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ABSTRACT

We introduce an efficient way to increase the accuracy of convolution neural net-
works (CNNs) based on high model utilization without increasing any compu-
tational complexity. The proposed sparse-complementary convolution replaces
regular convolution with sparse and complementary shapes of kernels, covering
the same receptive field. By the nature of deep learning, high model utilization
of a CNN can be achieved with more simpler kernels rather than fewer complex
kernels. This simple but insightful model reuses of recent network architectures,
ResNet and DenseNet, can provide better accuracy for most classification tasks
(CIFAR-10/100 and ImageNet) compared to their baseline models. By simply
replacing the convolution of a CNN with our sparse-complementary convolution,
at the same FLOPs and parameters, we can improve top-1 accuracy on ImageNet
by 0.33% and 0.18% for ResNet-101 and ResNet-152, respectively. A similar ac-
curacy improvement could be gained by increasing the number of layers in those
networks by ∼ 1.5×.

1 INTRODUCTION

Object recognition has achieved significant improvement through convolutional neural networks
(CNNs), e.g., ResNet (He et al. (2016a)) and DenseNet (Huang et al. (2017)). In order to achieve
competitive performance on large-scale datasets such as ImageNet (Russakovsky et al. (2015)),
these networks usually require increasing model capacity substantially with a deeper network, e.g.
ResNet-200, or a wider network, e.g. DenseNet-161. Nonetheless, it seems pretty obvious that the
redundancy in those models are still high (Mao et al. (2017)).

This observation encouraged us to investigate an efficient way to increase model utilization1 for
complex architectures. It has been demonstrated that there are multiple ways to increase model
utilization, e.g., by keeping the same performance while reducing resource usage (Wen et al. (2017);
Kim et al. (2016); Ioannou et al. (2016)) or increasing the accuracy with the same resource usage.

There are two major approaches to increase mode utilization from a macro-architecture2 of a net-
work perspective. ResNet adds the residual shortcut to assure that the loss at the end can be prop-
agated to all parameters smoothly; thus, all parameters are treated equally for better utilization.
DenseNet reuses the extracted features intensively from different layers to save the computations
and parameters while achieving good performance. However, both these approaches still rely on
regular convolution in their micro-architectures. We found out that deeper and/or wider macro-
architectures naturally introduce more redundancy on convolutional layers; the types of convolution
can be optimized for such macro-architectures.

We propose a pair of deterministic sparse-complementary convolutional kernels in either the spatial-
wise or channel-wise domain to reduce the complexity of each kernel; each sparse kernel has a
complementary kernel to approximate the receptive field of regular kernels. Since a sparse kernel
saves the floating-point operations (FLOPs) and parameters for a convolution, we are able to enrich

1The model utilization is defined as the proportion of model performance over the amount of required
resources (computations and parameters). E.g., suppose that networks A and B achieve the same accuracy, but
A needs more parameters and computations than B; in this case, B achieves higher model utilization.

2Macro-architecture denotes the topology of a network; micro-architecture means the topology within a
layer.
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Table 1: Comparison with related works.
Related works Key features Orthogonality to ours∗

Han et al. (2015); Liu et al. (2015); Collins & Kohli (2014) Random sparsity Y
Wen et al. (2016); Zhou et al. (2016); Alvarez & Salzmann (2016); Mao et al. (2017); Liu et al. (2017); Wen et al. (2017) Random but structural sparsity Y

Denton et al. (2014); Jaderberg et al. (2014); Zhang et al. (2015); Kim et al. (2016) Low-rank approximated kernels Y
Mamalet & Garcia (2012); Szegedy et al. (2016); Sun et al. (2016) Deterministic low-rank kernels N

Ioannou et al. (2016); Iandola et al. (2016); Ioannou et al. (2017) Mixed-shape kernels Y

Ours, sparse-complementary kernels Mixed-shape kernels and deterministic sparsity −
∗: Orthogonality denotes whether or not their works conflict with ours.

feature representation by adding either layers or kernels; therefore our models achieve better model
utilization and accuracy under the same resource budget.

The contributions of this paper include the following:

1. We achieve better model utilization on all models with the ResNet and DenseNet macro-
architectures on CIFAR-10/100 and ImageNet. We gain 0.33% and 0.18% for ResNet-101
and ResNet-152 on ImageNet, respectively, without increasing any FLOPs and parameters.
Such gain would have required adding 1.5× more layers to those networks. Notice that
ResNet-152 only improves 0.44% top-1 accuracy than ResNet-101.

2. We propose a better micro-architecture for CNNs. The proposed sparse-complementary
kernels save computations and parameters due to their sparsity. The complementary prop-
erty of a kernel compensates for receptive field missed from the other sparse kernel.

3. We enrich the feature representation under identical resource budget thanks to the sparse
and complementary properties in the kernels.

4. We prove that the proposed sparse-complementary convolution achieves the expected speed
on the current NVIDIA GPU.

2 RELATED WORK

To increase model utilization, several approaches have been proposed that reduce the model param-
eters and computations with comparative performance; however, our proposed method consists of
improving performance with the same model parameters and computations. Table 1 highlights the
distinct features of our work, compared to previous research approaches in this space.

