wh+ pl(rf)sf5 (perform update)
Wiy W Hwﬂlk (project weights back on sphere)
end for
t—t+1
end while

Carbonnelle & De Vleeschouwer;, 2018)), we argue that the norm of a weight vector does not matter,
but only its orientation. Therefore, we suggest to measure training speed through the rotation rate
of a layer’s weight vector (also denoted by layer rotation rate in this paper). More precisely, let w}
be the flattened weight tensor of the [*" layer at optimization step ¢, then the rotation rate of layer
[between steps ¢1 and ¢9 is defined as the angle between wfl and wfz divided by the number of
performed steps to — ¢7. E] In order to visualize how fast layers rotate during training, we propose
to inspect how the cosine distance between each layer’s current weight vector and its initialization
evolves across training steps. We denote this visualization tool by layer-wise angle deviation curves
hereafter.

3.2 LAYCA: AN ALGORITHM TO CONTROL LAYER ROTATION RATES

Given our definition of layer-level training speed, we now develop an algorithm to control it. Ideally,
the layer rotation rates should be directly controllable with layer-wise learning rate parameters,
ignoring the peculiarities of gradient propagation. We propose Layca (SGD-guided LAYer-level
Controlled Amount of weight rotation), an algorithm where the layer-wise learning rates directly
determine the amount of rotation performed by each layer’s weight vector during an optimization
step, in a direction specified by an optimizer (SGD being the default choice). Inspired by techniques
for optimization on manifolds (Absil et al.,|2010), and on spheres in particular, Layca applies layer-
wise orthogonal projection and normalization operations on SGD’s updates, as detailed in Algorithm
[While Layca enables control over the rotation performed during one unique training step, the
presence of noise or inconsistent directions can influence the overall rotation over multiple training
steps in an uncontrolled way. Fortunately, such behaviour can be detected by inspecting the layer-
wise angle deviation curves and did not hinder our experiments.

4 EXPLORATION OF LAYER ROTATION RATE CONFIGURATIONS WITH LAYCA

Section [3] provides tools to monitor and control layer rotation rates, a tentative definition of layer-
level training speed. The purpose of this section is to use these tools to conduct a systematic exper-
imental study of the relation between layer rotation rates and generalization. The experiments are

31t is worth noting that our measure focuses on weights that multiply the inputs of a layer (e.g. kernels of
fully connected and convolutional layers). Studying and controlling the training of additive weights (biases) is
left as future work.

Under review as a conference paper at ICLR 2019

Table 1: Summary of the tasks used for our experimentsﬂ

Name Architecture Dataset

C10-CNN1 25 layers deep CNN CIFAR-10

C100-resnet ResNet-32 CIFAR-100

tiny-CNN 11 layers deep CNN Tiny ImageNet
C10-CNN2 deep CNN from torch blog CIFAR-10 + data augm.

C100-WRN Wide ResNet 28-10 with 0.3 dropout CIFAR-100 + data augm.

conducted on three different tasks which vary in network architecture and dataset complexity, and
are further described in Table [Tl

4.1 LAYER-WISE LEARNING RATE CONFIGURATIONS

Layca enables us to specify layer rotation rate configurations by setting the layer-wise learning rates.
To explore the large space of possible layer rotation rate configurations, our study restricts itself to
two directions of variation. First, we vary the initial global learning rate p(0), which affects the
training speed of all the layers. During training, the global learning rate p(¢) drops following a
fixed decay scheme (hence the dependence on ?), as is common in the literature (cfr. Supplemen-
tary Material [B.3). Notice that the impact of the global learning rate on generalization has already
been studied when using SGD (Jastrzebski et al., [2017; |Smith & Le} |2017; [Smith & Topin, 2017;
Hoffer et al., [2017; Masters & Luschi, 2018), but not with an algorithm like Layca where learning
rate directly determines rotation rate. The second direction of variation is prioritization. We explore
the impact of prioritization amongst layers by applying static, layer-wise learning rate multipliers
that exponentially increase/decrease with layer depth (which is typically encountered with explod-
ing/vanishing gradients). The multipliers are parametrized by the layer index ! (in forward pass
ordering) and a parameter o € [—1, 1] such that the learning rate of layer [becomes:

s(L—1-1)
_) =) =T p(t) if a>0
t) = L]
Pl() { 1+ a)5ﬁp(t) if a<0 (D

Values of « close to —1 correspond to prioritizing first layers, 0 corresponds to no prioritization,
and values close to 1 to prioritization of last layers. Visualization of the layer-wise multipliers for
different o values is provided in Supplementary Material.

To study the impact of global learning rate, we evaluate 10 logarithmically spaced values of p(0)
(377,375, ...,3%) in the o = 0 setting. To study the impact of prioritization, we compare 13 differ-
ent values of «, and tune the initial global learning rate p(0) for each value separately through an
iterative grid search procedure (described in Supplementary Material).

4.2 HOW LAYER ROTATION RATES INFLUENCE GENERALIZATION

Figure shows, for each of the three tasks, the test accuracies obtained for the different v and
p(0) values. From these results, we extract two rules of thumb. First, the rotation rates should
be uniform across layers, as prioritizing the first or last layers reduces the test accuracy by up to
20%. Second, we observe that the layer rotation rates should be selected as high as training allows
it (when too high, training diverges), enabling gains of up to 30% in test accuracy. The observations
generalize across the three tasks, and our preliminary exploration indicates that layer rotation rate
configurations have a consistent and substantial impact on generalization. Let us also notice that
in extreme prioritization schemes (| « |> 0.6), the observations are in line with Figure s results,
as prioritizing the first layers generalizes better than prioritizing the last layers.

