Published as a conference paper at ICLR 2020

COMPOSITIONAL LANGUAGES EMERGE IN A NEURAL
ITERATED LEARNING MODEL

Yi Ren,! Shangmin Guo,”> Matthieu Labeau,’ Shay B. Cohen,! Simon Kirby!

! University of Edinburgh, United Kingdom, ? University of Cambridge, United Kingdom

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, France

! renyi.joshua@gmail.com, scohen@inf.ed.ac.uk, simon.kirby@ed.ac.uk
2 sg955@Qcam.ac.uk, > matthieu.labeaufRtelecom-paris.fr

ABSTRACT

The principle of compositionality, which enables natural language to represent
complex concepts via a structured combination of simpler ones, allows us to con-
vey an open-ended set of messages using a limited vocabulary. If compositionality
is indeed a natural property of language, we may expect it to appear in commu-
nication protocols that are created by neural agents in language games. In this
paper, we propose an effective neural iterated learning (NIL) algorithm that, when
applied to interacting neural agents, facilitates the emergence of a more structured
type of language. Indeed, these languages provide learning speed advantages to
neural agents during training, which can be incrementally amplified via NIL. We
provide a probabilistic model of NIL and an explanation of why the advantage
of compositional language exist. Our experiments confirm our analysis, and also
demonstrate that the emerged languages largely improve the generalizing power
of the neural agent communication.

1 INTRODUCTION

Natural language understanding (NLU), which is exemplified by challenging problems such as ma-
chine reading comprehension, question answering and machine translation, plays a crucial role in
artificial intelligence systems. So far, most of the existing methods focus on building statistical
associations between textual inputs and semantic representations, e.g. using first-order logic (Man-
ning et all, T999) or other types of representations such as abstract meaning representation (Ba:
narescu_ef all, DOT3). Recently, grounded language learning has gradually attracted attention in
various domains, inspired by the hypothesis that early language learning was focused on problem-
solving (Kirby & Hurford, 2007). While related to NLU, it focuses on the pragmatics (Clark, T996)
of learning natural language, as it implies learning language from scratch, grounded in experience.
This research is often practiced through the development of neural agents which are made to com-
municate with each other to accomplish specific tasks (for example, playing a game). During this
process, the agents build mappings between the concepts they wish to communicate about and the
symbols used to represent them. These mappings are usually referred to as ‘emergent language’.

So far, an array of recent work (Havrylov & Titoy, P01T7; Mordafch & Abbeel, DOTR; Koffur_ef all,
20T7; Eoersfer ef all, DOITA) has shown that in many game settings, the neural agents can use their
emergent language to exchange useful coordinating information. While the best way to design
games to favour language emergence is still open to debate, there is a consensus on the fact that we
should gear these emergent languages towards sharing similarities with natural language. Among the
properties of natural language, compositionality is considered to be critical, because it enables rep-
resentation of complex concepts through the combinination of several simple ones. While work on
incorporating compositionality into emergent languages is still in its early stage, several experiments
have already demonstrated that by properly choosing the maximum message length and vocabulary
size, the agents can be brought together to develop a compositional language that shares similarities
with natural language (Li & Bowling, P0TY; Cazaridon ef all, DOTR; Cogswell et all, P0T9).

In a different body of language research literature, evolutionary linguists have already studied the
origins of compositionality for decades (Kirby & Hurford, 2002; Kirby et all, 20T4; ZOTS). They

Published as a conference paper at ICLR 2020

i AR is a softmax layer
® is the inner product

Figure 1: Referential communication game and architectures of the agents.

proposed a cultural evolutionary account of the origins of compositionality and designed a frame-
work called iterated learning to simulate the language evolution process, based on the idea that the
simulated language must be learned by new speakers at each generation, while also being used for
communication. Their experiments show that highly compositional languages may indeed emerge
through iterated learning. However, the models they introduced were mainly studied by means of
experiments with human participants, in which the compositional languages is favored by the par-
ticipants because human brain favors structure. Hence, directly applying this framework to ground
language learning is not straightforward: we should first verify the existence of the preference of
compositional language at the neural agent, and then design an effective training procedure for the
neural agent to amplify such an advantage.

In this project, we analyze whether and how the learning speed advantage of the highly composi-
tional languages exists in the context of communication between neural agents playing a game. Then
we propose a three-phase neural iterated learning algorithm (NIL) and a probabilistic explanation of
it. The experimental results demonstrate that our algorithm can significantly enhance the topological
similarity (Brighton & Kirbyi, Z006) between the emergent language and the original meaning space
in a simple referential game (LCewid, T969). Such highly compositional languages also generalize
better, because they perform well on a held-out validation set. We highlight our contribution as:

e We discover the learning speed advantages of languages with high topological similarity
for neural agents communicating in order to play a referential game.

e We propose the NIL based on those advantages, which is quite robust compared to most of
the related works.

e We propose a probabilistic framework to explain the mechanisms of NIL.

2 BACKGROUND

2.1 REFERENTIAL GAME

We analyze a typical and straightforward object selection game, in which a speaking agent (Alice,
or speaker) and a listening agent (Bob, or listener) must cooperate to accomplish a task. In each
round of the game, we show Alice a target object z selected from an object space X" and let her send
a discrete-sequence message m to Bob. We then show Bob c different objects (x must be one of
them) and use ¢y, ..., c. € & to represent these candidates. Bob must use the message received from
Alice to select the object that Alice refers among the ¢ candidates. If Bob’s selection ¢ is correct,
both Alice and Bob are rewarded. The objects are shuffled and candidates are randomly selected in
each round to avoid the agents recognizing the objects using their order of presentation.

In our game, each object in X’ has N, attributes (color and shape are often used in the literature),
and each attribute has N, possible values. To represent objects, similarly to the settings chosen in
(Kotfur et all, P017), we encode each attribute as a one-hot vector and concatenate the N, one-hot
vectors to represent one object. The message delivered by Alice is a fixed-length discrete sequence
m = (myq, ..., my,), in which each m; is selected from a fixed size meaningless vocabulary V.

