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ABSTRACT

Pointwise localization allows more precise localization and accurate interpretability,
compared to bounding box, in applications where objects are highly unstructured
such as in medical domain. In this work, we focus on weakly supervised localiza-
tion (WSL) where a model is trained to classify an image and localize regions of
interest at pixel-level using only global image annotation. Typical convolutional
attentions maps are prune to high false positive regions. To alleviate this issue,
we propose a new deep learning method for WSL, composed of a localizer and a
classifier, where the localizer is constrained to determine relevant and irrelevant
regions using conditional entropy (CE) with the aim to reduce false positive regions.
Experimental results on a public medical dataset and two natural datasets, using
Dice index, show that, compared to state of the art WSL methods, our proposal
can provide significant improvements in terms of image-level classification and
pixel-level localization (low false positive) with robustness to overfitting. A public
reproducible PyTorch implementation is provided.

1 INTRODUCTION

Pointwise localization is an important task for image understanding, as it provides crucial clues to
challenging visual recognition problems, such as semantic segmentation, besides being an essential
and precise visual interpretability tool. Deep learning methods, and particularly convolutional neural
networks (CNNs), are driving recent progress in these tasks. Nevertheless, despite their remarkable
performance, their training requires large amounts of labeled data, which is time consuming and
prone to observer variability. To overcome this limitation, weakly supervised learning (WSL) has
emerged recently as a surrogate for extensive annotations of training data (Zhou, 2017). WSL
involves scenarios where training is performed with inexact or uncertain supervision. In the context
of pointwise localization or semantic segmentation, weak supervision typically comes in the form of
image level tags (Kervadec et al., | 2019; Kim et al., 2017} [Pathak et al.l 2015} Teh et al., 2016} |Wei
et al.,[2017), scribbles (Lin et al., [2016} [Tang et al., | 2018) or bounding boxes (Khoreva et al., 2017).

Current state-of-the-art WSL methods rely heavily on pixelwise activation maps produced by a CNN
classifier at the image level, thereby localizing regions of interest (Zhou et al.||2016). Furthermore,
this can be used as an interpretation of the model’s decision (Zhang & Zhu, |2018)). The recent
literature abounds of WSL works that relax the need of dense and prohibitively time consuming
pixel-level annotations (Rony et al., 2019). Bottom-up methods rely on the input signal to locate
regions of interest, including spatial pooling techniques over activation maps (Durand et al., 2017;
Oquab et al.| 2015} [Sun et al.| [2016; Zhang et al.| [2018bj Zhou et al.,2016), multi-instance learning
(Ilse et al., [2018)) and attend-and-erase based methods (Kim et al.,[2017; L1 et al.| 2018}, |Pathak et al.,
2015; Singh & Lee}, 2017; |Wei et al., [2017). While these methods provide pointwise localization, the
models in (Bilen & Vedaldi, [2016} Kantorov et al.,2016;|Shen et al.| 2018 Tang et al.,2017; [Wan
et al., 2018) predict a bounding box instead, i.e., perform weakly supervised object detection. Inspired
by human visual attention, top-down methods rely on the input signal and a selective backward signal
to determine the corresponding region of interest. This includes special feedback layers (Cao et al.|
2015)), backpropagation error (Zhang et al., [2018a) and Grad-CAM (Chattopadhyay et al., 2018
Selvaraju et al.,|2017).

In many applications, such as in medical imaging, region localization may require high precision such
as cells, boundaries, and organs localization; regions that have an unstructured shape, and different
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scale that a bounding box may not be able to localize precisely. In such cases, a pointwise localization
can be more suitable. The illustrative example in Fig[T] (bottom row) shows a typical case where
using a bounding box to localize the glands is clearly problematic. This motivates us to consider
predicting a mask instead of a bounding box. Consequently, our latter choice of evaluation datasets is
constrained by the availability of both global image annotation for training and pixel-level annotation
for evaluation. In this work, we focus on the case where there is one object of interest in the image.

X Undecidelxblleil r(;g;,‘i())él_for all classes @ X *: Decidable region for all classes
max H(Y|X™) @ min H(Y|X™*)

Figure 1: Top row: Intuition of our proposal. A decidable region covers all the discriminative parts,
while an undecidable region covers all the non-discriminative parts. (See Sec3|for notation.) Bottom
row: Example of test samples from different classes of the GlaS dataset, where the annotated glands
are regions of interest, and the remaining tissue is noise/background. Note the glands’ different
shapes, size, context, and multiple instances aspect.

Often, within an agnostic-class setup, input image contains the object of interest among other
irrelevant parts (noise, background). Most the aforementioned WSL methods do not consider such
prior, and feed the entire image to the model. In such scenario, (Wan et al., 2018]) argue that there is an
inconsistency between the classification loss and the task of WSL; and that typically the optimization
may reach sub-optimal solutions with considerable randomness in them, leading to high false positive
localization. False positive localization is aggravated when a class appears in different and random
shape/structure, or may have relatively similar texture/color to the irrelevant parts driving the model
to confuse between both parts. False positive regions can be problematic in critical domains such
as medical applications where interpretability plays a central role in trusting and understanding an
algorithm’s prediction. To address this important issue, and motivated by the importance of using
prior knowledge in learning to alleviate overfitting when training using few samples (Belharbi et al.}
2017; |Krupka & Tishbyl [2007; Mitchell, 19805 Yu et al., 2007)), we propose to use the aforementioned
prior in order to favorite models with low false positive localization. To this end, we constrain the
model to learn to localize both relevant and irrelevant regions simultaneously in an end-to-end manner
within a WSL scenario, where only image-level labels are used for training. We model the relevant
(discriminative) regions as the complement of the irrelevant (non-discriminative) regions (Fig[I). Our
model is composed of two sub-models: (1) a localizer that aims to localize both types of regions
by predicting a latent mask, (2) and a classifier that aims to classify the visible content of the input
image through the latent mask. The localizer is driven through CE (Cover & Thomas| [2000) to
simultaneously identify (1) relevant regions where the classifier has high confidence with respect
to the image label, (2) and irrelevant regions where the classifier is being unable to decide which
image label to assign. This modeling allows the discriminative regions to pop out and be used to
assign the corresponding image label, while suppressing non-discriminative areas, leading to more
reliable predictions. In order to localize complete discriminative regions, we extend our proposal
by training the localizer to recursively erase discriminative parts during training only. To this end,
we propose a consistent recursive erasing algorithm that we incorporate within the backpropagation.
At each recursion, and within the backpropagation, the algorithm localizes the most discriminative
region; stores it; then erases it from the input image. At the end of the final recursion, the model has
gathered a large extent of the object of interest that is fed next to the classifier. Thus, our model is
driven to localize complete relevant regions while discarding irrelevant regions, resulting in more
reliable region localization. Moreover, since the discriminative parts are allowed to be extended over
different instances, our proposal handles multi-instances intrinsically.