Figure[2b] presents the layer-wise angle deviation curves (cfr. Section[3.1)) generated by the different
configurations. This visualization enables us to check that, up to small deviations, Layca enables
good control over the rotation rates in the tasks we consider. For example, the o = 0 setting used

“References: ResNet (He et al., [2016), torch blog (Zagoruykol 2015), Wide ResNet (Zagoruyko & Ko-
modakis} 2016), CIFAR-10 (Krizhevsky & Hinton} 2009), Tiny ImageNet (Deng et al.,[2009; CS231N} 2016).

Under review as a conference paper at ICLR 2019

in the fifth column indeed leads all layers to rotate quasi synchronously. Moreover, it is useful to
visualize how the layer-wise angle deviation curves look like for the different layer rotation rate
configurations, as the same visualization tool will be used in Section [5]to analyse standard training
settings where layer rotation rates are not controlled during training. In particular, it is useful to
remember that for the three tasks, the best generalization performance is obtained when nearly all
layers synchronously reach a cosine distance of 1 from their initialization.

0.9 1.0

§ 0.8

507 0.6 —— C10-CNN1

S C100-resnet

S os 0.4 —— tiny-CNN

$ i f_\ 02

|_

0.3 i 0.0
—08 -0.4 8 3736353433323130
a p(0)
(@)
a=0.6 a=-0.6 p(0)=3"3 p(0)=3"* Best
An = -5.48% An =-5.8% An = -7.44% An =-2.41% n=88.45%
% | x-axis: [0,80]
@)) Epoch
o y-axis: [0,1]
E') e / Cosine dist.
o An = -22.49% An = -24.42% An = -13.03% n=>59.81% Last
GC) layer
)
(4]
I
o -
o .
— e—— First
O layer
An = -9.62% An = -16.98% An =-15.21% An =-10.7% n=50.89%

_ S
- 7 e
Q J
> =1/
c I e f,
i é |

(®)

Figure 2: Analysis of the generalization ability induced by different layer rotation rate configurations
(using Layca for training) on the three first tasks of Table[I] The configurations are parametrized
by «, that controls which layers are prioritized (first layers for o < 0, last layers for a > 0, or no
prioritization for & = 0), and p(0), the initial global learning rate value shared by all layers. (a)
Test accuracy in function of v and p(0). Two rules of thumb emerge: layer rotation rates should be
uniform across layers (i.e. « = 0) and be as high as training allows it (i.e. high p(0) values). (b)
Layer-wise angle deviation curves (cfr. Section[3.1)) generated by different configurations, and their
accompanying test accuracy (n). A is computed with respect to the high and uniform layer rotation
rate configuration (last column), which corresponds to o = 0 and p(0) = 372 for the three tasks.
Train accuracies are provided in Supplementary Material (= 100% in all configurations).

4.3 HOW LAYER ROTATION RATES INFLUENCE NETWORK CONVERGENCE

It is commonly assumed that vanishing and exploding gradients slow down or even prevent training
of neural networks. One might thus be tempted to believe that the bad performances on the test
set obtained in Figure [2] for low and/or non-uniform layer rotation rates are caused by an equally
bad performance on the training set. However, not only do these layer rotation rate configurations
result in close to perfect training performance (cfr. Supplementary Material), but they also often lead
the network to converge faster than the high and uniform layer rotation rate configuration. Figure
depicts the loss curves obtained for different values of « and p(0). It appears that the higher or

Under review as a conference paper at ICLR 2019

the more uniform the layer rotation rates are, the higher the plateaus in which loss curves get stuck
into. The fact that plateaus are the most prominent when all layers are rotated at high rate suggests
that they are caused by some kind of interference between the layers during training. Moreover,
it also suggests that, following our rules of thumb, high plateaus are additional indicators of good
generalization performance.

4 41 — p(0)=3"30 —— p(0)=3"36
p(0)=3732 —— p(0)=3"38
23 %3] — p(0)=3734 —— p(0)=3"40
(=] =]
2 2
E 221
© @©
& =
1 1]
0 0
0 20 40 60 80 0 20 40 60 80
Epoch Epoch

Figure 3: Loss curves obtained for different o and p(0) values on the tiny-CNN task (for the two
other tasks, see Supp. Mat.), using Layca for training. The more uniform or the higher the layer
rotation rates, the higher the plateaus in which the loss gets stuck into. The sudden drop at epoch 70
corresponds to a reduction of the global learning rate by a factor 5.

5 A STUDY OF LAYER ROTATION RATES EMERGING FROM STANDARD
TRAINING SETTINGS

Section [] uses Layca to study the impact of layer rotation rates on generalization and speed of
convergence in a controlled setting. This section investigates the layer rotation rates that naturally
emerge when using SGD and adaptive gradient methods for training. First of all, these experi-
ments will provide supplementary evaluation of the rules of thumb proposed in Section[d] Second,
analysing SGD and adaptive gradient methods in the light of layer rotation rates’ impact on gen-
eralization will provide useful insights to explain previous observations around these methods that
currently escape our understanding.