Published as a conference paper at ICLR 2020

2.2 NEURAL AGENT STRUCTURES

Neural agents usually have separate modules for speaking and listening, which we name Alice and
Bob. Their architectures, shown in Figure [, are similar to those studied in (Havrylov & Titov,
DOT7) and (Cazaridon_ef-all, POTH). Alice first applies a multi-layer perceptron (MLP) to encode
z into an embedding, then feeds it to an encoding LSTM (Hochreifer & Schmidhuber, T997). Its
output will go through a softmax layer, which we use to generate the message mi, ms,---. Bob
uses a decoding LSTM to read the message and uses a MLP to encode cy, ..., c. into embeddings.
Bob then takes the dot product between the hidden states of the decoding LSTM and the embed-
dings to generate scores s, for each object. These scores are then used to calculate the cross-entropy
loss when training Bob. When Alice and Bob are trained using reinforcement learning, we can use
pa(m|x;0,4) and pp(élm,cy, ..., c.;0p) to represent their respective policies, where 64 and 6
contain the parameters of each of the neural agents. When the agents are trained to play the game
together, we use the REINFORCE algorithm (Williams, T997) to maximize the expected reward un-
der their policies, and add the entropy regularization term to encourage exploration during training,
as explained in (Mnih ef all, OT6). The gradients of the objective function J(64,0p) are:

Vo,J = E[R(E2)V logpa(mle)] + AxVH[pa(mlz) M
VosJ =E[R(¢,x)Viogpp(cm,cy,...,c.)] + AV H[pp(¢lm,cq, ..., cc)], 2)

where R(¢, z) = 1(¢, x) is the reward function, H is the standard entropy function, and A4, Ap > 0
are hyperparameters. A formal definition of the agents can be found in Appendix C.

2.3 MEASURING COMPOSITIONALITY

Compositionality is a crucial feature of natural languages, allowing us to use small building blocks
(e.g., words, phrases) to generate more complex structures (e.g., sentences), with the meaning of
the larger structure being determined by the meaning of its parts (Clark, T996). However, there is
no consensus on how to quantitatively assess it. Besides a subjective human evaluation, topological
similarity has been proposed as a possible quantitative measure (Brighton & Kirby, Z006).

To define topological similarity, we first define the language studied in this work as £(-) : X — M.
Then we need to measure the distances between pairs of objects: A%, = dx(z;, x;), where dx(-)
is a distance in X'. Similarly, we compute the corresponding quantity for the associated messages
m; = L(x;) in the message space M with A%, = dq (m;, m;), where dq(-) is a distance in M.
Then the topological similarity (i.e., p) is defined as the correlation between these quantities across
X. Following the setup of (LCazaridon efall, P0OTX) and (Li & Bowling, P0T9), we use the negative
cosine similarity in the object space and Levenshtein distances (Levenshfein, T966) in the message
space. We provide an example in Appendix B to give a better intuition about this metric.

3 NEURAL ITERATED LEARNING MODEL

The idea of iterated learning requires the agent in current generation be partially exposed to the lan-
guage used in the previous generation. Even this idea is proven to be effective when experimenting
with human participants, directly applying it to games played by neural agents is not trivial: for
example, we are not sure where to find the preference for high-p languages for the neural agents.
Besides, we must carefully design an algorithm that can simulate the “partially exposed” procedure,
which is essential for the success of iterated learning.

3.1 LEARNING SPEED ADVANTAGE FOR THE NEURAL AGENTS

As mentioned before, the preference of high-p language by the learning agents is essential for the
success of iterated learning. In language evolution, highly compositional languages are favored
because they are structurally simple and hence are easier to learn (Carrefall, POT7). We believe that
a similar phenomenon applies to communication between neural agents:

Hypothesis 1: High topological similarity improves the learning speed of the speaking neural agent.

We speculate that high-p languages are easier to emulate for a neural agent than low-p languages.
Concretely, that means that Alice, when pre-trained with object-message pairs describing a high-

Published as a conference paper at ICLR 2020

p language at a given generation, will be faster to successfully output the right message for each
object. Intuitively, this is because the structured mapping described by a language with high p is
smoother, and hence has a lower sample complexity, which makes resulting examples easier to learn
for the speaker agent (Vapnik, 20T3).

Hypothesis 2: High topological similarity allows the listening agent to successfully recognize more
concepts, using less samples.

We speculate that high-p languages are easier for a neural agent to recognize. That means that Bob,
when pre-trained with message-object pairs corresponding to a high-p language, will be faster to
successfully choose the right object. Intuitively, the lower topological similarity is, the more difficult
it will be to infer unseen object-message pairs from seen examples. The more complex mapping of
a low-p language implies that more object-message pairs need to be provided to describe it. This
translates as an inability for the listening agent to generalize the information it obtained from one
object-message associated to a low-p language to other examples. Thus, the general performance
of Bob on any example will improve much faster when trained with pairs corresponding to a high-p
language than with a low-p language. We provide experimental results in section Bl to verify our
hypotheses. We also provide a detailed example in Appendix D to illustrate our reasoning.

3.2 NEURAL ITERATED LEARNING AND PROBABILISTIC ANALYSIS

We design the NIL algorithm to exploit these advantages in a robust manner, as detailed in Algorithm
1. The algorithm runs for I generations: at the beginning of each generation ¢, both the agents are re-
initialized. As Alice and Bob have different structures, they are then pre-trained differently (see line
5-7 for Alice and line 8-12 for Bob): this is the learning phase. Alice is pre-trained via categorical
cross-entropy, using the data generated at the previous generation, which we denote D;. Bob is pre-
trained with REINFORCE, learning from the pre-trained Alice. We note I, and I, their respective
number of pre-training iterations. With hypothesis 1, the expected p of the language spoken by Alice
should be higher than that of D,;. Meanwhile, Bob shold be more “familiar with” the language with
a higher p than D;, as stated by hypothesis 2. Alice and Bob then play the game together for I,
rounds in the interacting phase, in which both agents are updated via REINFORCE. In this phase,
the languages used by them are filtered to be more unambiguous — their language must deliver
information accurately to accomplish the task. Finally, in the transmitting phase, we feed all objects
to Alice and let it output the corresponding messages to be stored in D, ; for the learning phase of
the next generation.