The main contribution of this paper is a new deep learning framework for WSL at pixel level. The
framework is composed of two sequential sub-networks where the first one localizes regions of
interest, whereas the second classifies them. Based on CE, the end-to-end training of the framework
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allows to incorporate prior knowledge that, an image is more likely to contain relevant and irrelevant
regions. Throughout the CE measured at the classifier level, the localizer is driven to localize
relevant regions (with low CE) and irrelevant regions (with high CE). Such localization is achieved
with the main goal of providing a more interpretable and reliable regions of interest with low false
positive localization. This paper also contributes a consistent recursive erasing algorithm that is
incorporated within backpropagation, along with a practical implementation in order to obtain
complete discriminative regions. Finally, we conduct an extensive series of experiments on three
public image datasets (medical and natural), where the results show the effectiveness of the proposed
approach in terms of pointwise localization (measured with Dice index) while maintaining competitive
accuracy for image-level classification.

2 BACKGROUND ON WSL

In this section, we briefly review state of the art of WSL methods, divided into two main categories,
aiming at pointwise localization of regions of interest using only image-level labels as supervision. (1)
Fully convolutional networks with spatial pooling have shown to be effective to obtain localization of
discriminative regions (Durand et al.,2017;|Oquab et al.,[2015}|Sun et al.| 2016; Zhang et al.,|2018b;
Zhou et al.,|2016). Multi-instance learning methods have been used within an attention framework to
localize regions of interest (llse et al.| 2018)). (Singh & Lee} 2017} propose to hide randomly large
patches in training image in order to force the network to seek other discriminative regions to recover
large part of the object of interest, since neural networks often provide small and most discriminative
regions of object of interest (Kim et al.| 2017} |Singh & Lee, |2017; Zhou et al., 2016). (Wei et al.,
2017) use the attention map of a trained network to erase the most discriminative part of the original
image. (Kim et al., |2017) use two-phase learning stage where the attention maps of two networks are
combined to obtain a complete region of the object. (Li et al.,2018) propose a two-stage approach
where the first network classifies the image, and provides an attention map of the most discriminative
parts. Such attention is used to erase the corresponding parts over the input image, then feed the
resulting erased image to a second network to make sure that there is no discriminative parts left.
(2) Inspired by the human visual attention, top-down methods were proposed. In (Simonyan et al.|
2014} |Springenberg et al., 2015} |Zeiler & Fergusl 2014)), backpropagation error is used in order to
visualize saliency maps over the image for the predicted class. In (Cao et al.| 2015), an attention
map is built to identify the class relevant regions using feedback layer. (Zhang et al.,|2018a)) propose
Excitation backprop that allows to pass along top-down signals downwards in the network hierarchy
through a probabilistic framework. Grad-CAM (Selvaraju et al.l 2017) generalize CAM (Zhou et al.|
2016)) using the derivative of the class scores with respect to each location on the feature maps; it has
been furthermore generalized in (Chattopadhyay et al.,|2018). In practice, top-down methods are
considered as visual explanatory tools, and they can be overwhelming in term of computation and
memory usage even during inference.

While the aforementioned approaches have shown great success mostly with natural images, they still
lack a mechanism for modeling what is relevant and irrelevant within an image which is important
to reduce false positive localization. This is crucial for determining the reliability of the regions
of interest. Erase-based methods (Kim et al., 2017} L1 et al.| [2018}; [Pathak et al.| [2015} [Singh &
Leel 2017} |Wei et al.L 2017)) follow such concept where the non-discriminative parts are suppressed
through constraints, allowing only the discriminative ones to emerge. Explicitly modeling negative
evidence within the model has shown to be effective in WSL (Azizpour et al.| 2015; |Durand et al.,
2017;12016; |Pariz1 et al., [2015)).

Our proposal is related to (Behpour et al., 2019; [Wan et al.|[2018)) in using entropy-measure to explore
the input image. However, while (Wan et al., 2018)) defines an entropy over the bounding boxes’
position to minimize its variance, we define a CE over the classifier to be low over discriminative
regions, while being high over non-discriminative ones. Our recursive erasing algorithm follows
general erasing and mining techniques (Kim et al., 2017;|L1 et al., |2018; Singh & Lee, [2017; Wan
et al., 2018 Wei et al.| 2017), but places more emphasis on mining consistent regions, and being
performed on the fly during backpropagation. For instance, compared to (Wan et al.| |2018)), our
algorithm attempts to expand regions of interest, accumulate consistent regions while erasing, provide
automatic mechanism to stop erasing over samples independently from each other. However (Wan
et al.,|2018) aims to locate multiple instances without erasing, and use manual/empirical threshold for
assigning confidence to boxes. Our proposal can be seen as a guided dropout (Srivastava et al., 2014)).
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While standard dropout is applied over a given input image to randomly zero out pixels, our proposed
approach seeks to zero out irrelevant pixels and keep only the discriminative ones that support the
image label. From this perspective, our proposal mimics a discriminative gate that inhibits irrelevant
and noisy regions while allowing only informative and discriminative regions to pass through the
gate.