The experiments of this section are performed on the three tasks used in Section {4 and on two
supplementary, extensively tuned networks from state of the art (cfr. Table[I)). Meta-parameters for
these two tasks are taken from their original implementation when using SGD and from|Wilson et al.
(2017) when using adaptive gradient methods for training. For the other three tasks, the learning rate
is determined by grid search over 10 logarithmically spaced values (3~7,37°, ..., 3%) independently
for each (task,optimizer) pair.

5.1 ANALYSIS OF SGD AND WEIGHT DECAY

Figure E] (1%¢ line) depicts the layer-wise angle deviation curves generated by SGD and the corre-
sponding test accuracies for each of the five tasks. We observe that the curves are far from the ideal
scenario disclosed in Section[d] where the majority of the layers synchronously reached a cosine dis-
tance of 1 from their initialization. Moreover, in accordance with our rules of thumb, SGD induces
a considerably lower test performance than Layca (in the high and uniform rotation rate configura-
tion). Extensive tuning of the learning rate did not help SGD to solve its two systematic problems:
1) layers don’t train at the same speed and 2) the layers’ weights stop rotating before reaching a
cosine distance of 1.

At this point, it is tempting to believe that Layca will improve the performance of all the deep
networks trained with SGD. However, we observed that, with the unexpected help of weight decay
(i.e. Lo-regularization), SGD gains the ability to induce high and uniform layer rotation rates and
the accompanying good test performance. FigureE](?"d line) displays, for the 5 tasks, the layer-wise
angle deviation curves generated by SGD when combined with weight decay. We observe that all
layers are rotated synchronously, reaching a cosine distance of 1 from their initialization, and that
the resulting test performances are on par with the ones obtained with Layca. This experiment not

Under review as a conference paper at ICLR 2019

only provides important supplementary evidence for our rules of thumb, but also suggests a radically
novel explanation of weight decay’s regularization ability in deep nets: weight decay enables the
emergence of high and uniform layer rotation rates during SGD training}| On a practical level,
since the same regularization effect can be elegantly achieved with tools that control layer rotation
rates, without an extra parameter to tune, our results could potentially lead weight decay to disappear
from the standard deep learning toolkit.

C10-CNN1 C100-resnet tiny-CNN C10-CNN2 C100-WRN
An = -8.77% An = -14.28% An = -8.63% An = -4.92% An = -3.06%

P

An = 0.3% An=-1.11%

an

Figure 4: Layer-wise angle deviation curves and the corresponding test accuracies generated by
SGD without (1% line) or with (2" line) weight decay. Colour code, axes and A7 computation are
the same as in Figure[2b[°Despite extensive learning rate tuning, SGD without weight decay induces
test performances that are significantly below Layca. These results are coherent with our rules of
thumb, as SGD is not able to induce high and uniform layer rotation rates (cfr. 5" column of Figure
[2b). Surprisingly, weight decay solves SGD’s problems, leading to high and uniform layer rotation
rates and test accuracies that are on par with Layca.

SGD

An = -0.24%

/};’i—in_

5.2 ANALYSIS OF ADAPTIVE GRADIENT METHODS

The recent years have seen the rise of adaptive gradient methods in the context of machine learning
(e.g. RMSProp (Tieleman & Hintonl 2012), Adagrad (Duchi et al.| [2011), Adam (Kingma & Bal
2015))). Initially introduced for improving training speed, [Wilson et al.| (2017)) observed that these
methods also had a considerable impact on generalization. Figure [5] provides the layer-wise angle
deviation curves and test accuracies obtained when using adaptive gradient methods for training
of the 5 tasks described in Table [T} Again, our rules of thumb can be applied: the overall worse
generalization ability compared to Layca corresponds to low and/or non-uniform layer rotation rate
configurations.

We also observe that the layer rotation rates of adaptive gradient methods are considerably different
from the ones induced by SGD (cfr. Figure). For example, adaptive gradient methods tend to
prioritize the last layers while SGD usually prioritizes the first layers in the tasks we study. Previ-
ous results of this paper indicate that these differences could be the reason behind adaptive gradient
methods’ influence on both training speed and generalization. Figure [f] confirms this hypothesis
by showing that the training and test curves of adaptive gradient methods become indistinguishable
from their non-adaptive equivalents when Layca is used to enforce a fixed layer rotation rate configu-
ration. Additional evidence is provided in Supplementary Material (Section[A-4), where we observe
experimentally that the learning rates of adaptive gradient methods vary mostly across layers and
negligibly inside layers.

>Notice that this observation is also consistent with the systematic occurrence of high plateaus (cfr: Section
@) in the loss curves of state of the art networks (He et al., 2016} |Zagoruyko & Komodakis| [2016) (which
usually use SGD with weight decay).

%0n the two supplementary tasks, the reference accuracy (n) is also obtained by Layca with @ = 0 and
p(0) = 373 and equals 92.33% and 80.69% on C10-CNN2 and C100-WRN respectively.

Under review as a conference paper at ICLR 2019

Adaptive gradient methods were initially introduced with a focus on parameter-level adaptation of
the learning rate in order to improve optimization in the presence of sparse gradients or optimization
in on-line and non-stationary settings (Kingma & Bal 2015). Our work offers and empirically val-
idates a radically different understanding of adaptive gradient methods’ role in deep learning, that
solely relies on their impact on the rate at which each layer’s weights change during training. This
new perspective reveals that adaptive gradient methods’ parameter-level adaptation of the learning
rate is not necessary (layer-level adaptation suffices), and that their impact on DNN training will
probably be better explained by further study of layer-level training speed rather than the sparsity of
gradients or the on-line aspect of the optimization procedure.