To better understand how NIL enhances the expected p of the languages generation by generation,
we propose a probabilistic model for NIL in Appendix C, as well as a probabilistic analysis of the
role played by Alice and Bob in every phase. Intuitively, at the beginning of each generation, the
expected p of language used by Alice (denoted by E.[p(L)]) is quite low because of the random
initialization. Then during the learning phase, Alice learns from D; and expected to have the same
E.[p(L)] with D; if it perfectly learns that data set. However, as the high-p language is favored
by neural agent during training, the E~[p(L)] of the weakly pre-trained Alice should be higher than
that of D;. A similar thing may happen when pre-training Bob. Then in the interacting phase, as
the game performance has no preference for language with different p, E.[p(£)] will not change in
this phase.? Finally, in the transmitting phase, D; 1 is sampled based on the language with current
E.[p(L)], which is expected to be higher than that of D;. In other words, E.[p(£)] would increase
generation by generation (the details for derivations are provided in Appendix C):

Ezopi[p(£)] = Ecop, [p(L)]. 3)

4 EXPERIMENTS AND DISCUSSIONS

In this section, we first verify hypotheses 1 and 2 by directly feeding languages with different p
to Alice and Bob. Then we examine the behavior and performance of the neural agents, as well
as the expected p of languages, at each generation. We conduct an ablation study, to examine the
effect of pre-training Alice and Bob separately. We then investigate more thoroughly the advantages

"The role of interacting phase is to filter out those ambiguous language. This may change E.[p(L£)], but
without a preference for language with specific p.

Published as a conference paper at ICLR 2020

Randomly initialize D;
fori=1,2,....,1do
Re-initialize Alice and Bob, get Alice; and Bob;
/| ======= Learning Phase =======
fori, =1,2,....,1, do
Randomly sample an example pair from D; and use it to update Alice; with cross-entropy
training
end for
fori, =1,2,...,1, do
Alice; generates message based on input objects
Bob; receives message and selects the target
Bob; updates its parameters if rewarded
end for
// ======= Interacting Phase =======
foriy, =1,2,...,1,do
Alice; generates message based on input objects
Bob; receives message and selects the target
BOTH Alice; and Bob; update parameters if rewarded
end for
/| ======= Transmitting Phase =======
foris =1,2,....,1;do
Generate object-message pairs by feeding objects to Alice; and save them to data set D,
end for
end for

Algorithm 1: The NIL algorithm. I,, I and I, are the number of iterations used to pre-train Alice,
Bob, and to play the game at each generation.

brought by high-p languages, and highlight the ‘interval of advantage’ in pre-training rounds, which
could help in selecting reasonable I, and I,. Finally, we conduct a series of experiments on a
held-out validation set to highlight the positive effect of high-p languages on the neural agents
generalization ability — which shows the potential of iterated learning for NLU tasks. Details
about our experimental setup and our choice of hyper-parameters can be found in Appendix A.
More experiments about the robustness of NIL are presented in Appendix E.

4.1 LEARNING SPEED ADVANTAGES

We first use the experimental results in Figure @ to verify hypotheses 1 and 2. In these experiments,
we randomly initialize one Alice and feed languages with different expected p for it to learn (and
repeat the same procedure for Bob). We generate a perfect high-p language (p = 1) using the
method proposed in (Kirby et all, PITY), and randomly permute the messages to generate a low-p
language with p = 0.21. The other languages are intermediate languages generated during NIL.
Note that there is no interacting nor transmitting phase in the experiment in this subsection: we only
test the learning behavior of a randomly initialized Alice (or Bob) separately.

From the result in Figure @-(a) and (b), we see that the high-p languages indeed has the learning
speed advantage at both the speaker and the listener side. One important finding is in Figure B-(c),
which record the expected p, i.e., E.[p(L)], during Alice’s learning. From this figure, we find that
when learning a language with low expected p, the value of E.[p(L£)] will first increase, and finally
converge to the p of D. This phenomenon, caused by the learning speed advantage, makes the weak
pre-train the essential design for the success of NIL: if I, is correctly chosen, we may expect a
higher E~[p(L£)] than that of the data set it learns from.

4.2 PERFORMANCE OF NIL

In this part, we record the game performance (i.e., the rate of successful object selections) and mean
p of the object-message pairs exchanged by the neural agents every 20 rounds. We run the simulation
10 times, with a different random number seed each time. Although the results are different, they

Published as a conference paper at ICLR 2020

> > N

) 9 <05

©os ©os £

g g] R

& 0=1.0 7o —— p=1.0 B o5

Sos =085 | 2, 0=0.85 g

c L L f= L goz =

5o 0821 g =2l ta s

] " p=0. a1 p=0. [~ . — p=0.28
[500 1000 1500 2000 2500 3000 0 o 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Number of pre-train rounds Number of pre-train rounds Number of pre-train rounds
(a) Learning accuracy of Alice. (b) Learning accuracy of Bob. (c) Alice’s p

Figure 2: Illustration of the learning speed of Alice and performance improving speed of Bob when
pre-training is done with various languages of different topological similarities.

-
o

1.04

4
®

2
Fey
> 0.8 =
O
© = pad) £~
3 o6l g 06 —— Reset Alice and Bob
o [Only reset Alice
G o —— Only reset Bob
g 041 g 0.4 —— None reset
8 Reset Alice and Bob % ’
02 —— Only reset Alice g 027
None reset =
0.0 T y T T T T y y U 0.0 T y u u y u y y u
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of generatoins Number of generations
(a) Game performance (b) Average p of emergent language

Figure 3: Game performance and average topological similarity for the possible resetting strategies
of our proposed iterated learning procedure of 80 generations. In these experiments, /=80 and
1,=4000, with all other hyper-parameters following Table B.

all follow the same trend. In this first series of experiments, we compare the following 4 different
methods:

e Iterated learning, with resetting both Alice and Bob at the beginning of each generation.