3 THE MIN-MAX ENTROPY FRAMEWORK FOR WSL

Notations and definitions: Let us consider a set of training samples D = {(X;, y;)}}_, where X;
is an input image with depth d, height h, and width w; a realization of the discrete random variable
X with support set X'; y; is the image-level label (i.e., image class), a realization of the discrete
random variable y with support set Y = {1,--- , c}. We define a decidable regionﬂ of an image as
any informative part of the image that allows predicting the image label. An undecidable region is
any noisy, uninformative, and irrelevant part of the image that does not provide any indication nor
support for the image class. To model such definitions, we consider a binary mask M+ € {0, 1}x®
where a location (r, z) with value 1 indicates a decidable region, otherwise it is an undecidable region.
We model the decidability of a given location (r, z) with a binary random variable M. Its realization
is m, and its conditional probability p,, over the input image is defined as follows,

1 if X (r, 2) is a decidable region ,
0 otherwise.

pM(mle,(r,z)):{ (1)
We note M~ € {0,1}"**% = U — M+ a binary mask indicating the undecidable region, where
U = {1}"**. We consider the undecidable region as the complement of the decidable one. We
can write: [|[M™]||,+ ||[M~||, = h X w, where |-||, is the l; norm. Following such definitions,
an input image X can be decomposed into two images as X = X ® M+ + X © M —, where
(- ®-) is the Hadamard product. We note X+ =X ®© M, and X~ = X © M~. X inherits
the image-level label of X. We can write the pair (X", ;) in the same way as (X;, ;). We note
by R}, and R; as the respective approximation of M;", and M, . We are interested in modeling
the true conditional distribution p(Y|X) where p(Y = y;|X = X;) = 1. p(Y]|X) is its estimate.
Following the previous discussion, predicting the image label depends only on the decidable region,
i.e., X*. Thus, knowing X ~ does not add any knowledge to the prediction, since X ~ does not
contain any information about the image label. This leads to: p(Y|X = X) =p(Y|X = X ). Asa
consequence, the image label is conditionally independent of X ~ provided X ™ (Koller & Friedman),
2009): p Y L X~ |X*, where Xt, X~ are the random variables modeling the decidable and the
undecidable regions, respectively. In the following, we provide more details on how to exploit such
conditional independence property in order to estimate R+ and R™.

Min-max entropy: We consider modeling the uncertainty of the model prediction over decidable, or
undecidable regions using conditional entropy (CE). Let us consider the CE of Y|X = X, denoted
H(Y|X = X) and computed as (Cover & Thomas, 2006),

H(Y|X=X") :—Zﬁ(Y|X:X+) logp(Y[X =XT). 2)

yey
Since the model is required to be certain about its prediction over X ™, we constrain the model to
have low entropy over X +. Eq reaches its minimum when the probability of one of the classes is
certain, i.e., (Y = y|X = X*) = 1 (Cover & Thomas, 2006). Instead of directly minimizing Eq
and in order to ensure that the model predicts the correct image label, we cast a supervised learning
problem using the cross-entropy between p and p using the image-level label of X as a supervision,

H(pi,pi)" ==Y p(Y =y[X = X;") logp(Y = ¢y|X = X;') = —logp(uil X;") . 3)
yeY

Eq[3|reaches its minimum at the same conditions as Eq[2| with the true image label as a prediction. We
note that Eq is the negative log-likelihood of the sample (X, y;). In the case of X ~, we consider

the CE of Y|X = X, denoted H(Y|X = X ) and computed as,

H(YX =X")=—Y p(YX")logp(Y[X"). )
yeY

'In this context, the notion of region indicates one pixel.
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Over irrelevant regions, the model is required to be unable to decide which image class to predict
since there is no evidence to support any class. This can be seen as a high uncertainty in the model
decision. Therefore, we consider maximizing the entropy of Eq4] The later reaches its maximum
at the uniform distribution (Cover & Thomas| 2006). Thus, the inability of the model to decide is
reached since each class is equiprobable. An alternative to maximizing Eqf]is to use a supervised
target distribution since it is already known (i.e., uniform distribution). To this end, we consider q as
a uniform distribution, ¢(Y = y|X = X, ) = 1/c¢,Vy € YV, and caste a supervised learning setup
using a cross-entropy between ¢ and p over X —,

LN _ . _ 1 . _
H(gi,pi)” = — Y q(Y =y|X = X;) logp(Y = y|X = X, ) = . > logpylX;) . ()
yey yey

The minimum of Eqis reached when p(Y|X = X ) is uniform, thus, Eq reaches its maximum.
Now, we can write the total training loss to be minimized as,

min B [H(p:,p:)" +H(g,5:)7] - (6)

(Xi,y:)€ED

The posterior probability p is modeled using a classifier C(. ,8¢) with a set of parameters Oc; it
can operate either on X ;" or X . The binary mask R (and R;) is learned using another model
M(X;; Oq) with a set of parameters 0 o4. In this work, both models are based on neural networks
(fully convolutional networks (Long et al 2015)) in particular). The networks M and C can be seen
as two parts of one single network G that localizes regions of interest using a binary mask, then
classifies their content. Fig[2]illustrates the entire model. Due to the depth of G, M receives its
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Figure 2: Our proposed method. The recursive mining is done only during training (See Sec[A.T).

supervised gradient based only on the error made by C. In order to boost the supervised gradient
at M, and provide it with more hints to select the most discriminative regions with respect to the
image class, we consider using a secondary classification task at the output of M to classify the input
X, following (Lee et al.L[2015). M computes the posterior probability 5*(Y | X ) which is another
estimate of p(Y'| X ). To this end, M is trained to minimize the cross-entropy between p and p°,

H(p;,p;) = —logp*(Y = y;|X = X;) . @)
The total training loss to minimize is formulated as,
min E  [H(pi,p:)" +H(g,p:)” +H(pi, )] - ()

{6rm,0c} (Xi,y:)ED

Mask computation and recursive erasing: The mask R™ is computed using the last feature maps
of M which contains high abstract descriminative activations. We note such feature maps by a
tensor A; € RO" *»" that contains a spatial map for each class. R;" is computed by aggregating the
spatial activation of all the classes as, T; = >, _, p°(Y = k|X = X;) A;(k) , where T}, € R xw’
is the continuous downsampled version of R}, and A;(k) is the feature map of the class k of
the input X;. At convergence, the posterior probability of the winning class is pushed toward 1
while the rest is pushed down to 0. This leaves only the feature map of the winning classe. Tj is
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upscaled using interpolation (SecA.2) to T't; € R"** which has the same size as the input X, then
pseudo-thresholded using a sigmoid function to obtain a pseudo-binary R;r,

pm(m = 1|X;, (r,2)) = 1/(1 + exp(—w x (T1,(r,2) — '), 9)

where w is a constant scalar that ensures that the sigmoid approximately equals to 1 when T'1,(r, z)
is larger than ¢’, and approximately equals to 0 otherwise. At this point, R~ may still contain
discriminative regions. To alleviate this issue, we propose a learning incremental and recursive
erasing approach that drives M to mine complete discriminative regions. The mining algorithm
is consistent, sample dependent, it has a maximum recursion depth u, associates trust coefficients
to each recursion, integrated within the backpropagation, operates only during training, and has a
practical implementation. Due to space limitation, we left it in the supplementary material (Sec[A.T).