C10-CNN1 C100-resnet tiny-CNN C10-CNN2 C100-WRN
An = -3.58% An = -11.99% An = -13.17% An = -1.14% An =-1.33%

[
—

i:—

Figure 5: Layer-wise angle deviation curves and the corresponding test accuracies generated by
adaptive gradient methods (RMSProp, Adam, Adagrad, RMSProp+Ls and Adam+Ls respectively
for each task/column) after extensive learning rate tuning. Colour code, axes and A7 computation
are the same as in Figure 2b] Our rules of thumb still apply: the overall worse generalization
ability compared to Layca corresponds to low and/or non-uniform layer rotation rate configurations.
We also notice that the curves are significantly different from the ones of SGD (Figure [). For
example, on the C10-CNNI1 task, the last layers train faster than the first ones when RMSProp is
used for training while the opposite happens when SGD is used. Could this explain adaptive gradient
methods’ impact on training speed and generalization?

C10-CNN1 C100-resnet tiny-CNN C10-CNN2 C100-WRN
1.0 1.0 1.0 1.0
05 051 0.5Ffzﬁ 051

0.6 05 0.9 0.8]

g
=}

=3
)

o
©

Test accuracy Train accuracy

o
=)
o+

0.0 0.0~ 0.0~ 0.0
100 0 100 0 80 0 250 0 250
Epoch

—— SGD —— RMSprop —— Adagrad —— SGD_AMom —— Adam

Figure 6: Training and test curves of adaptive gradient methods and their non-adaptive equiva-
lentﬂwhen Layca is applied on the updates of each method to fix the layer rotation rate configura-
tion. The curves become indistinguishable, suggesting that adaptive gradient methods’ impact on
training speed and generalization is only due to their influence on layer rotation rates, and thus to
their layer-level adaptation of the learning rate.

6 EMPHASIZING THE REMARKABLE CONSISTENCY OF LAYER ROTATION
RATES’ IMPACT ON GENERALIZATION

In order to emphasize the remarkable consistency by which layer rotation rates influence generaliza-
tion, this section provides evidence that the norm of updates, another sensible metric of layer-level

’SGD_AMom corresponds to SGD with a momentum scheme similar to Adam (see Supp. Mat.).

Under review as a conference paper at ICLR 2019

training speed (Bengio et al.,|1994; Hochreiter, |1998;; \Glorot & Bengiol 2010j Pascanu et al., 2013
Arjovsky et al.,|2016])), does not demonstrate this consistency at all. This result supports the idea that
layer rotation rates are related to a more fundamental aspect of learning, and probably constitute a
relevant metric to study layer-level training speed.

The main difference between layer rotation rates and the norm of updates as layer-level training
speed metrics, is that the latter doesn’t take the norm of the current layer’s weights into account.
Our experiment targets this difference specifically, by testing if the relation between the studied
metric and generalization remains consistent when the initial weights of all layers are rescaled by a
constant factor f. The independence of layer-level metrics to rescaling of the weights is especially
important as, with typical weight initialization schemes, weights of different layers have different
scales (e.g. [Glorot & Bengio| (2010)).

Using Layca to control layer rotation rates, and block-normalized SGD (Yu et al.l 2017) to control
the norm of weight updates, we study for several factors f the relation between test accuracy and
the initial global learning rate in Figure [/| (experiment is conducted on a lighter version of the C10-
CNNI1 task). The difference is striking. In contrast with block-normalized SGD, Layca remains very
consistent across scaling factors. For example, the optimal learning rate is 372 in all cases. On the
contrary, when block-normalized SGD is used, the curve that relates learning rates to train or test
accuracy shifts every time the scaling factor is increased, and so does the optimal learning rate.

Layca Block-normalized SGD SGD

Factor
— 19
1/3
— 1
— 3
— 9

Accuracy
Accuracy
Accuracy

T e R et I e T (R (e
0(0) p(0) 0(0)

Figure 7: Consistency comparison of layer rotation rates and the norm of updates (another sensible
metric of layer-level training speed). Using Layca (left) or block-normalized SGD (center) to control
both metrics, we test if the relation between global initial learning rates and train/test accuracy
remains consistent when the initial weights of all layers are rescaled by a constant factor f. The
difference is striking: block-normalized SGD does not demonstrate Layca’s consistency at all. SGD
is also added for comparison (right). Dotted lines correspond to train accuracy, full lines to test
accuracy.

7 CONCLUSION

Inspired by the works on generalization and gradient propagation in deep networks, this paper’s
ambition is to disclose and study a novel way, unique to deep learning, by which optimization influ-
ences generalization: through the speed at which each layer trains. While the premises of our work
are based on intuitions that escape any theoretical framework, the value of our tools and claims is
supported by the consistent experimental results and the useful insights they provide. Indeed, the
rules of thumb we extract about the relation between layer rotation rates and generalization could be
successfully applied to all the considered tasks and training settings, explaining substantial differ-
ences in test accuracies (sometimes of the order of 20%). Moreover, we show considerable evidence
that this novel way by which optimization impacts generalization could be the reason behind weight
decay’s and adaptive gradient methods’ generalization properties, which have remained a mystery
despite their ubiquity in current deep learning applications. Both methods, which are source of
heavy meta-parameter tuning, could even become obsolete as practitioners start using our tools,
exemplifying the practical benefit of our work.