Iterated learning, only resetting Alice at the beginning of each generation;
e Iterated learning, only resetting Bob at the beginning of each generation;

e No iterated learning: neither Alice nor Bob are reset during training.
From Figure B-(a), we can see that for the 3 displayed variants of the procedure, neural agents can
play the game almost perfectly after a few generations. The curve of the no-reset method will directly
converge while the curves of the other two iterated learning procedures will show a loss of accuracy
at the beginning of each generation. That is because one or both agents are reset, and are not able to
completely re-learn from the data kept from the previous generation during the pre-training phase.
However, at the end of each generation, all these algorithms can ensure a perfect game performance.

While the use of NIL has little effect on the game performance, given a sufficient number of rounds,
these procedures have a clear positive effect on topological similarity. In Figure B-(b), we can see
that the no-reset case has the lowest average p while the iterated learning cases all have higher means
(and increasing). We provide extra experiments in Appendix E, which demonstrate the robustness
of NIL under different scenarios. The discussion on the specific impact of each agent and why the
reset-Alice and reset-Bob behave differently is in Section B.

4.3 HIGH TOPOLOGICAL SIMILARITY AND INTERVAL OF ADVANTAGE

In this section, we explore further the phenomenon caused by the learning speed advantage on NIL.
From the discussion in section Bl and the experimental results in section El, we know that I, and
I, play an important role in NIL: they should not be too large nor too small. Intuitively, if I, is
too small, Alice will learn nothing from the previous generation, hence the NIL amounts to playing

Published as a conference paper at ICLR 2020

T, 100 200 400 800 1200 1500 2000 3000 5000 8000
Elrris0] 0293 0.828 00928 0051 0958 0961 0952 0956 00955 0.949
Elp1io] 0225 0429 0452 0483 0.556 0.575 0.566 0.494 0481 0.443
Elpri.s0] 0.203 0706 0.836 0.886 0.899 0.935 0936 0929 0.889 0.837

T, 10 20 40 80 120 160 200 300 400 _ 800
Elrriso] 0954 00946 0061 00954 0962 0959 0962 0957 0061 0.944
Elpi.i0] 0415 0381 0488 0496 0591 0535 0.557 0498 0.488 0.448
Elpriso] 0927 0937 0929 0928 0936 0.891 0.888 0.897 0.891 0.880

Table 1: Values of 3 metrics when varying I, or I, highlighting an interval where the topological
similarity grows high.

only one interacting phase. If I, is too large, from the trend in Figure B-(c), we may expect that the
increase of expected p should be small in each generation, because Alice will perfectly learn D;,
and hence have a p similar to its predecessor. Hence we speculate that the value of I, should have a
“bottleneck” effect, i.e., a too large one or a too small one will both harm the performance of NIL.
A similar argument can also applied in the selection of I;.

To verify our argument, we run NIL with different values of I, and I, examining the behavior of
the following 3 different quantitive metrics:

e E[r71.80]: The average reward of the last ten generations (game performance);
e [E[p1.10]: The average value of p for the first ten generations (converging speed);

e E[p71.80]: The average value of p for the last ten generations (converged p).

From the results presented in Table [, we can see the importance of the number of pre-training
rounds not being too large nor too small. The suitable I, and [, are shown in bold. Furthermore,
combining Figure @ and Table [, the interval of suitable I, lies between 1000 to 2000 while it lies
between 100 to 200 for I, which provides us an effective way to choosing hyper-parameters.

4.4 TOPOLOGICAL SIMILARITY AND VALIDATION PERFORMANCE

In this last series of experiments, we aim to explore the relationship between topological similarity
and the generalisation ability of our neural agents, which can also indirectly reflect the expressivity
of a language. We measure this ability by looking at their validation game performance: we restrict
the training examples to a limited numbers of objects (i.e., the training set), and look at how good
are the agents at playing the game on the others (i.e., the validation set). Figure B-(a) demonstrates
the strength of the iterated learning procedure in a validation setting. To illustrate the relationship
between p and validation performance, we randomly choose I, € [60,4000] and I, € [5,200] and
conduct a series of experiments. Those for which I, and I; are not in their optimal range will
yield a worse performance on both validation test and topological similarity. In Figure B-(b), we
record the results from different experimental settings and draw the zero-shot performance given the
topological similarity of the emergent language. This shows the linear correlation between these two
metrics, and a significance test confirms it: the correlation coefficient is 0.928, and the associated
p-value is 3.8 x 107194, Hence, under various experimental settings, the validation performance and
the topological similarity are strongly correlated. Table @ shows that when the size of validation
set increases, using iterated learning can always improve the validation performance: in all the
cases, both-reset algorithm always yields the best performance. The fact that the Alice-reset setting
performs better than the Bob-reset setting also matches our analysis well.

5 DISCUSSION: A PARALLEL WITH LANGUAGE EVOLUTION

We can observe an interesting phenomenon in Figure B-(b):? the topological similarity of the emer-
gent language always increases at first, whether we use iterated learning or not. This is akin to the
effect apparent for p in Figure B-(c): continuing training will imply fine-tuning to examples that

2This can be viewed in more details when looking at the probabilistic analysis presented in Appendix D.

Published as a conference paper at ICLR 2020

Valid set size 0 8 16 32
Train Valid Train Valid Train Valid Train Valid
No-reset 0.985 - 0986 0.136 0990 0.132 0.995 0.102
Bob-reset 0.967 - 0943 0.094 0962 0.152 0947 0.116
Alice-reset 0.981 - 0976 0.598 0979 0.280 0.947 0.210
Both-reset 0.988 - 0986 0.847 0984 0.755 0.973 0.558

Table 2: Validation performance under different validation set sizes.