Random Kernel Sparsity remove unimportant weights based on a trained model. In general, this
approach imposes different weight regularization to increase parameter utilization. Some of the
research work in this area enforces the zeros into a certain shape, such as forcing all zeros to locate
in the same kernel or the same channel within a kernel (Wen et al. (2016); Zhou et al. (2016); Liu
et al. (2015); Alvarez & Salzmann (2016); Wen et al. (2017); Liu et al. (2017)); or scattering zeros
everywhere (Han et al. (2015); Mao et al. (2017); Collins & Kohli (2014)). Typically, this approach
needs a pre-trained model; re-training is then required to recover performance after pruning weights;
however, some of them can directly train from scratch by chaning the regularizer in the objective
function. Nonetheless, the random sparsity might provide limited advantages on reduction of model
size and computations, e.g. the indexed table for non-zero weights or efficient computations in sparse
kernels are challenges in terms of implementation overhead. Even though some of works use random
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Figure 1: Different approaches for kernel approximation. (a) Regular convolution, (b) Sequential
separate kernels and (c) Mixed-shape kernels. For (b) and (c), the shape of kernels can be arbitrary
shape, not limited to 1 × k or k × 1 kernels. The major difference between (b) and (c) is that (c)
mixes different shapes of kernels in one layer to extract different features and then the next layer can
fuse those distinct features rather than extracting one-type features once, as in (b).
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but structural sparsity and gain the speed up over CPU or GPU; however, due to the random structure,
it still limits its advantages when deploying on customized neural network accelerator, which might
be implemented by ASIC and FPGA. Conversely, thanks to the deterministic and complementary
characteristics of our sparse convolution, we can easily achieve competitive speed even with the
current CUDNN 6.0. Furthermore, since our method is orthogonal to those approaches, we can
integrate them into our solution to increase model utilization.

Low-rank Approximated Kernels deploy the factorization on learned kernels into low-rank ker-
nels, or directly deploys hand-crafted low-rank kernels. Tensor factorization can be done by de-
composing the kernels in a pre-trained model into multiple low-rank kernels by high-order tensor
approximation (Denton et al. (2014); Kim et al. (2016)), singular value decomposition (Liu et al.
(2015)), data-driven low-rank approximation (Jaderberg et al. (2014)), or non-linear approxima-
tion (Zhang et al. (2015)). By lowering the rank of weight tensors, the redundancy within/between
weight tensors can be removed to make the model more compact for higher model utilization. On the
other hand, (Mamalet & Garcia (2012); Szegedy et al. (2016); Sun et al. (2016); Fan et al. (2017))
deploy hand-crafted low-rank kernels to approximate high-rank kernels, but the information lost in
the low-rank kernels may be unrecoverable. Figure 1 (b) shows an example that sequentially uses
low-rank kernels at consecutive layers as full-rank kernels. Our approach uses complementary ker-
nels to compensate the missed information from another sparse kernel pair. Furthermore, since our
approach is orthogonal to the factorization approach, our proposed kernels can be factorized into
lower-rank kernels to increase model utilization.

Mixed-shape Kernels utilize multiple shapes kernels in a convolutional layer (Ioannou et al. (2016);
Iandola et al. (2016)) as shown in Fig. 1 (c). Ioannou et al. (2016) uses two 1-D kernels and one op-
tional 2-D kernel, and then combines the extracted features via a 1×1 convolution. The 1×1 convo-
lutional layer plays an important role to compensate the disadvantage of using non-complementary
kernels. In contrast, our approach replaces their 1× 3 and 3× 1 kernels with sparse-complementary
kernels to enrich the feature representations of a network; the complementary characteristic of our
networks do not need an additional 1 × 1 convolutional layer, which is not optimized on current
GPUs.

3 PROPOSED SPARSE-COMPLIMENTARY CONVOLUTIONAL KERNEL

The current design of a convolutional kernel in a CNN is inefficient in utilizing parameters of
micro-architectures, which results in unnecessary computations and parameters. Several works had
demonstrated that, e.g., the model of a CNN can be easily pruned (Han et al. (2015); Mao et al.
(2017); Molchanov et al. (2017)) or factorized but keep comparative accuracy (Zhang et al. (2015);
Kim et al. (2016)) regardless of its macro-architecture, including, VGGNet, ResNet and DenseNet.
Therefore, we became interested in designing CNN micro-architecture that uses the right amount of
parameters while sustaining the same accuracy under the same computations. We present a sparse-
complementary convolution kernel which can improve accuracy while keeping a similar number of
computations and parameters. By simplifying each convolutional kernel with deterministic sparse
pattern which uses almost half of parameters of regular kernels, we use saved parameters and FLOPs
to add either more convolutional kernels (wider network) or convolutional layers (deeper network)
to enrich feature representation; in addition to it, the hardware-friendly deterministic sparsity allows
us to achieve almost theoretical speed-up on GPU with CUDNN 6.0. In this paper, two types of
sparse kernels are proposed, spatial-wise sparse-complementary (SW-SC) kernel and channel-wise
sparse-complementary (CW-SC) kernels, to achieve accuracy improvement under the same resource
for the most recent network architectures, ResNet and DenseNet.

In following sections, we explain the sparse-complementary kernels and discuss its advantages with
respect to their receptive field coverage; and then, we discuss how we use the saved resource in
computations and parameters to improve accuracy compared to its baseline.

3.1 SPARSE-COMPLEMENTARY KERNEL DESIGN

We introduce two types of sparse-complementary kernels in this chapter, such as spatial-wise and
channel-wise sparse-complementary kernels. The sparse kernel is designed to extract the feature
efficiently and its complementary pattern assures the sparse convolution has no missed regions in
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receptive field across layers. The two complementary sparse kernels are always paired in one convo-
lutional layer. Let W represents the weights of a regular k× k convolutional layer with C channels
and N kernels; thus W is a 4-D tensor, and W(x, y, c, n) denotes the weight of the n-th kernels at
the c-th channel and spatially located at (x, y) locations, where x and y range from 0 to k−1, where
k is kernel size.