4 RESULTS AND ANALYSIS

Our experiments focus simultaneously on classification and pointwise localization tasks. Thus, we
consider datasets that provide both image and pixel-level labels for evaluation. Particularly, the
following three datasets are considered: GlaS in medical domain, and CUB-200-2011 and Oxford
flower 102 on natural scene images. (1) GlaS dataset, one of the rare medical datasets that fits our
scenario (Rony et all |2019), was provided in the 2015 Gland Segmentation in Colon Histology
Images Challenge Contes (Sirinukunwattana et al.}|2017)). The main task of the challenge is gland
segmentation of microscopic images. However, image-level labels were provided as well. The dataset
is composed of 165 images derived from 16 Hematoxylin and Eosin (H&E) histology sections of two
grades (classes): benign, and malignant. It is divided into 84 samples for training, and 80 samples
for test. Images have a high variation in term of gland shape/size, and overall H&E stain. In this
dataset, the glandes are the regions of interest that the pathologists use to prognosis the image grading
of being benign or malignant. (2) CUB-200-2011 datasetﬂ (Wah et al., [2011)) is a dataset for bird
species with 11, 788 samples and 200 species. Preliminary experiments were conducted on small
version of this datatset where we selected randomly 5 species and build a small dataset with 150
samples for training, and 111 for test; referred to in this work as CUBS5. The entire dataset is referred
to as CUB. In this dataset, the regions of interest are the birds. (3) Oxford flower IOQEI (Nilsback &
Zisserman), 2007) datatset is collection of 102 species (classes) of flowers commonly occurring in
United Kingdom; referred to here as OxF. It contains a total of 8, 189 samples. We used the provided
splits for training (1, 020 samples), validation (1, 020 samples) and test (6, 149 samples) sets. Regions
of interest are the flowers which were segmented automatically. In GlaS, CUBS5 and CUB datasets,
we randomly select 80% of training samples for effective training, and 20% for validation to perform
early stopping. We provide in our public code the used splits and the deterministic code that generated
them for the different datasets.

In all the experiments, image-level labels are used during training/evaluation, while pixel-level labels
are used exclusively during evaluation. The evaluation is conducted at two levels: at image-level
where the classification error is reported, and at the pixel-level where we report F1 score (Dice index)
over the foreground (region of interest), referred to as F17. When dealing with binary data, F1 score
is equivalent to Dice index. We report as well the F1 score over the background, referred to as F1~,
in order to measure how well the model is able to identify irrelevant regions. We compare our method
to different methods of WSL. Such methods use similar pre-trained backbone (resent18 (He et al.,
2016)) for feature extraction and differ mainly in the final pooling layer: CAM-Avg uses average
pooling (Zhou et al.| 2016), CAM-Max uses max-pooling (Oquab et al.,[2015), CAM-LSE uses an
approximation to maximum (Pinheiro & Collobert, [2015} [Sun et al.| 2016), Wildcat uses the pooling
in (Durand et al.;, 2017), Grad-CAM (Selvaraju et al., 2017), and Deep MIL is the work of (llse et al.,
2018) with adaptation to multi-class. We use supervised segmentation using U-Net (Ronneberger
et al.l 2015) as an upper bound of the performance for pixel-level evaluation (Full sup.). As a
simple baseline, we use a mask full of 1 with the same size of the image as a constant prediction of
regions of interest to show that F1™ alone is not an efficient metric to evaluate pixel-level localization
particularly over GlaS set (All-ones, Tab. In our method, M and C share the same pre-trained
backbone (resnet101 (He et al., |2016))) to avoid overfitting while using (Durand et al., [2017) as a

2Gla$: warwick.ac.uk/fac/sci/dcs/research/tia/glascontest.
3CUB-200-2011: www.vision.caltech.edu/visipedia/CUB-200-2011.html
*Oxford flower 102: http://www.robots.ox.ac.uk/ vgg/data/flowers/102/
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Table 1: Image level performance over GlaS, CUBS, CUB, and OxF test sets.

Image level
Method Classification error (%)
\ GlaS \ CUBS \ CUB \ OxF

CAM-Avg (Zhou et al.|[2016) 0.00 | 13.79 | 24.62 13.04
CAM-Max (Oquab et al.||2015) 1.25 | 69.65 | 30.30 | 28.60
CAM-LSE (Pinheiro & Collobert|2015]|Sun et al.|[2016) | 1.25 | 84.13 | 28.44 | 27.35
Wildcat (Durand et al.[[2017) 1.25 | 22.75 | 22.12 | 13.01
Deep MIL (Ilse et al.|[2018) 2.50 | 12.41 24.74 12.14
Grad-CAM (Selvaraju et al.|2017) 0.00 | 11.03 24.62 13.04
Ours (u = 4) | 0.00 | 10.34 | 26.73 | 19.98

pooling function. All methods are trained using stochastic gradient descent using momentum. In our
approach, we use the same hyper-parameters over all datasets, while other methods require adaptation
to each dataset. We provide the datasets splits, more experimental details, and visual results in the
supplementary material (Sec[B). Our reproducible code is publicly available.

A comparison of the obtained results of different methods, over all datasets, is presented in Tab{I]
and Tab[2] with visual results illustrated in Fig[3] In Tab[2} and compared to other WSL methods, our
method obtains relatively similar F17 score; while it obtains large F1~ over GlaS where it may be
easy to obtain high F17 by predicting a mask full of 1 (Fig. However, a model needs to be very
selective in order to obtain high F1~ score in order to localize tissues (irrelevant regions) where our
model seems to excel at. Cub5 set seems to be more challenging due to the variable size (from small
to big) of the birds, their view, the context/surrounding environment, and the few training samples.
Our model outperforms all the WSL methods in both F1* and F1~ with a large gap due mainly to its
ability to discard non-discriminative regions which leaves it only with the region of interest, the bird
in this case. While our model shows improvements in pointwise localization, it is still far behind full
supervision.

Similar improvements are observed on CUB data. In the case of OxF dataset, our approach provides
low F17 values compared to other WSL methods. However, the latter are not far from the performance
of the All-ones that predicts a constant mask. Given the large size of flowers, predicting a mask
that is active over all the image will easily lead to 56.10% of F*. The best WSL methods for OxF
are only better than All-ones by ~ 2%, suggesting that such methods have predicted a full mask
in many cases. In term of F1™, our approach is better than all the WSL techniques. All methods
achieve low classification error on GlaS which implies that it represents an easy classification problem.
Surprisingly, the other methods seem to overfit on CUBS, while our model shows a robustness. The
other methods outperform our approach on CUB and OxF, although ours is still in a competitive
range to half WSL methods. Results obtained on both these datasets indicate that, compared to WSL
methods, our approach is effective in terms of image classification and pointwise localization with
more reliability in the latter.