(0] 1.0 1
g 081 2
© =
€ ‘T 081
G 061 £
t —— Reset Alice and Bob §
g —— Only reset Alice 0.6
c 0.4+ —— None reset S
0 >
% © 0.4+
o
D 024 o
E o
> F o2
0.0 +— T T y T T T T T
0 10 20 30 40 50 . 60 70 80 U.‘O 0.‘2 0.‘4 0.‘6 O‘,S 1‘.0
Number of generations Validation performance
(a) Validation performance, validation set size is 8. (b) Results of validation performance and p.

Figure 4: Validation performance and topological similarity with validation size equals eight. NIL
leads to the evolution of languages which allow agents to perform well on unseen items.

are not necessarily of good quality. However, through the generational resets and limited number
of pre-training examples, iterated learning allows small generational improvements: this is because
constraining the agent to learn with smaller amounts of data at each generation — through a ‘bot-
tleneck’ (Kirby & Hurford, P007) — forces the emergence of a more structured language. This
limitation on the amounts of data available corresponds in our algorithm to limiting the number of
pre-training rounds of the agents, to a number in what we denoted as the ‘interval of advantage’. In
NIL, we use the weak pre-training to simulate this bottleneck, and achieve a good result: the values
of I, and I, have an effect similar to the bottleneck studied in (Kirby et all, Z0T9) (more details
are provided in Appendix D). Extending this parallel with the evolution of natural language, we
can relate the learning speed advantage provided by high-p languages to the speaking agent to the
compressibility pressure (Kirby et all, Z015), and the better ability to generalize provided by high-p
languages to the listening agent to the expressivity pressure (Kirby et al], POTS).

This comparison allows us to address one important difference between our neural iterated learning
algorithm and the original version: our speaking and listening agents are not identical. Actually, the
speaking module and listening module of human are also not identical, but the works on traditional
iterated learning do not pay much attention to such differences. From Figure B-(b) and Figure B-(a),
it is clear that Alice and Bob are affected differently by the generational resets, and thus do not
offer the same contribution to the final performance.? From this parallel, we retain that iterated
learning is also linked to the emergence of a certain form of compositionality when applied to
neural agents. Besides, we believe that the correlation between topological similarity and validation
performance that we highlight in Section B4 is another argument in favor of a relationship between
compositionality and generalization, which has recently been explored (Koffur_ef all, Z0T7; Choi
ef all, POTR; Andread, 2O19).

SHowever, this parallel may not explain how differently they contribute to gains in topological similarity,
since we must factor in the differences between their pre-training procedures, and especially the fact that Alice
is pre-trained by minimizing cross-entropy.

Published as a conference paper at ICLR 2020

6 CONCLUSION

In this paper, we find and articulate the existence of the learning speed advantages offered by high
topological similarity, with which, we propose the NIL algorithm to encourage the dominance of
high compositional language in a multi-agent communication game. We show that our procedure,
consisting in resetting neural agents playing a referential game and pre-training them on data gener-
ated by their predecessors, can incrementally advantage emergent languages with high topological
similarity. We demonstrate its interest by obtaining large performance improvements in a validation
setting, linking compositionality and ability to generalize to new examples. The robustness of the al-
gorithm is also verified in various experimental settings. Finally, we hope the proposed probabilistic
model of NIL could inspire the application of NIL in more complex neural-agents-based systems.

ACKNOWLEDGEMENT

We show our sincere gratitude to Kenny Smith, Ivan Titov, Stella Frank and Serhii Havrylov for
their helpful discussion and comments that greatly improved the manuscript.

We would also like to thank the members from Prof. Jun Zhao’s team at Institute of Automation,
Chinese Academy of Sciences, e.g. Dr. Kang Liu, Xiang Zhang and Xinyu Zuo, for sharing com-
puting resources to run some experiments as well as sharing their pearls of wisdom with us during
the course of this research, and we thank 3 anonymous reviewers for their insights and comments.

REFERENCES

Jacob Andreas. Measuring compositionality in representation learning. arXiv preprint
arXiv:1902.07181, 2019.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, pp. 178-186, 2013.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
Henry Brighton. Compositional syntax from cultural transmission. Artificial life, 8(1):25-54, 2002.

Henry Brighton and Simon Kirby. Understanding linguistic evolution by visualizing the emergence
of topographic mappings. Artificial life, 12(2):229-242, 2006.

Jon W Carr, Kenny Smith, Hannah Cornish, and Simon Kirby. The cultural evolution of structured
languages in an open-ended, continuous world. Cognitive science, 41(4):892-923, 2017.

Edward Choi, Angeliki Lazaridou, and Nando de Freitas. Compositional obverter communication
learning from raw visual input. In International Conference on Learning Representations, 2018.

Herbert H Clark. Using language. Cambridge university press, 1996.

Michael Cogswell, Jiasen Lu, Stefan Lee, Devi Parikh, and Dhruv Batra. Emergence of composi-
tional language with deep generational transmission. arXiv preprint arXiv:1904.09067, 2019.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2137-2145, 2016.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: Learning to com-
municate with sequences of symbols. In Advances in Neural Information Processing Systems,
2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Published as a conference paper at ICLR 2020

Simon Kirby and James R Hurford. The emergence of linguistic structure: An overview of the
iterated learning model. In Simulating the evolution of language, pp. 121-147. Springer, 2002.

Simon Kirby, Tom Griffiths, and Kenny Smith. Iterated learning and the evolution of language.
Current opinion in neurobiology, 28:108—114, 2014.

Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and communica-
tion in the cultural evolution of linguistic structure. Cognition, 141:87-102, 2015.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. Natural language does not emerge natural-
lyin multi-agent dialog. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2962-2967, 2017.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of linguistic
communication from referential games with symbolic and pixel input. In International Confer-
ence on Learning Representations, 2018.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pp. 707-710, 1966.