The spatial-wise sparse-complementary (SW-SC) convolutional kernel sparsifies the kernel in the
spatial domain. Figure 2 (a) and (b) show an example of SW-SC kernels for 3×3 convolution. Those
kernels are either even- and odd-indexed in the spatial domain for all channels in a kernel except
for the center point3. When kernel size is 3 × 3, the kernel shape becomes +-shape (Wsw,even) or
×-shape (Wsw,odd). If we formulate the kernel with regular kernel coordinate, the locations with
zero weights are (for a convolutional layer with N kernels):

Wsw,even(x, y, c, 2m) = 0, if (y × k + x) mod 2 6= 1 and (y 6= bk/2c and x 6= bk/2c),
Wsw,odd(x, y, c, 2m+ 1) = 0, if (y × k + x) mod 2 6= 0

(1)

where m < N
2 , and other non-zero locations are trainable weights. Figure 2 (a) and (b) show the

kernels in both 3D and 2D views for 3× 3 SW-SC kernels.

On the other hand, with the similar idea, the channel-wise sparse-complementary (CW-SC) convo-
lutional kernel sparsifies the kernel in channel domain, and a pair of kernels are complemented to
each other. Thus, one of kernels would take even-indexed feature maps as an input for convolution
and the other kernel would use odd-indexed feature maps. The locations of zero weights can be
equivalently represented as (for a convolutional layer with N kernels):

Wcw,even(x, y, c, 2m) = 0, if c mod 2 6= 1,

Wcw,odd(x, y, c, 2m+ 1) = 0, if c mod 2 6= 0
(2)

where m < N
2 , and other non-zero locations are trainable weights. Figure 2 (c) shows an example

for k×k CW-SC kernels. The major difference between CW-SC and group convolution (Krizhevsky
et al. (2012) is the order of output feature maps. Thus, if two CW-SC layers are deployed consec-
utively, it is different from deploying two consecutive group convolutions. E.g., for CW-SC, every
feature map at layer L+2 gets the information of all feature maps at layer L; however, for the group
convolution, the feature map at layer L+2 only gets the information from either the first half or the
second half feature maps at layer L. In short, we can consider CW-SC embeds channel reordering
on the output feature maps.

3.1.1 RECEPTIVE FIELD OF PROPOSED KERNELS

The proposed complementary kernels are designed to cover the identical receptive field that regular
kernels can cover when they are applied across several layers. Take stacking multiple 3 × 3 con-
volutional layers as an example, Fig. 3 compares the effective receptive field for different types of

3The kernels in a pair are spatially complemented to each other on all positions except for the center point.

(b) 2D view of SW-SC kernels (c) CW-SC kernels

Wcw,even Wcw,odd

…

N

(a) SW-SC kernels

Wsw,even Wsw,odd

N

… …

N

Figure 2: Kernel representations of proposed SW-SC and CW-SC kernels (3× 3 kernel), gray color
denotes the locations of trainable weights. (a) 3D-view of SW-SC kernels, and (b) 2D-view of SW-
SC kernels, for a 3 × 3 convolution, the shapes are + and ×. (c) 3D-view of CW-SC kernels, each
kernel either samples even- or odd-indexed feature maps for convolution.
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kernels and different orders of deployment (Fig. 1 (b) and (c)). We discuss the effective receptive
field of a location (across multiple channels) at Layer L from two previous layers (Layer L− 1 and
L− 2). Figure. 3 (a) is the regular one, stacking conventional layers, and its effective receptive field
is the intact one, i.e. covering everything as expected.

Nonetheless, if we sequentially apply sparse kernels (even-indexed (Wsw,even) and odd-indexed
(Wsw,odd)), like in Fig. 1 (b) (Fan et al. (2017)), the effective receptive field is narrow than the
conventional one. Figure 3 (b) and (c) show the results for applying Wsw,even and Wsw,odd in
different orders. Moreover, if we do not apply sparse and complementary kernel alternatively, more
receptive fields are uncovered.

For the case of SW-SC or CW-SC kernels, we can achieve the same receptive field since the con-
volution operates across input channels. That is, the feature maps at layer L − 1 is derived from
both odd-indexed (×-shape for 3 × 3 kernel) kernels and even-indexed (+-shape for 3 × 3 kernel)
kernels at layer L − 2. Then, when applying one of sparse and complementary kernels on feature
maps of the L−1-th layer, the produced features are able to contain whole receptive field from layer
L−2. Figure 3 (d) and (e) (corresponding to (b) and (c)) show the receptive field of applying SW-SC
kernels. Thanks to the complementary characteristic, most uncovered receptive fields are recovered
(the yellow blocks in Fig. 3.) Therefore, it again justifies the advantages of complementary feature
in designing kernels. The effective receptive field of CW-SC can be derived in a similar approach.
The experimental results show that utilizing complementary patterns within the same layer is better
than applying single pattern within one layer (see Section 4.1.4).