Visual quality of our approach (Fig[3) shows that the predicted regions of interest on GlaS agree with
the doctor methodology of colon cancer diagnostics where the glands are used as diagnostic tool.
Additionally, it deals well with multi-instances when there are multiple glands within the image. On
CUBS5/CUB, our model succeeds to locate birds in order to predict its category which one may do in
such task. We notice that the head, chest, tail, or body particular spots are often parts that are used by
our model to decide a bird’s species, which seems a reasonable strategy as well. On OxF dataset, we
observe that our approach mainly locates the central part of pistil. When it is not enough, the model
relies on the petals or on unique discriminative parts of the flower. In term of time complexity, the
inference time of our model is the same as a standard fully convolutional network since the recursive
algorithm is disabled during inference. However, one may expect a moderate increase in training
time that depends mainly on the depth of the recursion (see Sec[B.3.2).
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Table 2: Pointwise localization performance over GlaS, CUB5, CUB, and OxF test sets.

‘ Pixel level

Method F1T (%) | F1™ (%)

| GlaS | CUB5 | CUB | OxF | GlaS | CUB5 | CUB | OxF
All-ones 66.01 | 23.72 | 22.16 | 56.10 | 00.00 | 00.00 | 00.00 | 00.00
CAM-Avg (Zhou et al.| 2016} 66.90 | 35.25 | 32.24 | 58.37 | 17.88 | 68.44 | 82.87 | 68.70

66.00 | 5.46 35.41 | 40.03 | 26.32 | 75.52 | 91.62 | 73.81

CAM-Max (Oquab et al.[2015]
2015][Sun etal.|[2016) | 66.05 | 8.00 35.79 | 40.65 | 27.93 | 77.21 | 91.62 | 73.07

CAM-LSE (Pinheiro & Collobert]

Wildcat (Durand et al.![2017] 67.21 | 36.05 | 37.91 | 52.33 | 22.96 | 75.62 | 89.09 | 74.15
Deep MIL (lIse et al.| 2018] 68.52 | 29.70 | 22.19 | 56.10 | 41.34 | 37.59 | 0.31 | 0.0

Grad-CAM (Selvaraju et al. 2017} 66.30 | 36.91 | 32.24 | 58.37 | 21.30 | 69.55 | 82.87 | 68.70
Ours (u = 4) | 72.54 | 52.97 | 51.05 | 43.35 | 66.51 | 90.69 | 91.86 | 75.77
Full sup.: U-Net (Ronneberger et al.|[2015) | 90.19 | 60.06 | 92.09 | 88.81 | 88.52 | 93.73 | 98.97 | 92.37

Figure 3: Visual comparison of the predicted binary mask of each method over GlaS, CUBS, CUB,
and OxF test sets. (Best visualized in color.) (See supplementary material for more samples.)

5 CONCLUSION

In this work, we present a novel approach for WSL at pixel-level where we impose learning relevant
and irrelevant regions within the model with the aim to reduce false positive localization. Evaluated
on three datasets, and compared to state of the art WSL methods, our approach shows its effectiveness
in accurately localizing regions of interest with low false positive while maintaining a competitive
classification error. This makes our approach more reliable in term of interpetability. As future work,
we consider extending our approach to handle multiple classes within the image. Different constraints
can be applied over the predicted mask, such as texture properties, shape, or other region constraints.
Predicting bounding boxes instead of heat maps is considered as well since they can be more suitable
in some applications where pixel-level accuracy is not required. Our recursive erasing algorithm can
be further improved by using a memory-like mechanism that provides spatial information to prevent
forgetting the previously spotted regions and promote localizing the entire region (Sec[B.3).
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A THE MIN-MAX ENTROPY FRAMEWORK FOR WSL

A.1 REGION COMPLETENESS USING INCREMENTAL RECURSIVE ERASING AND TRUST
COEFFICIENTS

Deep classification models tend to rely on small discriminative regions (Kim et al.| 2017} |Singh
& Lee, [2017; Zhou et al., |2016). Thus, in our proposal, R~ may still contain discriminative parts.
Following (Kim et al., 2017} |Li et al., 2018}, |Pathak et al., 20155 Singh & Leel |2017), and in particular
(Wei et al.l |2017)), we propose a learning incremental and recursive erasing approach that drives
M to seek complete discriminative regions. However, in the opposite of (Wei et al.,[2017) where
such mining is done offline, we propose to incorporate the erasing within the backpropagation using
an efficient and practical implementation. This allows M to learn to seek discriminative parts.
Therefore, erasing during inference is unnecessary. Our approach consists in applying M recursively
before applying C within the same forward. The aim of the recursion, with maximum depth w, is
to mine more discriminative parts within the non-discriminative regions of the image masked by
R~. We accumulate all discriminative parts in a temporal mask R"*. At each recursion, we mine
the most discriminative part, that has been correctly classified by M, and accumulate it in R**.
However, with the increase of u, the image may run out of discriminative parts. Thus, M is forced,
unintentionally, to consider non-discriminative parts as discriminative. To alleviate this risk, we
introduce trust coefficients that control how much we trust a mined discriminative region at each step
t of the recursion for each sample ¢ as follows,

R/ = max(R; ", W(t,i) R, (10)
where W(¢,4) € RT computes the trust of the current mask of the sample 4 at the step ¢ as follows,
V>0, Ut i)=expe D(ti), (11)

where exp%t encodes the overall trust with respect to the current step of the recursion. Such trust is
expected to decrease with the depth of the recursion (Belharbi et al.,[2016). o controls the slop of the
trust function. The second part of Eq[IT]is computed with respect to each sample. It quantifies how
much we trust the estimated mask for the current sample ¢,

Tt i) = {ﬁs(Y =ylX =X, 0R;") ifg; =y; and H(p;, p;)r < H(pi, p5)o

12
otherwise (12)