ACKNOWLEDGEMENTS

To be filled in

10

Under review as a conference paper at ICLR 2019

REFERENCES

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization On Manifolds : Methods And Applications.
In Recent Advances in Optimization and its Applications in Engineering, pp. 125—-144. Springer,
2010. ISBN 9783642125973.

Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Man, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Vi, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqgiang Zheng. TensorFlow : Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the Performance of Multilayer Neural
Networks for Object Recognition. In ECCV, pp. 329-344, 2014.

Anonymous. Three mechanisms of weight decay regularization. In Submitted to International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=B1l1lz-3Rct7. under review.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary Evolution Recurrent Neural Networks. In
ICML, pp. 1120—-1128, 2016. doi: 10.1016/S1053-2498(02)01227-5. URL http://arxiv.
org/abs/1511.06464.

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A Closer Look at Memorization in Deep Networks. In ICML, 2017.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994.

Simon Carbonnelle and Christophe De Vleeschouwer. Discovering the mechanics of hidden neu-
rons. https://openreview.net/forum?id=H1srNebAZ, 2018.

Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

Matthieu Courbariaux and Jean-Pierre David. BinaryConnect : Training Deep Neural Networks
with binary weights during propagations. In NIPS, pp. 3123—-3131, 2015.

Stanford CS231N. Tiny ImageNet Visual Recognition Challenge. https://tiny-
imagenet.herokuapp.com/, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, pp. 248-255, 2009.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. DeCAF : A Deep Convolutional Activation Feature for Generic Visual Recognition. In
Proceedings of the 31st International Conference on Machine Learning, pp. 647655, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Boris Ginsburg, Igor Gitman, and Yang You. Large Batch Training of Convolutional Networks with
Layer-wise Adaptive Rate Scaling, 2018. URL https://openreview.net/forum?id=
rJ4uaXx2aW.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, pp. 249-256, 2010.

Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex opti-
mization. In NIPS, pp. 1594—-1602, 2015.

11

https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7
http://arxiv.org/abs/1511.06464
http://arxiv.org/abs/1511.06464
https://github.com/fchollet/keras
https://openreview.net/forum?id=rJ4uaX2aW
https://openreview.net/forum?id=rJ4uaX2aW

Under review as a conference paper at ICLR 2019

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In CVPR, pp. 770-778, 2016.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions. IJUFKS, 6(2):1-10, 1998.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer , generalize better : closing the general-
ization gap in large batch training of neural networks. In NIPS, pp. 1729—-1739, 2017.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. arXiv:1803.01814, 2018. URL http://arxiv.
org/abs/1803.01814.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural Networks. In
NIPS, 2016.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
gio, and Amos Storkey. Three Factors Influencing Minima in SGD. arXiv:1711.04623, 2017.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster anal-
ysis. John Wiley & Sons, 2009.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
In ICLR, 2017.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2323, 1998. ISSN 00189219. doi:
10.1109/5.726791.

Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for Deep Neural Networks.
arXiv:1804.07612, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines.
In ICML, pp. 807—-814, 2010.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and Transferring Mid-Level
Image Representations using Convolutional Neural Networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1717-1724, 2014.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In ICML, pp. 1310—-1318, 2013.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In NIPS, 2017. ISBN 1365-2699. doi:
doi:10.1111/j.1365-2699.2006.01566.x. URL http://arxiv.org/abs/1711.04735.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, pp. 525-542. Springer, 2016.

Andrew M Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. In ICLR, 2014.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific
adaptive learning rates for deep networks. In ICMLA, pp. 364—-368, 2015.

Leslie N Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Residual Networks
Using Large Learning Rates. arXiv:1708.07120, 2017.

12

http://arxiv.org/abs/1803.01814
http://arxiv.org/abs/1803.01814
http://arxiv.org/abs/1711.04735

Under review as a conference paper at ICLR 2019

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In Proceedings of Second workshop on Bayesian Deep Learning (NIPS 2017), 2017.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Twan van Laarhoven. L2 Regularization versus Batch and Weight Normalization.
arXiv:1706.05350,2017. URL http://arxiv.org/abs/1706.05350.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
Marginal Value of Adaptive Gradient Methods in Machine Learning. In NIPS, pp. 4151-4161,
2017.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation.
In CVPR, 2017. doi: 10.1016/j.toxac.2016.07.001.

Adams Wei Yu, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Normalized gradient with
adaptive stepsize method for deep neural network training. arXiv:1707.04822, 2017.

Sergey Zagoruyko. 92.45% on CIFAR-10 in Torch. http://torch.ch/blog/2015/07/30/cifar.html,
2015.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In BMVC, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires re-thinking generalization. In /CLR, 2017a.

Zijun Zhang, Lin Ma, Zongpeng Li, and Chuan Wu. Normalized Direction-preserving Adam.
arXiv:1709.04546, 2017b.

13

http://arxiv.org/abs/1706.05350

Under review as a conference paper at ICLR 2019

SUPPLEMENTARY MATERIAL

The supplementary material of this paper is divided into two sections. Section [A] contains supple-
mentary results, which are not essential for the main message of the paper but could be useful for
researchers interested in pursuing our line of work. Section [B]contains supplementary information
about the experimental procedure used for generating the results of our paper.