3.2 ENRICHING FEATURE REPRESENTATION UNDER IDENTICAL COMPUTATIONAL BUDGET

Enforcing deterministic sparsity in either spatial or channel domain enables us to utilize the saved
resource budget in both computations and parameters for enriching feature representations in ad-
vance. The straightforward idea is either to increase the number of layers or the number of kernels
in a layer. He & Sun (2015) compared the performance of wider or deeper network; however, their
conclusions show that deeper network is better than the wider network for most cases, but at cer-
tain depth level, the deeper network performed worse than the shallow network. This is because
they did not test on the ResNet architectures, the deeper network might have suffered from gradient
vanishing problem. On the other hand, WideResNet (Zagoruyko & Komodakis (2016)) discussed
the advantages of increasing the number of kernels in a convolutional layer with respect to accuracy
and computational efficiency; furthermore, current NVIDIA GPU is more computational-friendly
for parallelism from multiple kernels within a layer rather than multiple layers with a small number
of kernels. Under similar computational load, the wider networks are always more efficient than
deeper networks for NVIDIA GPU. Details are discussed in Section 4.1.3.

(a) Conventional kernels

Layer L

Layer L-1

Layer L-2

(b) Sequential SW-SC

kernels (×!+)

(c) Sequential SW-SC

kernels (+!×)
(d) Parallel SW-SC

kernels
(e) Parallel SW-SC

kernels

Uncovered receptive field Covered receptive field Covered receptive field by complementary kernel

Figure 3: Receptive fields of different convolutional kernels of a location at a layer (across multiple
channels). (a) Conventional kernels. (b) and (c) apply SW-SC kernels sequentially ((b) applies ×-
shape at layer L − 2 and +-shape at layer L − 1, (c) reverses the order in (b)). (d) and (e) use
SW-SC kernels. Due to the fact that feature maps from the previous layer are extracted by either
even-indexed sparse kernels or odd-indexed sparse kernels, some uncovered receptive field can be
recovered by complementary kernels (highlighted by yellow color).
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Based on these observations, we favor increasing the number of kernels in a convolutional layer
rather than to increase the depth of network. Increasing the number of kernels in a layer also
potentially increase the capability of feature expressivity of the network due to the fact that each
convolutional kernel can combine more input feature maps from the previous layers to represent
more complex features4. Whereas, if we use deeper networks, each layer might be trapped into a
bad feature representation due to the limitation of sparse kernels. The empirical experiments we
performed show that, in most of the cases, both wider and deeper networks were able to achieve
better classification accuracy than baseline, and the wider networks are the best in accuracy (see
Section 4.1.3).

To increase the number of kernels in a layer, we use a control parameterw for all layers in a network,
i.e., the increasing ratio is homogeneous across the whole network. Take ResNet-18 for ImageNet as
an example (He et al. (2016a)), the original number of parameters and FLOPs per pixel of a residual
block is (a residual block contains two 3× 3 convolutional layers in ResNet-18):

3× 3× C × C × 2, (3)

where C is the number of input feature maps and also the number of kernels in the convolutional
layers for simplicity.

For our SW-SC convolutional layer, with the control parameter, w, the number of parameters and
FLOPs per pixel would be:

5× (Cw)× (Cw)× 2, (4)

where 5 comes from five active weights in a 3× 3 kernel, and the number of input feature maps and
the number of kernels in a convolutional layer become Cw when we increase the number kernels in
a layer. Thus, under the constraint of comparative resource budget, we set w to 1.3125 in this case.

4 EXPERIMENTAL RESULTS

To evaluate the proposed spatial-wise and channel-wise sparse-complementary (SW-SC and CW-
SC) convolutional kernels, we applied them onto on state-of-the-art network architectures for the
image classification task, including ResNet (He et al. (2016a;b)) and DenseNet (Huang et al. (2017))
for the CIFAR-10/100 (Krizhevsky & Hinton (2009)) and ImageNet-1K (Russakovsky et al. (2015))
datasets. For all experiments, we replace all 3 × 3 and 1 × 1 kernels by SW-SC and CW-SC con-
volutional kernels, respectively. We add a suffix −sc to refer to our models with either SW-SC,
CW-SC, or both SW-SC and CW-SC for both deeper and wider networks, and we apply the same
increasing ratio (w) for number of kernels for all convolutional layers in a CNN. The setting of w
is varied for different networks because w is derived to match the resource usage to baselines (as
the example in Section 3.2). For ResNet, w is applied for all convolutional layers in residual blocks
and the first 7× 7 convolution for the ImageNet dataset; for DenseNet, w is directly applied on the
growth rate, which is the increasing ratio of channels for each layer. All experiments are completed
by Tensorpack (Wu (2017)), a high-level API for Tensorflow (Abadi et al. (2015)).

4.1 EVALUATION ON CIFAR-10/CIFAR-100

For the CIFAR-10/CIFAR-100 datasets, we evaluate three perspectives, including (I) classification
accuracy, (II) accuracy and effective FLOPs of our deeper and wider networks and (III) the advan-
tages of having complementary kernels in the same layers.

4.1.1 NETWORKS AND TRAINING DETAILS

We use pre-activation ResNet for CIFAR-10/100 (He et al. (2016b)), and we train all ResNets based
on the setting of original work, i.e., data augmentation includes standard translation augmentation
and random flipping in horizontal direction, image standardization is applied, and weights are ini-
tialized based on the method in He et al. (2015); however, we use whole 50k training images for
training rather than splitting training data into 45k and 5k images as the original work did. We

4More kernels result in more output channels and hence more input feature maps are at next layer.
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trained 185 epochs for ResNets with batch size 128, and the momentum is 0.9 and the weight decay
is 0.0001; learning rate is set to 0.01 in the beginning for warm up and then changes to 0.1 after
the first epoch; then, the learning rate is dropped 10 times at 91 and 137 epochs. For DenseNet, we
adopt bottleneck and compression setting in DenseNet (Huang et al. (2017)) and the training setting
of original paper. Most settings are identical to ResNet with following exceptions, including the
trained epochs, batch size and learning rate. The trained epochs are 300 with batch size 64, and the
initial learning rate is 0.1 without warming up and is reduced by 10 times at 150 and 225 epochs.