In Eq H(pi, p; )+ is computed over (X; ® R, ™). Eq ensures that at a step t, for a sample 4,
the current mask is trusted only if M correctly classifies the erased image, and does not increase
the loss. The first condition ensures that the accumulated discriminative regions belong to the same
class, and more importantly, the true class. Moreover, it ensures that M does not change its class
prediction through the erasing process. This introduces a consistency between the mined regions
across the steps and avoids mixing discriminative regions of different classes. The second condition
ensures maintaining, at least, the same confidence in the predicted class compared to the first forward
without erasing (t = 0). The given trust in this case is equal to the probability of the true class. The
regions accumulator is initialized to zero at t = 0, R;"* = {0}"** at each forward in G. R, is
not maintained through epoches; M starts over each time processing the sample i. This prevents
accumulating incorrect regions that may occur at the beginning of the training. In order to automatize
when to stop erasing, we consider a maximum depth of the recursion u. For a mini-batch, we keep
erasing as along as we do not reach u steps of erasing, and there is at least one sample with a trust
coefficient non-zero (Eq[I2). Once a sample is assigned a zero trust coefficient, it is maintained zero
all along the erasing (Eq10)(FigH). Direct implementation of Eq[I0]is not practical since performing
a recursive computation on a large model M requires a large memory that increases with the depth
u. To avoid such issue, we propose a practical implementation using gradient accumulation at M
through the loss Eq[7}; such implementation requires the same memory size as in the case without
erasing. An illustration of our proposed recursive erasing algorithm is provided in Fig[d] Alg[l]
illustrates our implementation using accumulated gradient through the backpropagation within the
localizer M. We note that this erasing algorithm is performed only during training.

A.2 NOTE ON INTERPOLATION (EQE])

In most neural networks libraries (Pytorch (pytorch.org), Chainer (chainer.org)), the upsacling
operations using interpolation/upsamling have a non-deterministic backward. This makes training

12
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Recursive incremental mining
of discriminative parts
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Figure 4: Tllustration of the implementation of the proposed recursive incremental mining of discimi-
native parts within the backpropagation. The recursive mining is performed only during training.

Algorithm 1 Practical implementation of our incremental recursive erasing approach during training
for one epoch (or one mini-batch) using gradient accumulation.

1: Input: G, D, u,o.
2: Tnitialization: V1o, 6cy [H(pi, 5i) " + H(gi, )~ + H(pi, ;)] = Vg .y = O-
3: for (X;,y;) € Ddo

4: Initialization: Rj"* =0,Vo, H(p;,p;) = 0,t =0, stop = False.
5: Make a copy of X;: X*.

6: # Perform the recursion. Accumulate gradients, and masks.
7: while ¢ < w and stop is False do

8: Forward X* in M.

9: Compute R, R, p*(y| X)), H(p;, p )1, ¥ (¢, 7).
10: if U(¢,4) # O then
11: Update accumulative mask R;“*. (Eq
12: Accumulate gradient: Vg, H(p;, p;) += Vo, H(pi, 05):
13: Erase the discriminative parts: X} == X} ® R, .
14: else
15: stop = True.

16: end if

17: end while

18: Compute: X;" = X; 0 R, X; = X, O R; ™.

19: Forward X;F,Xi_ in C.

20: Compute: H(p“ ﬁi)+7 H(qu ﬁi)_7 vQc |:H(pz7 ﬁi)+7 H(q“ ﬁl)_:| .

21:  Update the total gradient: V%BM,OC} += Vo, {H(pi,ﬁi)Jr, H(%ﬁi)_} + Vo, H(pi, p;).
22: end for

23: Normalize total gradient: V?HM,GC} /= n. Update 0, O¢ using V%GM,Bc}'

24: Output: G updated.

unstable due to the non-deterministic gradient; and makes reproducibility impossible as well. To
avoid such issues, we detach the upsacling operation, in Eq[9] from the training graph and consider it
as input data for C.

13
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B RESULTS AND ANALYSIS

In this section, we provide more details on our experiments, analysis, and discuss some of the
drawbacks of our approach. We took many precautions to make the code reproducible for our model
up to Pytorch’s terms of reproducibility. Please see the README . md file for the concerned section in
the code. We checked reproducibility up to a precision of 10716, All our experiments were conducted
using the seed 0. We run all our experiments over one GPU with 12GBEI, and an environment with
10 to 64 GB of RAM (depending on the size of the dataset). Finally, this section shows more visual
results, analysis, training time, and drawbacks.

B.1 DATASETS

We provide in Fig[5|some samples from each dataset’s test set along with their mask that indicates the
region of interest. As we mentioned in Sec[4] we consider a subset from the original CUB-200-2011

Figure 5: Top row: GlaS dataset: test set examples of different classes with the gland segmentation.
The decidable regions are the glands while the undecidable regions are the leftover tissues. Glands
have different shapes, size, context. They can be multi-instance. Images have variable H&E
stain. (Sirinukunwattana et al.,[2017). Middle row: CUB dataset: test set examples of randomly
selected classes. The decidable regions are the birds while the undecidable regions are the leftover
surrounding environment. Birds have different sizes, position/view, appearance, context.
201T). Bottom row: Oxford flower 102 dataset: test samples of randomly selected classes.
The decidable regions are the flowers while the undecidable ones are the surrounding environment.
(Nilsback & Zisserman),[2007) (Best visualized in color.)

dataset for preliminary experiments, and we referred to it as CUBS. To build it, we select, randomly,
5 classes from the original dataset. Then, pick all the corresponding samples of each class in the
provided train and test set to build our train and test set (CUBS). Then, we build the effective train set,
and validation set by taking randomly 80%, and the left 20% from the train set of CUBS5, respectively.
We provide the splits, and the code used to generate them. Our code generates the following classes:
019.Gray_Catbird

099.0venbird

108.White_necked_Raven

171 .Myrtle_Warbler

A

178.Swainson_Warbler

B.2 EXPERIMENTS SETUP
The following is the configuration we used for our model over all the datasets:
Data 1. Patch size (hxw): 480 x 480. (for training sample patches, however, for evaluation, use the

entire input image). 2. Augment patch using random rotation, horizontal/vertical flipping.
(for CUBS only horizontal flipping is performed). 3. Channels are normalized using 0.5

3Our code supports multiGPU, and Batchnorm synchronization with our own support to reproducibility.
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mean and 0.5 standard deviation. 4. For GlaS: patches are jittered using brightness=0.5,
contrast=0.5, saturation=0.5, hue=0.05.