David Lewis. Convention: A philosophical study. John Wiley & Sons, 1969.

Fushan Li and Michael Bowling. Ease-of-teaching and language structure from emergent commu-
nication. arXiv preprint arXiv:1906.02403, 2019.

Christopher D Manning, Christopher D Manning, and Hinrich Schiitze. Foundations of statistical
natural language processing. MIT press, 1999.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928-1937, 2016.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

10

Published as a conference paper at ICLR 2020

APPENDIX A: PARAMETER SETTINGS

Unless specifically stated, the experiments mentioned in this paper use the hyper-parameters
given in Table B. The code is available at https://github.com/Joshua—Ren/Neural
Iterated Learning.

Notation Value Description
N, 2 Number of all attributes
N, 8 Number of possible values for each attribute
Ny, 2,3 Message length
\4 8+[0,4,8,16,32,64] Vocabulary size.
I 80, 100 Maximum number of generations
1, > 100, < 8000 Maximum pre-train rounds for Alice
I > 10, < 800 Maximum pre-train batches for Bob
I, > 100, < 8000 Maximum interacting rounds
I 10, 100, 1000 Maximum rounds for transmitting phase
Ny, 128 Hidden layer size
Ny 64 Batch size
c 2,5,15,30 Number of candidates (including the target)
lr >10"°, <1073 Learning rate

Table 3: Value of hyper-parameters.

APPENDIX B: DIFFERENT TYPES OF LANGUAGES: A TOY EXAMPLE

Group Compsitional (8) Holistic (16) Other (232)
blue box = aa blue box = ba blue box = aa
Language red box = ba red box = aa red box = bb
Examples blue circle = ab blue circle = ab blue circle = aa
red circle = bb red circle = bb red circle = bb

) I 05 0.1~ 0.7

Table 4: Different groups of language and their topological similarity.

ngh_p ~ommmsmemeeoe s » Color Object Space
Blue Box Red Box
Language
& T Blue Cifcle Red Cirdle
Blue Red Shape . ba
Box | aa ba
.)
Circle| ab bb b bb Message Space
mTTTT T > Color Object Space
Low P ' e Box Red Box
Language
& | Blue Circ Red Cigcle
Blue Red Shape . ba
Box| ba aa
Circle| ab bb ab bb Message Space

Figure 5: A simple representation of two languages corresponding to topological similarities of
p =1 (top) and p = 0.5 (bottom).

To better understand how topological similarity can measure the compositionality of one lan-
guage, and to give some intuitions on how languages having different p would like, we pro-
vide and illustrate a toy example in this appendix. In this example, the object space is X =
{blue box, blue circle, red box, red circle} and the message space is M = {aa, ab,ba,bb}. Any

11

https://github.com/Joshua-Ren/Neural_Iterated_Learning
https://github.com/Joshua-Ren/Neural_Iterated_Learning

Published as a conference paper at ICLR 2020

set of mappings from four distinct objects to four messages (not necessarily distinct, i.e. same mes-
sage could correspond to different objects) forms a language. Hence, there exist 4* = 256 possible
languages in this toy example. Following the principles provided in (Kirby et all, PITS), we define
the following concepts for describing a language:

e Unambiguous language. A type of language that can unambiguously describe all objects
in X. In other words, the mappings between X and M are bijectional. In this example,
there exist 4 x 3 x 2 x 1 = 24 such languages.

o Compositional language. A type of unambiguous language that exhibits systematic com-
positional structure when forming messages. Such languages can use different symbols to
represent different attributes of meaning and combine these symbols in a systematic way
to form a message such that the meaning of the whole message is formed from a simple
combination of the meaning of its parts. For example, following the rules of S — XY, and
X :blue — b; X :red :— b)Y : box — a; X : circle :— b, we can derive a compositional
language like the example in Table B. In this example, we have 4 + 4 = 8 such languages.

o Holistic language. A type of unambiguous language but does not exhibits full systematic
structures. In other words, holistic languages are those unambiguous language who are not
compositional languages. In this example, we have 24 — 8 = 16 such languages.

e Degenerate language. A type of ambiguous language that maps all objects to the same
message. In this example, we have 4 such languages.

e Degenerate component. Any ambiguous language having degenerate component, i.e.,
there may be more than one objects mapping to the same message. The existence of de-
generate component makes the language ambiguous.

Note that the number of unambiguous languages is usually much smaller than that of ambiguous
languages, and the number of compositional languages is usually smaller than that of holistic lan-
guages. Using permutation and combination, we can calculate the numbers of all possible languages,
unambiguous language, compositional language and holistic language as:

Ng
all possible languages = (|V|NL)(Nv) 4)
, (Iv]™)!
unambiguous languages = —————=— 5
g guag (V[Ne N (%)
Np! P\
compositional languages = N1 —LNa)! . <(|V||‘Z|Nv)'> 6)
holistic languages = # unambiguous languages — # compositional languages @)

From the above equation, it is easy to see that the gap between the number of compositional lan-
guages and holistic languages would become larger when N,,, N,, Ny, and |V| increase. Further,
this means that it becomes even harder to pick a compositional language when randomly sample a
language. That could explain why the expected topological similarity of the emergent language may
increase when smaller Ny, and |V| are applied, as illustrated in (Cazanidon ef all, POTR; Cogswell
ef-all, OT9).

Besides the numbers of different languages, another key difference among these languages is the
topological similarity (i.e., p), as illustrated in section Z3. As the language studied in this paper
is defined as a mapping function from a meaning (i.e., an object) to a message, a compositional
language must ensure that the meaning of a symbol is a function of the meaning of its parts. In other
words, compositional languages are neighborhood related: nearby meanings tend to be mapped to
nearby signals. Or to say, nearby meanings that share similar attributes are likely to share similar
message symbols (Brighton & Kirby], P00&). Thus, as the difference between messages are measured
by edit distance, the compositional languages will have a higher p than the holistic ones. However,
the existence of degenerate component also change the value of p: the p of a degenerate language
might be higher than that of a holistic language.