4.1.2 CLASSIFICATION ACCURACY ON CIFAR-10/100

Figure 4 compares baselines and our deeper and wider networks for all ResNets. We apply only SW-
SC on ResNets since only 3×3 convolutional layer in the network. Our wider networks (ResNet-sc-
wider) consistently surpass the baselines by∼0.5% and∼1% accuracy improvement on the CIFAR-
10 and CIFAR-100 datasets across different depths of the ResNet networks, respectively, without
introducing any complexity. Thus, under identical FLOPs and parameters, our models can utilize
the models more efficient than the baselines, which indicates that having more simpler kernels can
achieve better accuracy (See Table 8 in the supplementary section for details.). Furthermore, for both
CIFAR-10 and CIFAR-100, our wider ResNet-110-sc (w = 1.3125) achieves better performance
than ResNet-164, which increases 1.5× more layers as compared to ResNet-110. Thus, it again
justifies the proposed sparse-complementary kernels can achieve better model utilization. On the
other hand, for DenseNet, we apply both SW-SC and CW-SC on 3×3 and 1×1 convolutional layers
respectively and the results are shown in 2. For CIFAR-10, we see minor performance degradation
but we observe large improvement on CIFAR-100 dataset (0.74%); thus, our model is still better than
the baseline in DenseNet architecture since CIFAR-100 is a more difficult dataset in comparison with
CIFAR-10.

(a) CIFAR-10

(b) CIFAR-100

Figure 4: Error rate (%), FLOPs and # of parameters on the CIFAR-10/100 (C10/C100) datasets,
including baselines and our wider and deeper networks.

4.1.3 COMPARISON BETWEEN OUR DEEPER AND WIDER NETWORKS

Figure 4 also compares our wider and deeper networks, and the wider networks are always bet-
ter than the deeper networks. Thus, it justifies that by giving the same resource budget, the wider
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Table 2: Error rate (%), FLOPs and # of parameters of DenseNet on the CIFAR-10/100 (C10/C100)
and ImageNet datasets. Bold number indicates the best performance among the networks with
similar complexity.

Network C10 C100 ImageNet FLOPs (×109) Params (×106)

DenseNet-121 (k = 12) 4.01% 21.55% − 0.29 0.77
DenseNet-121-sc (k = 12, w = 1.375) 4.24% 20.81% − 0.30 0.78

DenseNet-121 (k = 32) − − 25.13% 2.73 7.97
DenseNet-121-sc (k = 32, w = 1.3125) − − 24.85% 2.75 8.16

Table 3: Effective FLOPs ratio of wider and deeper networks (wider/deeper) at the same FLOPs.
Effective FLOPs = FLOPs

GPU Running Time .

Configuration Effective FLOPs Ratio

ResNet-32-sc (w = 1.3125) / ResNet-50-sc (w = 1.0) 1.085
ResNet-110-sc (w = 1.3125) / ResNet-194-sc (w = 1.0) 1.080
ResNet-164-sc (w = 1.3125) / ResNet-290-sc (w = 1.0) 1.079
The values larger than 1 mean wider networks achieve higher effective FLOPs.

network configuration can be more efficient than the deeper network. Since by having more convo-
lutional kernels, we also extend the dimension of feature maps for exploring better feature represen-
tation at each layer rather than searching better feature representation at deeper layers.

On the other hand, as we discussed in section 3.2, for NVIDIA GPU, the wider networks achieved
effective FLOPs than the deeper networks. Table 3 shows the ratio of effective FLOPs between
wider and deeper SW-SC ResNet at the same FLOPs, and no matter the depth of base networks, the
wider ones are always efficient than the deeper networks.

This is because current GPU is Single-Instruction-Multiple-Thread (SIMT) architecture, which is
more suitable for computing the same instruction concurrently. That is, GPU can exploit higher
parallelism when executing more identical instructions. Hence, if we have more kernels in the same
convolutional layer, GPU can potentially dispatch all kernels onto GPU’s cores to achieve better
hardware utilization for faster speed.

4.1.4 ANALYSIS ON SPARSE-COMPLEMENTARY KERNEL

Table 4 shows the advantages in having complementary kernels at one convolutional layer rather
than separating them into consecutive layers (Fan et al. (2017)). Sparse-complementary convolution
helps the next layer mixing the information from both phases to provide better feature representation
(larger receptive field as shown in Fig. 3). We found out that applying complementary kernels in
the same layer can provide a better growth rate of receptive field, i.e., given the same number of
layers, the receptive field with our approach can be larger. So, we achieve higher improvement on
shallower networks, like ResNet-32 and ResNet-110; however, for ResNet-164, the deeper networks
might compensate insufficient receptive field by its depth, both configurations achieve comparative
results.

4.2 EVALUATION ON IMAGENET

We also apply our SW-SC and CW-SC kernels on ResNet and DenseNet for the ImageNet dataset,
and our networks consistently achieve better accuracy under similar FLOPs and parameters.