Model Pretrained resnet101 (He et al.,2016) as a backbone with (Durand et al.,|2017)) as a pooling
score with our adaptation, using 5 modalities per class. We consider using dropout (Srivas+
tava et al.| 2014) (with value 0.75 over GlaS and 0.85 over CUBS5, CUB, OxF over the final
map of the pooling function right before computing the score). High dropout is motivated
by (Ghiasi et al., 2018} Singh & Leel [2017). This allows to drop most discriminative parts at
features with most abstract representation. The dropout is not performed over the final mask,
but only on the internal mask of the pooling function. As for the parameters of (Durand
et al.| |2017), we consider their « = 0 since most negative evidence is dropped, and use
kmax = kmin = 0.09. v = 0,u = 4,0 = 10,0’ = 0.5,w = 8. For evaluation, our
predicted mask is binarized using a 0.5 threshold to obtain exactly a binary mask. All our
presented masks in this work follows this thresholding. Our F17%, and F1~ are computed
over this binary mask.

Optimization 1. Stochastic gradient descent, with momentum 0.9, with Nesterov. 2. Weight decay
of le — 5 over the weights. 3. Learning rate of 0.001 decayed by 0.1 each 40 epochs with
minimum value of 1e — 7. 4. Maximum epochs of 400. 5. Batch size of 8. 6. Early stopping
over validation set using classification error as a stopping criterion.

Other WSL methods use the following setup with respect to each dataset:
GlaS:

Data 1. Patch size (hxw): 416 x 416. 2. Augment patch using random horizontal flip. 3. Random
rotation of one of: 0,90, 180, 270 (degrees). 4. Patches are jittered using brightness=0.5,
contrast=0.5, saturation=0.5, hue=0.05.

Model 1. Pretrained resnet18 (He et al., 2016) as a backbone.
Optimization 1. Stochastic gradient descent, with momentum 0.9, with Nesterov. 2. Weight decay
of le — 4 over the weights. 3. 160 epochs 4. Learning rate of 0.01 for the first 80, and of

0.001 for the last 80 epochs. 5. Batch size of 32. 6. Early stopping over validation set using
classification error/loss as a stopping criterion.

CUBs:

Data 1. Patch size (hxw): 448 x 448. (resized while maintaining the ratio). 2. Augment patch using
random horizontal flip. 3. Random rotation of one of: 0,90, 180, 270 (degrees). 4. Random
affine transformation with degrees 10, shear 10, scale (0.3, 1.5).

Model Pretrained resnet18 (He et al., 2016) as a backbone.

Optimization 1. Stochastic gradient descent, with momentum 0.9, with Nesterov. 2. Weight decay
of 1e — 4 over the weights. 3. 90 epochs. 4. Learning rate of 0.01 decayed every 30 with
0.1. 5. Batch size of 8. 6. Early stopping over validation set using classification error/loss as
a stopping criterion.

CUB/OxF:

Data 1. Patch size (hxw): 448 x 448. (resized while maintaining the ratio). 2. Augment patch using
random horizontal flip. 3. Random rotation of one of: 0, 90, 180, 270 (degrees). 4. Random
affine transformation with degrees 10, shear 10, scale (0.3, 1.5).

Model Pretrained resnetl18 (He et al.| [2016) as a backbone.

Optimization 1. Stochastic gradient descent, with momentum 0.9, with Nesterov. 2. Weight decay
of le — 4 over the weights. 3. 90 epochs. 4. Learning rate of 0.01 decayed every 30 with
0.1. 5. Batch size of 64. 6. Early stopping over validation set using classification error/loss
as a stopping criterion.

B.3 RESULTS

In this section, we provide more visual results over the test set of each dataset.
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Over GlaS dataset (Fig[7] [§), the visual results show clearly how our model, with and without
erasing, can handle multi-instance. Adding the erasing feature allows recovering more discriminative
regions. The results over CUB5 (Fig[] [T0} [T T} [I2] [I3) while are interesting, they show a fundamental
limitation to the concept of erasing in the case of one-instance. In the case of multi-instance, when
the model spots one instance, then, erases it, it is more likely that the model will seek another instance
which is the expected behavior. However, in the case of one instance, and where the discriminative
parts are small, the first forward allows mainly to spot such small part and erase it. Then, the
leftover may not be sufficient to discriminate. For instance, in CUBS, in many cases, the model
spots only the head. Once it is hidden, the model is unable to find other discriminative parts. A
clear illustration to this issue is in Fig[9] row 13. The model spots correctly the head, but was unable
to spot the body while the body has similar texture, and it is located right near to the found head.
We believe that the main cause of this issue is that the erasing concept forgets where discriminative
parts are located since the mining iterations are done independently from each other in a sens that
the next mining iteration is unaware of what was already mined. Erasing algorithms seem to be
missing this feature that can be helpful to localize the entire region of interest by seeking around all
the previously mined disciminative regions. In our erasing algorithm, once a region is erased, the
model forgets about its location. Adding a memory-like, or constraints over the spatial distribution
of the mined discriminative regions may potentially alleviate this issue. Another parallel issue of
erasing algorithms is that once the most discriminative regions are erased it may not be possible to
discriminate using the leftover regions. This may explain why our model was unable to spot other
parts of the bird once its head is erased. Probably using soft-erasing (blur the pixel for example) can
be more helpful than hard-erasing (set pixel to zero).

It is interesting to notice the strategy used by our model to localize some types of birds. In the case of
the 099.0venbird, it relies on the texture of the chest (white doted with black), while it localizes
the white spot on the bird neck in the case of 108 .White_necked_Raven. One can notice as
well that our model seems to be robust to small/occluded regions. In many cases, it was able to spot
small birds in a difficult context where the bird is not salient.

Visual results over CUB and OXF are presented in Fig[T4] and Fig[T3] respectively.

B.3.1 IMPACT OF OUR RECURSIVE ERASING ALGORITHM ON THE PERFORMANCE

Tab[3]and Tab[]show the boosting impact of our erasing recursive algorithm in both classification and
pointwise localization performance. From TabM] we can observe that using our recursive algorithm
adds a large improvement in F17 without degrading F1~. This means that the recursion allows the
model to correctly localize larger portions of the region of interest without including false positive
parts. The observed improvement in localization allows better classification error as observed in
Tab[3] The localization improvement can be seen as well in the precision-recall curves in Fig[d]

Table 3: Impact of our incremental recursive erasing algorithm over the classification error of our
approach over GlaS, CUBS, CUB, and OxF test sets.