A SUPPLEMENTARY RESULTS

A.1 DISCUSSING THE FIRST LAYERS’ SUPERIOR PERFORMANCE IN FIGURE[I]
A.1.1 STUDYING THE IMPACT OF THE INITIALIZATION SCHEME

Figure [1|shows that in our toy example, the first layers of the MLP network receive input and feed-
back signals of better quality, i.e. that lead to better generalization properties (hereafter, quality of
signals will refer to the generalization performance that results from training the layers that receive
these signals, high quality signals leading to good generalization performance). Importantly, this ex-
ample shows that the quality of the original input and error signals is altered when going through the
layers during the forward and backward pass. It is interesting to compare how different initialization
schemes alter the quality of the input and feedback signals. In particular, orthogonal initializations’
ability to faithfully propagate signals through layers has been praised in several papers (Saxe et al.,
2014; Xie et al.,|2017; Pennington et al., 2017). Figure B]reproduces the experiment with an orthog-
onal initialization scheme. We observe that all layers reach higher test accuracy, and that the gap
between the first and last layers decreases. This suggests that indeed, input and feedback signals are
less altered when going through layers with orthogonal weight matrices.

A.1.2 IMPROVING THEIR OWN FEEDBACK: THE FIRST LAYERS’ SECRET TRICK?

To explain the first layers’ superior performance, the first idea that came to our mind was that, in
the randomly initialized network, the quality of layer inputs degrades faster during the forward pass
than the quality of feedbacks does during the backward pass. Accordingly, the first layers gained
their good test accuracy from their good quality input signals (since these do not result from many
random transformations applied on the original inputs) and good feedback signals (since these are
robust to random transformations).

This interpretation comes from a static view of the phenomenon: it implicitly assumes that the
transformations applied to the input and feedback signals before reaching a layer don’t change when
this layer is trained in isolation. However, while the transformations applied on the input signals
of a layer are not modified, the transformations applied on the feedback signals change in a non-
negligible way: a layer’s training influences the way errors backpropagate through every subsequent
layer, because ReLU’s derivative depends on the activations of the forward pass. Thus, the back-
wards pass, which transforms the feedback signal before reaching the trained layer, is not a series of
random non-linear transformations any more after training has started.

We believe that this could be a key factor that enables the first layers’ superior performance. Indeed,
in addition to their good quality input signals, the first layers could also potentially receive good
quality feedback signals, as these can be improved by the layers’ training. Figure [§|provides some
evidence in favour of this hypothesis. Using the Silhouette coefficient (Kaufman & Rousseeuw,
2009) (with cosine distance as distance metric), the figure shows that even when only the first layer
is trained, the feedback it receives gets more correlated with the classes/targets through training,
which we believe could be a sign of better signal quality (it remains to be proven however).

A.2 ALL OPERATIONS OF LAYCA ARE NOT ALWAYS NECESSARY IN PRACTICE.

The 4 main operations of Layca are repeated in Algorithm 2] The first operation projects the step
on the space orthogonal to the current weights of the layer. Having a step orthogonal to the current
weights is necessary for operation 2 to normalize the rotation performed during the update. However,
since a layer typically has more than thousands of parameters (i.e. has a lot of dimensions), the step
proposed by an optimizer has a high probability of being approximately orthogonal to the current

14

Under review as a conference paper at ICLR 2019

0.8 0.30
5> el £0.25
2 . g%
= LS
§ 0.7 \.\ g 0.20
© .. $0.15
i) . o
Coel uniform K <0.10
orthogonal ‘e n
0.05
012 3 456 7 89 0 100 200 300 400 500
Layer index epoch

Figure 8: left: Studying the impact of initialization on the MNIST experiment of Figure |1, We
observe that orthogonal initialization, known for its faithful propagation of signals, increases the
test accuracy of every layer and slightly reduces the generalization gap between the first and last
layers. right: Supplementary result suggesting that the capacity of layers to improve their own
feedback signal could be a key asset enabling the first layers’ superior generalization performance
in Figure[I] Indeed, this figure shows how the Silhouette score of the first layer’s feedback with
respect to the classes/targets increases even when only the first layer is trained.

Algorithm 2 Main operations of Layca (cfr. Algorithm[I)). We’ve noticed that in practice, operations
1 and 4 are not strictly necessary for controlling layer rotation rates.

9, ..., sE71 = getStep(o, w?, ..., wE ™) (get the updates of the selected optimizer)
for 1=0 to L-1 do
L gl (spwpwy . oro !
Sp 4= S — —Er Tt (1: project step on space orthogonal to wy)
t t
1 1
sh st‘l”;fﬁlb (2: rotation-based normalization)
t
w < wh 4 pi(t)s! (3: perform update)
l
w! 11 w! 11 ,Il‘;f"”Q (4: project weights back on sphere)
lwi il

end for

weights. Explicitly orthogonalizing the step and the weights through operation 1 is thus potentially
redundant.

Operation 4 keeps the norm of weights fixed during the whole training process. First, this operation
emphasizes our claim that the norm of weights doesn’t really matter. Indeed, disabling changes to
the norm of weights doesn’t prevent the network from reaching 100% training accuracy. Second,
this operation prevents the weights from increasing too much (the first three operations lead the
norm of weights to increase at every training step), which causes numerical problems. However,
this operation is not fundamental for controlling the layer rotation rates.