4.2.1 NETWORKS AND TRAINING DETAILS

We use normal ResNet5 (He et al. (2016a)) for the experiments on the ImageNet dataset since we
found out that the normal ResNet achieves better accuracy than pre-activation ResNet on ImageNet,

5The normal ResNet means that the shortcut is added after batch normalization but before activation func-
tion.
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Table 4: Error rate (%) among networks on the CIFAR-10/100 (C10/C100) datasets. Bold number
indicates the best performance among the networks with similar complexity. w of all models are set
to 1.3125.

Network C10 C100

ResNet-32-sc 6.26% 28.06%
ResNet-32-sc-seq 6.36% 28.47%

ResNet-110-sc 5.32% 25.24%
ResNet-110-sc-seq 5.51% 25.77%

ResNet-164-sc 5.44% 25.09%
ResNet-164-sc-seq 5.31% 25.15%

and we would like to evaluate performance improvement on top of higher accuracy model by our
method. We train ResNet based on original work but with a minor modification: inside a residual
block, the γ parameter in the last batch normalization layer is initialized to zero (Goyal et al. (2017)),
which lets the information flows fro identity shortcut in the beginning. We also apply color, scale
and shift augmentation for training data (Wu (2017); Gross & Wilber (2016); Szegedy et al. (2015)).
For both ResNet and DenseNet, we initialize weights based on the method in He et al. (2015) and
train 110 epochs with total batch size 256. The momentum is 0.9 and the weight decay is 0.0001;
initial learning rate starts is 0.1 and then it is dropped 10 times at 30, 60, 85, 95 and 105 epoch.

4.2.2 CLASSIFICATION ACCURACY ON IMAGENET

Figure 5 compares baselines and our models. To evaluate the trained model, we resize the shorter
side of an image to 256 with the same aspect ratio, and then crop center region, 224 × 224, to
evaluate top-1 error rate. For ResNet-18 and ResNet-34, we only apply SW-SC kernels since the
residual block is composed of two 3×3 convolutional layers; for other ResNets and DenseNet, both
SW-SC and CW-SC kernels are applied. Again, we achieve significant improvement on ResNet-
18 and ResNet-34 when applying our proposed kernels with w = 1.3125: more than 1% top-1
accuracy as compared to baselines. On the other hand, for ResNet-50, ResNet-101, ResNet-152
and DenseNet-121, those are high accuracy deep CNNs, it is difficult to improve their performance
by simply modifying their micro-architectures. E.g., ResNet-152 outperforms ResNet-101 only
0.44% top-1 accuracy, but ResNet-152 increase 1.5× more layers, which is about 1.5× FLOPs and
parameters, to ResNet-101. Our models can consistently provide better top-1 accuracy, and our
ResNet-101-sc improves 0.33% top-1 accuracy, which boosts its performance close to ResNet-152
without introducing any overhead on FLOPs and parameters as compared to original ResNet-101;
and our ResNet-152-sc provides another ∼ 0.2% improvement (See Table 10 in the supplementary
section for details .). Table 2 shows the same trend on DenseNet-121; without bringing any overhead,
our model gains 0.3% top-1 accuracy.

4.3 BENCHMARK OF SPARSE-COMPLEMENTARY CONVOLUTION ON NVIDIA GPU

In order to practice our SW-SC convolution on NVIDIA GPU with CUDNN, which is optimized
for current state-of-the-art networks and convolutional kernels, we implemented our convolutions
and archived competitive speed under the same computational load. All baselines’ performance
measurement relied on CUDNN 6.0. Thanks to the deterministic sparsity, we can easily revise
original im2col routine to lower an input tensor into a matrix efficiently and then also exploit efficient
matrix multiplication on GPU. We use NVIDIA K80 and Caffe framework (Jia et al. (2014)) for our
speed benchmark. Table 5 compares the speedup ratio over the baselines under identical FLOPs;
the sparse-complementary kernels achieve competitive speed against to highly-optimized CUDNN
(Lavin & Gray (2016)).

4.4 DISCUSSION ON PERFORMANCE BOOST WITH SIMPLE KERNELS

In this chapter, we would like to address the possibility of performance increase with other types of
simple kernels. Our proposal which increases accuracy based on the increased number of kernels
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Table 5: GPU speed comparison of SW-SC and regular convolution under similiar computations.

Configuration Input tensor Convolutional layer Speed up
N × C ×H ×W ∗ k × k, K†

A 32× 672× 14× 14 3× 3, 672 SW-SC 1.00×
32× 512× 14× 14 3× 3, 512

B 32× 672× 7× 7 3× 3, 672 SW-SC 0.99×
32× 512× 7× 7 3× 3, 512

C 32× 1344× 7× 7 3× 3, 1344 SW-SC 1.21×
32× 1024× 7× 7 3× 3, 1024

∗: N : batch size, C: channels, H: height, W : width.
†: k: kernel size, K: number of kernels.
Stride and padding in convolutional layers are 1; w is set to 1.3125.

relies on computation savings from its simpler convolution compared to 3 × 3 regular convolution.
It means that 1 × 3, 3 × 1 kernels (Ioannou et al. (2016)) would have more chances to increase the
number of kernels for boosting the accuracy consequently. In our additional experiments, as ex-
pected, these kernels showed the similar performance gain as well, since those kernels also have full
receptive coverage of regular convolution like our complementary kernels. However, in this paper,
we focused on the effects sparse-complementary kernel for some reasons6, therefore, comparing
benefits of different shapes of kernels is not part of purpose of this paper. But it seem clear that our
performance boost proposal can be applicable for other types of simpler kernels, including 1 × 3,
3× 1 and mixed-shape kernels, eventually.