From the above discussions, we find that making the highly compositional languages dominate is
a challenging task: it occupies a really small portion among all possible languages, and only using

12

Published as a conference paper at ICLR 2020

topological similarity also cannot tell them apart from those who are highly degenerate. However,
the proposed algorithm can solve this problem almost perfectly: it uses the learning speed advantage
caused by high topological similarity to increase the posterior probability of high-p languages, and
uses the interacting phase to rule out the degenerate components. The details of how the probability
of languages changes in different phase of our algorithm are illustrated in Appendix C.

APPENDIX C: PROBABILISTIC MODEL OF THE SYSTEM

Probabilistic Model of Emergent Languages:

In section I3, we define a language as a mapping function from object space X" to the message space
M, ie., L(-) : X — M. Here we discuss how to describe the probability of a specific language,
ie., P(L).

Suppose that we have N possible different objects (x1,x2,...,zN), where N = NéV“, and the

messages are conditionally independent given an object x,, (where n € [1,2,..., N]), i.e.:
N N
P(L) = P(my,..., mn|z1,...,2N) = H Pmg|zy,..., N H (myp|z,). 8)
n=1 n=1

Assume that messages are uniformly sampled from M whose size is M = |V|V£, we could have
P(my|z,) = +;,Yn € {1,2,...,N}. Hence the initial probability (or prior probability) of any

possible language is (ﬁ)N We define the posterior distribution of languages as the distribution

after our neural iterated learning algorithm (NIL), i.e. P(L|NIL).

Then, our goal is to enhance the posterior probability of the high-p languages, which is equivelant
to enhance the expectation of p, i.e.:

Ez~pienmwylp(Z p(Li) P(L;|NIL).)

It is obvious that E.[p(L)], the expected topological similarity of languages following the prior
probability, is quite low, as the high-p languages only occupy an extremely small fraction.

Definition of the Agents:

Following the structure provided in Figure [, we define the speaking agent (Alice) and listening
agent (Bob) formally here.

Alice is a bunch of neural networks that can map any input object x to a discrete message m.
So we define it as m = h(z),h : X — M. As Alice generate discrete messages with softmax
layers, the probabilistic distribution of different words in m,, can be obtained. In the example
provided in Figure [, we can have P(mq|z) and P(ma|xz, m1) by reading the distribution from
softmax layers. In more general cases, we could obtain P(m;|x, m;_1,m;_2,...) following the
same method. Thus, we can directly calculate the probability of specific m given x for Alice as
follow:

Np
P(mlz) = P(my|z) [[POmula, miy,mia,...). (10)
=2

If we feed all possible x to Alice and calculate the corresponding P(m|z), we then could calculate
the probability distribution of all languages after training Alice, following equation (8) and (9).
Then, we can state our goal as to obtain a high E.p(zni)[p(£)] by using NIL to update the
parameters of the neural network.

13

Published as a conference paper at ICLR 2020

In our setting, the posterior probability of languages is decided by Alice with its softmax layers.
Bob plays a role of assistant to ensure the robustness of NIL, which will be further illustrated in
Appendix D and E. From Figure [, we could see that the inputs of Bob are a discrete message m
and c different objects. As Bob will calculate a score s, for each object c., we can denote its function
ass = f(m,z), f: M x X — RL

Probabilistic Description of Language Evolution in NIL:

Alice[i]
Py (L)
Alice[i-1]
Pi_1(L|D;—1,Ri-1)

sample

Generation i
Po(L), fo(m,x) — D41

N N .
Alice[i] | Alice[i]
P;(L|D;) P;(L|D;, R;)
~—
Initial Prob. (mapping)
RUID), fimx) Bob[i]| Bobli] Bobli]
Pre-trained Prob. (mapping) ‘ f,(m,x) £(m,) £..(m, %)

P(L|D;,Ry), fix(m,x)
Interacted Prob. (mapping) Learning Phase Interacting Phase Transmitting Phase

Figure 6: Probabilitic explanation of different phases in NIL.

To avoid confusion, we specify all the probabilities involved in NIL in the left corner of Figure B.
In the figure, the shadow regions with different colors represent the three phases of NIL in ONE
generation. Thus, one generation of NIL could be described as:

1. Initialization: At the beginning of generation ¢, the initial probability of Alice[i] is Py(L),
which is same as the prior probability of P(L£) mentioned before, as Alice[i] is always
randomly initialized. The initial function of Bob[i] is represented as fo(m, z).

2. Learning Phase: Then following Algorithm 1, Alice[i] will be pre-trained using the data
sampled from the previous generation, i.e. D;. The pre-trained probability of languages
is defined as P;(L£|D;). Bobli] will then be pre-trained using the sample generated by
P;(L|D;), using REINFORCE procedure, after which, its function becomes f;(m, x).

3. Interacting Phase: The pre-trained Alice[i] and Bob[i] then interact and update their pa-
rameters together following the REINFORCE procedure described in section B7. In each
round of the game, Alice[i] would first use argmax to select m with the highest proba-
bility given a randomly selected object x, both agents would then update their parameters
if R = 1, i.e. the data pair (m,x) could assist them to accomplish the referential game
successfully. We argure that this process has the same effect as the following procedure:
we first sample a data set D, ~ P;(L|D;), and then delete the data pairs that cannot unam-
biguously deliver information to form a refined data set I?;. Then, the interacted probability
of Alice[i] can be represented by P;(L|D;, R;). As Bob also update its parameters in this
phase, we define its interacted function as f;.(m, x).

4. Transmitting Phase: Finally, in the transmitting phase, we sample D, 1 ~ P;(L|D;, R;)
by: i)randomly feeding x,, to Alice[i]; ii) sample a message m,, ~ P;(m|x,, D;, R;).
Note that Bob[i] is not involved in this phase.