We experimented with a sub-version of Layca that does not perform Layca’s operations 1 and 4.
Interestingly, the resulting algorithm is equivalent to NG,qg,p and LARS introduced by |Yu et al.
(2017) and |Ginsburg et al.| (2018)) respectively. Both works reported improved test performance
when using this algorithm. Figure [9]shows the layer-wise angle deviation curves and associated test
accuracies when applying LARS (or equivalently, NG,4.p) on tasks C10-CNN1, C100-resnet and
tiny-CNNE] The layer rotation rate configuration parameters are o = 0 and p(0) = 373. We observe
that this configuration also induces high and uniform rotation rates, and that the test accuracies are
on par with Layca. This observation indicates that operations 1 and 4 of Layca can be removed in at
least some practical applications.

A.3 IMPACT OF LAYER ROTATION RATES ON CONVERGENCE FOR C10-CNN1 AND
C100-RESNET TASKS.

Figure [3| shows on the tiny-CNN task that the o and p(0) parameters, which determine the layer
rotation rate configuration when using Layca for training, enable precise control over the height of

8While the norm of each layer’s weight vector was not fixed by LARS, we still had to limit the amount of
norm increase per training step to prevent numerical errors. We limited it to 0.0001 times the initial norm of
each layer’s weight vector.

15

Under review as a conference paper at ICLR 2019

C10-CNN1 C100-resnet tiny-CNN
An = 0.06% An =0.11% An = 0.07%

Figure 9: Layer-wise angle deviation curves and the corresponding test accuracies generated by
LARS with o = 0 and p(0) = 372. Colour code, axes and A7 computation are the same as in
Figure[2b] Although not performing operations 1 and 4 of Algorithm[2] LARS seems to control layer
rotation rates as well as Layca. Indeed, the layer-wise angle deviation curves are indistinguishable
from the ones in the 5*" column of Figure 2b| and the test accuracies are nearly identical.

the plateaus in which the loss curve gets stuck into. Figure[I0]extends the results to the C10-CNN1
and C100-resnet tasks. Conclusions are identical. Moreover, the experiment on C10-CNN1 was
performed with negative o values, showing that prioritizing the training of the first layers of the
network also decreases the height of the plateaus (at the cost of generalization ability however).

C100-resnet

C10-CNN1
2.0 — =00 — a=-03 4 — @=00 — a=03
a=-01 a=-04 a=0.1 — a=04
215 — a=-02 — a=-06 237 — =02 — a=06
& o
2 5
g 1.0 E 21
3 g
5
&
Fos 11
0.07 07\ T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
201 — p0)=3730 — p(0)=3736 44 —— pO)=3720 —— p(0)=373
p0)=3732 — p(0)=3-3 pO)=3722 —— p(0)=372°
1 o o o e @ — p(0)=3"34 —— p(0)=3-40
% 1.5 p(0)=3734 p(0)=3740 231
& o
2 5
£1.0 g2,
g 2
c
o5 &l
0.07 — 07\ T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 10: Loss curves of C10-CNN1 and C100-resnet for different o and p(0) values. The results
confirm the observations made on tiny-CNN, and extend the analysis to negative « values.

A.4 FURTHER ANALYSIS OF ADAPTIVE GRADIENT METHODS.

Section [5.2] shows considerable evidence that adaptive gradient methods’ impact on training speed
and generalization is solely due to their influence on layer rotation rates. The key element distin-
guishing adaptive gradient methods from their non-adaptative equivalents is a parameter-level tuning
of the learning rate based on the statistics of each parameter’s partial derivative. Our results suggest
that the resulting parameter-level learning rates differ mostly across layers and negligibly inside lay-
ers. To test this claim, we monitored Adam’s estimate of the second raw moment when training on
the C10-CNN1 task. The estimate is computed by:

vy = B2 vi—1 + (1= B2) - g7

16

Under review as a conference paper at ICLR 2019

where g, and v, are vectors containing respectively the gradient and the estimates of the second raw
moment at training step ¢, and (3 is a parameter specifying the decay rate of the moment estimate.
While our experiment focuses on Adam, the other adaptive methods (RMSprop, Adagrad) also use
statistics of the squared gradients to compute parameter-level learning rates.

Figure |11| displays the 10", 50t and 90*" percentiles of the moment estimations, for each layer
separately, as measured at the end of epochs 1, 10 and 50. The conclusion is clear: the estimates
indeed vary much more across layers than inside layers. While parameter-level adaptivity could
make sense in other applications, deep neural networks seem to lend themselves better to layer-level
adaptivity.

Epoch 1 Epoch 10 Epoch 50
-E’ 10—3_fﬁ 4
] 1]
g e, ; b, i
£ 107°4 T L 1 mi‘;mli t
2 Yos5g Fags¥
o _ L2111 Lf
< 1079 5
0 10 20 0 10 20 0 10 20
Layer index Layer index Layer index

Figure 11: Adam’s parameter-wise estimates of the second raw moment (uncentered variance) of the
gradient during training on C10-CNN1, described for each layer separately through the 10", 50t"
and 90" percentiles (represented by the lower bar, the bullet point, and the upper bar respectively
for each layer index). The results provide supplementary evidence that the parameter-level statistics
used by adaptive gradient methods vary mostly between layers and negligibly inside layers.

B SUPPLEMENTARY INFORMATION

B.1 VISUALIZING THE @ PARAMETER.