Image level
Classification error (%)

| GlaS | CUB5 | CUB | OxF

u=0|125 | 19.31 | 26.54 | 25.15
u=4|0.00 | 10.34 | 26.73 | 19.98

Ours

B.3.2 RUNNING TIME OF OUR RECURSIVE ERASING ALGORITHM

Adding recursive computation in the backpropagation loop is expected to add an extra computation
time. Tab[5|shows the training time (of 1 run) of our model with and without recursion over identical
computation resource. The observed extra computation time is mainly due to gradient accumulation
(line 12. Alg[T) which takes the same amount of time as parameters’ update (which is expensive to
compute). The forward and the backward are practically fast, and take less time compared to gradient
update. We do not compare the running between the datasets since they have different number/size of
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Table 4: Impact of our incremental recursive erasing algorithm over the pointwise localization
performance of our approach over GlaS, CUBS, CUB, and OxF test sets.

Pixel level

Ours F1t (%) \ F1~— (%)

| GlaS | CUB5 | CUB | OXF | GlaS | CUBS | CUB | OxF
u=20139.99 | 40.07 | 46.39 | 23.43 | 65.30 | 89.99 | 85.94 | 73.65
u=41|72.54 | 52.97 | 51.05 | 43.35 | 66.51 | 90.69 | 91.86 | 75.77

samples, and different pre-processing that it is included in the reported time. Moreover, the size of
samples has an impact over the total time during the training over the validation set.

Table 5: Comparison of training time, of 1 run, over 400 epochs over GlaS and CUBS5 of our model
using identical computation resources (NVIDIA Tesla V100 with 12GB memory) when using our
erasing algorithm (u = 4) and without using it (u = 0).

Model GlaS CUB5

Ours (u =0) 49min 65min
Ours (u =4) 90min (~ x1.83) 141min (~ x2.16)

B.3.3 POST-PROCESSING USING CONDITIONAL RANDOM FIELD (CRF)

Post-processing the output of fully convolutional networks using a CRF often leads to smooth and
better aligned mask with the region of interest (Chen et al., [2015). To this end, we use the CRF
implementation of (Krahenbiihl & Koltun, 201 lﬂ The results are presented in Tab@ Following
the notation in (Krihenbiihl & Koltun,, 2011), we set w) = w(® = 1. We set, over all the methods,
0o = 13,05 = 3,0, = 3 for 2 iterations, over GlaS, and 0, = 19,05 = 11,0, = 5 for 5 iterations,
over CUBS, CUB, and OxF. Tab@ shows a slight improvement in term of F1* and slight degradation
in term of F1~. When investigating the processed masks, we found that the CRF helps in improving
the mask only when the mask covers precisely large part of the region of interest. In this case, the
CREF helps spreading the mask over the region. In the case where there is high false positive, or the
mask misses largely the region, the CRF does not help. We can see as well that the CRF increases
slightly the false positive by spreading the mask out of the region of interest. Since our method has
small false positive —i.e., the produced mask covers mostly the region of interest and avoids stepping
outside it— using CRF helps in improving both F1* and F1~ in most cases.

Table 6: Pointwise localization performance of different WSL models over the different test sets
when post-processing the predicted masks using CRF (Krihenbiihl & Koltun), 2011). ** indicates
improvement while ™~ indicates degradation of performance compared to Tab Deep MIL (Ilse
et al., 2018)) is discarded since the produced plans do not form probability over the classes axe at
pixel level which is required for the CRF input (Krahenbiihl & Koltun, |2011)). To preserve horizontal
space, we rename the methods CAM-Avg, CAM-Max, CAM-LSE, Grad-CAM to Avg, Max, LSE,
G-C, respectively.

Pixel level
Method F1* (%) | F1~ (%)
| GlaS | CUB5 |CUB | OxF | GlaS |CUB5 | CUB | OxF

Avg (Zhou et al.|[2016) 66.90 34.90" | 30.86= | 57.66~ | 17.65~ | 66.85~ | 80.637 | 65.84~
Max (Oquab et al.[[2015} 66.02% | 5.22 35.59" | 41.04T | 26.227 | 75237 | 91.14" | 73.36
LSE (Pinheiro & Collobert!/2015{|Sun et al.|[2016) | 66.06T | 7.85" 36.327 | 41.49% | 27.75~ | 77.097 | 91.26T | 72.57"
Wildcat (Durand et al.[[2017} 67.22% | 36.417 | 33.037 | 54.47" | 2274 | 74917 | 84.97" | 72.927
G-C (Selvaraju et al.|[2017) 66.337 | 36.44% | 30.86~ | 57.657 | 20.76~ | 67.91" | 80.63~ | 65.83”
Ours (u = 4) 72.58" | 54.69" | 53.35" | 42.69” | 66.49” | 91.06T | 92.30T | 75.84T

Shttps://github.com/lucasb-eyer/pydensecrf
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Average precision-recall curves of our model over different test sets.
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Figure 6: Average precision-recall curve of the foreground and the background of our proposal using
u = 0,u = 4 over each test set. To be able to compute an average curve, the recall axis is unified
for all the images to the axis [0, 1] with a step 1le — 3. Then, the precision axis is interpolated with
respect to the recall axis.
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Deep MIL

Figure 7: Visual comparison of the predicted binary mask of each method over GlaS test set. Class:
benign (Best visualized in color.)
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CAH-Avg CAM-Max Deep MIL

Figure 8: Visual comparison of the predicted binary mask of each method over GlaS test set. Class:
malignant (Best visualized in color.)
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Figure 9: Visual comparison of the predicted binary mask of each method over CUB-200-2011
(CUBS) test sets. Species: 019.Gray_Catbird (Best visualized in color.)
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Figure 10: Visual comparison of the predicted binary mask of each method over CUB-200-2011
(CUBS) test sets. Species: 171 .Myrtle_Warbler (Best visualized in color.)
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Figure 11: Visual comparison of the predicted binary mask of each method over CUB-200-2011
(CUBS) test sets. Species: 099 .0venbird (Best visualized in color.)
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CAM-LSE

Figure 12: Visual comparison of the predicted binary mask of each method over CUB-200-2011
(CUBS) test sets. Species: 178 .Swainson_Warbler (Best visualized in color.)
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CAM-Max

Figure 13: Visual comparison of the predicted binary mask of each method over CUB-200-2011
(CUBS) test sets. Species: 108 .White_necked_Raven (Best visualized in color.)
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CAM-LSE

Figure 14: Visual comparison of the predicted binary mask of each method over CUB test sets. (Best
visualized in color.) 26
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CAM-LSE

27
Figure 15: Visual comparison of the predicted binary mask of each method over oxF test sets. (Best
visualized in color.)
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