4.5 COMPARISON WITH OTHER WORKS

To validate our kernel design, we compared our work with Ioannou et al. (2016), which uses 1× k,
k×1, and 1×1 convolutions to replace 3×3 convolutions. We use ResNet-50 as the case study (we
trained the networks by ourselves), and the results are shown in Table 6. Under bottleneck residual
block used in ResNet-50, the features are embedded into low-dimension space before applying non
1× 1 convolutions; thus, 1× 3 and 3× 1 convolutions are not enough to approximate original 3× 3
for better performance in low-dimension space. Even with wider network setting, the performance is
worse than baseline. (Note that 1× 3 and 3× 1 are rank-1 kernels and they are not complemented.).
On the other hand, our SW-SC kernels are rank-2 (+-shape) and rank-3 (×-shape), which provide

6One of the reason is the complementary × and + kernels are more suitable for computer vision task by
nature. We are investigating its potential for different tasks such as localization, segmentation, etc. in parallel.

(a) FLOPs vs. Error Rate (b) Parameters vs. Error Rate

Figure 5: Comparison between baselines and our models for all ResNets on ImageNet. Our models
consistently provide better accuracy and model utilization.

10
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better approximation; furthermore, our kernels are complementary, they are able to complement
each other to learn better feature representation for higher accuracy.

On the other hand, interleaved group convolution (IGC) (Zhang et al. (2017)) uses group convolution
with permutation to leverage the shortage of applying group convolution consecutively, and hence,
they achieve better parameter utilization. Logically, CW-SC might be reduced to IGC whose group
numbers are 2 for both group convolutions; however, there are a little different in implementation.
IGC splits a group convolution and a permutation into two stages but CW-SC embeds the permu-
tation into convolution, which provides more advantages in hardware implementation (ASIC and
FPGA). Permutation process usually involves data movement and hence a temporary buffer might
be required to swap data to different addresses. Thus, by embedding the permutation into convo-
lution, our CW-SC has the potential to be more efficient than IGC in implementation even though
they achieve identical algorithmic performance. We compare our SW-SC with IGC and the results
are shown in Table 7. We find that the SW-SC surpasses IGC by 1 2% points except for the ex-
treme case (IGC-L100M2), which is similar to XceptionNet. Furthermore, we also integrated IGC
with our SW-SC (ResNet-18-sc-IGC-L16M16 (w = 1.5), we can achieve another 1.8% improve-
ment over original IGC-L16M16+Identity, which justify the orthogonality between two works (If we
compare with the reproduced IGC-L16M16, we achieve 2.4% improvement without any overhead
on computations and parameters.).

Table 6: Error rate (%), FLOPs and # of parameters among networks on ImageNet. Single crop
validation errors on a 224 × 224 crop is reported. Bold number indicates the best performance
among the networks with similar complexity.

Network Top-1 Top-5 FLOPs (×109) Params (×106)

ResNet-50 23.61% 6.85% 4.09 25.55
Ioannou et al. (2016) (w = 1.125) 24.46% 7.42% 3.86 24.10
Ioannou et al. (2016)∗ (w = 1.1875) 24.17% 7.23% 4.00 24.93
ResNet-50-sc (w = 1.28125) (Ours) 23.35% 6.74% 3.87 25.25
∗:Only using 1×3 and 3×1 convolutions to replace 3×3 convolutions, so the width ratio is increased.

Table 7: Error rate (%), FLOPs and # of parameters among networks on ImageNet. Single crop
validation errors on a 224× 224 crop is reported.

Network Top-1 Top-5 FLOPs (×109) Params (×106)

ResNet-18 29.66% 10.50% 1.81 11.69
IGC-L4M32+Ident.(Zhang et al. (2017))∗ 30.77% 10.99% 1.90 11.21
IGC-L16M16+Ident.(Zhang et al. (2017))∗ 29.40% 10.99% 2.20 11.33
IGC-L16M16+Ident.(Zhang et al. (2017))† 30.03% 11.21% 2.26 13.53
IGC-L100M2+Ident.(Zhang et al. (2017))∗ 26.95% 8.92% 1.3 8.61
ResNet-18-sc (w = 1.3125) (Ours) 28.06% 9.80% 1.79 11.51
ResNet-18-sc-IGC-L16M16 (w = 1.5) 27.59% 9.48% 2.35 13.15
∗:Number reported in their paper. †: Reproduced by using Tensorpack.

5 CONCLUSION

We propose an efficient way to utilize model parameters for better accuracy without increasing any
computational complexity and parameters. Due to the fact that the proposed sparse-complementary
kernel has almost perfect coverage of receptive field only with half of computations, it achieves
better results when we increase the number of kernels to match the computation amounts compared
to regular convolution. Under the same computational budgets, we always achieve better perfor-
mance in the classification task. We also demonstrate that the sparse-complementary convolutions
can achieve competitive running speed on GPU in practice for most cases. Since our proposed per-
formance boost using simpler kernel shows promising result with high model utilization, it will be
worth investigating other types of simpler kernels for improving performance.
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6 SUPPLEMENTARY MATERIALS

6.1 MORE ANALYSIS ON SW-SC AND CW-SC

Table 8: Error rate (%), FLOPs and # of parameters among networks on the CIFAR-10/100
(C10/C100) datasets. Bold number indicates the best performance among the networks with similar
complexity.