The o parameter is used in Section [4] to characterize the layer prioritization schemes used during
training. While the specific parametrization is provided in Equation[T} Figure[I2]provides a graphical
illustration of it.

Negative o Positive a
1.04 1.0
0.8 0.81
£ 061 £ 0.6
e £
Z 041 Z 044
=1 =1
0.2 0.2
0.0 0.04
0.00 0.25 0.50 0.75 1.00 0.00 .25 0.50 0.75 1.00
1/L 1/L
— 0 0.1 — 0.2 — 0.3 — 04 — 0.6 0.8

Figure 12: Visualization of the prioritization schemes as parametrized by « (cfr. Section EI) The
colours of the lines represent the absolute value of .. Illustration is separated for prioritization of
the first layers (negative « values) and of the last layers (positive « values). The layer-wise learning
rate multipliers (y-axis) depend on the layer’s location in the network (x-axis), which is represented
by the layer index [(in forward pass ordering) divided by the number of layers L.

17

Under review as a conference paper at ICLR 2019

B.2 GRID SEARCH PROCEDURE FOR LEARNING RATE SELECTION IN SECTION[4]

In Section the global initial learning rate parameter p(0) is optimized through grid search for each
« value. While in the other experiments, learning rate selection is performed through grid search
over 10 logarithmically spaced values (37,376, ..., 32), such method is to demanding computation-
ally for this experiment (it must be repeated 39 times = 13 « values * 3 tasks).

The grid search procedure starts by trying 3 values: 374,372 and 372. Then, iteratively until
convergence, if the current best value is the lowest or highest of the tried values, the next value
(lower or higher by a factor 3 respectively) is tried. After this first stage, the optimal p(0) values of
two successive « values are compared (successive after sorting the values in increasing order). If
the optima of two successive « values are different by a factor 3, the intermediate p(0) is also tried
(current value multiplied or divided by 3°-%). The increased precision of the second stage was used
to get smoother curves in Figure 2a

B.3 LEARNING RATE DECAY SCHEMES
Our work uses standard learning rate decay schemes, as follows:

e C10-CNNI: 100 epochs and a reduction of the learning rate by a factor 5 at epochs 80, 90
and 97

e C100-resnet: 100 epochs and a reduction of the learning rate by a factor 10 at epochs 70,
90 and 97

o tiny-CNN: 80 epochs and a reduction of the learning rate by a factor 5 at epoch 70

B.4 TRAINING ERRORS ASSOCIATED TO THE LAYER-WISE ANGLE DEVIATION CURVES.

In Figures and[3] the test accuracies corresponding to each visualization of the layer-wise angle
deviation curves are provided. While it is briefly mentioned that training accuracy is close to perfect
in most cases (cfr. Section[4.3)), Tables and 4] provide the exact values for completeness.

Table 2: Train accuracies associated to Figure

a=06 a=-06 p0)=3"7 p0)=3"*% Best
C10-CNN1 100% 99.55% 100% 100% 99.99%
C100-resnet | 97.38% 97.9% 99.87% 99.99% 99.75%
tiny-CNN 99.98% 98.64% 99.97% 99.97% 98.91%
Table 3: Train accuracies associated to Figure E]
CI10-CNN1 C100-resnet tiny-CNN CI10-CNN2 C100-WRN
SGD 100% 100% 100% 91% 100%
SGD + Loy 100% 100% 89.8% 99.5% 100%

Table 4: Train accuracies associated to Figure

C10-CNN1
100%

C100-resnet
99.98%

tiny-CNN C10-CNN2 C100-WRN
99.97% 98.72% 99.92%

Adaptive methods

18

Under review as a conference paper at ICLR 2019

B.5 MOMENTUM SCHEME USED BY SGD_AMOM AND ADAM.

SGD_AMom was designed for Section as a non-adaptive equivalent of Adam. In particular,
SGD_AMom uses the same momentum scheme as Adam:

ve = m-v_1+(1—m)-g

wy = Wi_1 — P V¢

where ¢, is the gradient at step ¢, p the learning rate, m the momentum parameter.

B.6 FURTHER INFORMATION.

Other details about our experiments can be found in our code at -github link hidden to preserve
anonymity-.

19

	Introduction
	Related work
	Tools for monitoring and controlling layer rotation rates
	How can we measure layer-level training speed?
	Layca: an algorithm to control layer rotation rates

	Exploration of layer rotation rate configurations with Layca
	Layer-wise learning rate configurations
	How layer rotation rates influence generalization
	How layer rotation rates influence network convergence

	A study of layer rotation rates emerging from standard training settings
	Analysis of SGD and weight decay
	Analysis of adaptive gradient methods

	Emphasizing the remarkable consistency of layer rotation rates' impact on generalization
	Conclusion
	Supplementary results
	Discussing the first layers' superior performance in Figure 1.
	Studying the impact of the initialization scheme
	Improving their own feedback: the first layers' secret trick?

	All operations of Layca are not always necessary in practice.
	Impact of layer rotation rates on convergence for C10-CNN1 and C100-resnet tasks.
	Further analysis of adaptive gradient methods.

	Supplementary information
	Visualizing the parameter.
	Grid search procedure for learning rate selection in Section 4
	Learning rate decay schemes
	Training errors associated to the layer-wise angle deviation curves.
	Momentum scheme used by SGD_AMom and Adam.
	Further information.