Network C10 C100 FLOPs (×106) Params (×106)

ResNet-32 6.88% 29.19% 69.1 0.47
ResNet-50-sc (w = 1.0) 6.37% 29.11% 62.3 0.43
ResNet-32-sc-comb (w = 1.875) 6.53% 28.94% 68.6 0.47
ResNet-32-sc† (w = 1.3125) 6.77% 28.83% 66.5 0.45
ResNet-32-sc (w = 1.0) 7.13% 30.43% 38.7 0.26
ResNet-32-sc (w = 1.3125) 6.26% 28.06% 66.5 0.45

ResNet-110 5.70% 27.38% 253.1 1.73
ResNet-194-sc (w = 1.0) 6.04% 26.60% 251.1 1.73
ResNet-110-sc-comb (w = 1.875) 5.39% 25.65% 248.3 1.72
ResNet-110-sc† (w = 1.3125) 5.56% 25.72% 242.6 1.66
ResNet-110-sc (w = 1.0) 5.51% 27.85% 141.0 0.966
ResNet-110-sc (w = 1.3125) 5.32% 25.24% 242.6 1.66

ResNet-164 5.63% 26.23% 380.6 2.62
ResNet-290-sc (w = 1.0) 5.56% 25.53% 376.9 2.59
ResNet-164-sc-comb (w = 1.875) 5.54% 25.31% 372.7 2.57
ResNet-164-sc† (w = 1.3125) 5.87% 25.59% 364.6 2.50
ResNet-164-sc (w = 1.0) 5.93% 26.60% 211.7 1.46
ResNet-164-sc (w = 1.3125) 5.44% 25.09% 364.6 2.50
-comb: combine SW-SC and CW-SC., †:Use the kernel shape in Fig. 6 for SW-SC.

SW-SC kernel The SW-Sc kernels are designed to approximate the receptive field of original dense
kernels; however, by simply replacing dense kernels by SW-SC, we might degrade algorithmic per-
formance but reduce model complexity. Table 8 compares the original ResNets and the ones use
SW-SC without increasing the width (w = 1.0). In most case, SW-SC (w = 1.0) degrades accuracy
slightly and sometimes it also improves the performance (ResNet-110 on CIFAR-10); however, SW-
SC (w = 1.0) reduces the FLOPs and parameters about 1.8×, which increases model utilization.
Table 9 shows real speedup of SW-SC (w = 1.0) over dense kernels when given the same con-
figuration of an input tensor and a convolutional layer, and the used deep learning framework and
measurement methods are identical to section 4.3. Our SW-SC convolution achieve 1.8× speedup
theoretically, and our implementation can achieve close speed up as compared to highly-optimized
CUDNN when an input tensor with more channels (e.g. configuration D, E and F.).

Combination of SW-SC and CW-SC Due to the orthogonality of SW-SC and CW-SC, we combine
them together and evaluate them on CIFAR-10/100. We use ResNet as the base network and use
both SW-SC and CW-SC on every 3 × 3 convolutions in the residual block. Thanks to the saving
on CW-SC, we can enlarge the network to w = 1.875 (sc-comb); however, each kernel will be too
sparse to capture meaningful features (about 25% parameters of the original kernel); therefore, even
with more kernels, its performance is only competitive to the one uses only SW-SC on 3× 3 kernels
(See Table 8 for details).

Figure 6: Another SW-SC kernels.
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Other shapes of SW-SC In this paper, for 3 × 3 kernel, we propose to use + and × shape as our
base kernels; however, other shapes of sparse kernels might be able to achieve the same receptive
field. Thus, we use another set of SW-SC kernels (SW-SC†) to validate our selection is the better
choice according to the nature of computer vision application. SW-SC† is composed of the shapes
in Fig. 6 (both are rank-2). As shown in Table 8, it empirically justifies the inappropriate selection
of sparse-complementary kernels degrades the performance.

Table 9: GPU speed up of SW-SC convolution to conventional convolution.

Configuration Input tensor Convolutional layer Speedup
N × C ×H ×W ∗ k × k, K†

A 32× 256× 28× 28 3× 3, 256 1.22×
B 32× 256× 28× 28 3× 3, 512 1.40×
C 32× 512× 14× 14 3× 3, 256 1.48×
D 32× 512× 14× 14 3× 3, 512 1.77×
E 32× 1024× 7× 7 3× 3, 512 1.68×
F 32× 1024× 7× 7 3× 3, 1024 1.98×

∗: N : batch size, C: channels, H: height, W : width.
†: k: kernel size, K: number of kernels.

6.2 EXPERIMENTAL RESULTS ON IMAGENET

Table 10 shows the details on the experiments for ImageNet.

Table 10: Error rate (%), FLOPs and # of parameters among networks on ImageNet. Single crop
validation errors on a 224 × 224 crop is reported. Bold number indicates the best performance
among the networks with similar complexity.

Network Top-1 Top-5 FLOPs (×109) Params (×106)

ResNet-18 29.66% 10.50% 1.81 11.69
ResNet-18-sc (w = 1.3125) 28.06% 9.80% 1.79 11.51

ResNet-34 26.17% 8.56% 3.66 21.80
ResNet-34-sc (w = 1.3125) 25.13% 7.94% 3.56 21.18

ResNet-50 23.61% 6.85% 4.09 25.55
ResNet-50-sc (w = 1.28125) 23.35% 6.74% 3.87 25.25

ResNet-101 21.95% 6.04% 7.80 44.54
ResNet-101-sc (w = 1.3125) 21.62% 5.89% 7.45 43.77

ResNet-152 21.51% 5.78% 11.51 60.19
ResNet-152-sc (w = 1.34375) 21.33% 5.64% 11.35 60.79
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