From all sections above, we argue that Alice plays an important role in all the phases in NIL while
Bob only helps to make the languages effective during interaction phases. As we will discuss the
role of Alice and Bob in further details in Appendix E, we only provide an intuition of how the
language changes in NIL in the following paragraphs.

14

Published as a conference paper at ICLR 2020

Overall, the objective of our NIL design is to ensure the expected topological similarity of emergent
languages would increase over generations, as expressed by equation (B). As the languages with
higher p would be learned faster, which is stated as Hypothesis 1, we can expect those high-p
languages to have a higher pre-trained probability in P(£|D;) than in D;, i.e..®

Ez~peipy[p(L)] 2 Ecap,[p(L)]. (11)

Note that this inequality is not a strict corollary, but it is very likely to hold as long as we have
an appropriate I,. In the worst case, we can chose an extremely large I, to make Alice learn D;
perfectly. However, we could verify it by the experimental results as well as the explanation in
Appendix D that the weak pre-training can indeed help us to achieve a higher expected p. Then, in
the interacting phase, we may expect:

Er~p(eipi, i) [P(L)] = Ecop(zipy)[p(£)]; (12)
as the compositional languages and holistic languages are both unambiguous and the game perfor-
mance cannot tell them apart. Finally, during the transmitting phase, we have D; 1 ~ P;(L|D;, R;).

Assuming that we sampled enough D; 1 to ensure it has a very similar distribution to P;(L|D;, R;),
it is reasonable to have:

Ecnpi [p(L)] = Ecopcip, r[P(L)]- (13)

Sum up from the above, equation (B) can be obtained by combining equation (I-I3).
APPENDIX D: MORE ON THE LEARNING SPEED ADVANTAGE

Amplifying mechanism and learning speed advantage are the two main elements for the success of
NIL. The former on is elaborated in section B2 and Appendix C, under the assumption that the
learning speed advantage of high-p language indeed exist. In this section, we will explain why such
an advantage exist by experimental results and a toy example.

1 4 { Highp
AN H
[N S S . Language
! e

Low-p

Learned function of neural agent

True function that generate training samples
Training samples

Predicting samples

Update directions at specific positions

Blue arrow means decreasing of MSE
Language) R
Influence on the neighborhood when Red cross means increasing of MSE

conducting gradient descent (ascent)

Figure 7: Illustration of learning a high-p language and low-p language.

Example for Supporting Hypothesis 1:

This hypothesis claims that a high-p language would be leared faster than a low-p one on the speaker
side. As we can directly represent the posterior probability of any language from Alice’s perspective,
the assertion of “learned faster” can be converted to “the posterior probability increases faster”.
We use a toy example, i.e. two languages in Table B, to demonstrate how such an advantage emerges
and how it works. To make the notation concise, we use “BB, RB, BC, RC” to represent “blue box,
red box, blue circle, red circle” respectively. The probability of the compositional language and the
holistic language in Table 8 can be represented as:

*Figure B-(c) might be a good example

15

Published as a conference paper at ICLR 2020

P(Lemp)=P(my=a|BB) - P(ma=a|BB, mi=a) - P(m1=b|RB) - P(ms=a|RB, m =b) - C (14)
P(Lno1)= P(m1=b|BB) - P(mg=a|BB, m1=b) - P(m1=a|RB) - P(mg=a|RB, mi=a)-C (15)

@ @ ® @
C= P(my=a|BC) - P(my=b| BC, mi=a) - P(m1=b|RC) - P(my=b|RC, m1=b) (16)

® ® @

where C' is the common part for both languages.

As we are using stochastic gradient descent algorithm to update the parameters of Alice, it straight-
forward to see that the update of gradient from one point will ’pull up’ the neighbourhood region
of function h, which is shown in the left panel of Figure . Then, we can speculate that if one data
sample belonging to both the two language comes, e.g. (ab, BC'), the following probabilities would
increase at the same time:

P(my=a|BC); P(mi=a|BB); P(mi=a|RC), (17)

as the input of them are similar with BC' (only one attribute changes). As the conditional probabili-
ties must sum to 1, the following probabilities would decrease:

P(mi=b|BC); P(mi=b|BB); P(mi=b|RC). (18)

Thus, when Alice learns the data sample (ab, BC'), P(Lcmp) may have two terms increased, i.e.,
terms (5) and (1) . For P(Lyo), however, the decrease of term (1) will harm the increase of term

(3, hence P (Lne1) increases slower than P(Ecmp) (The fact that term (7) decreases on both sides
would not change our deduction).

Example for Supporting Hypothesis 2:

We can use a similar explanation for the advantage at Bob. Recall that Bob is defined as a mapping
function f from M x X to R!. Following the principle mentioned above, if Bob learns (ab, BB),
a bunch of function values would increase, i.e. f(ab, BB), f(aa, BB), f(bb, BB), f(ab, BC), and
f(ab,CB), as they are all close to each other in the input space. Then it is easy to find that two
terms in the compositional language in Table B are increased while only one term increases in the
holistic language. That is, the score of high-p language would increases faster.

We can also think hypothesis 2 in the following way. With the intuition that a language with higher
p tends to be smoother and to have fewer inflection points than one with lower p, the learning speed
advantage given by highly compositional languages can be illustrated by the example provided in
Figure . In the example, language is considered to be a one-dimensional mapping function, which
is represented by the dotted lines in Figure . The object-message pairs, which are represented by the
cross marks, are the points that satisfy the mapping function. The solid line represents the mapping
function of the learning agent. Suppose the target output (i.e. the third cross mark in each figure)
is larger than the predicting output (i.e. the circle mark), the optimizer will update the parameters
of the neural network following the direction of the gradient, as illustrated by the bold arrows in the
figure. Such an update will also pull the neighbouring parts of the function up, as illustrated by the
smaller arrows on the solid curve.

The smoothness of high-p languages implies that the MSE of neighbouring positions will also be
reduced by this update, while the MSE of neighbors would be increased in the case of a low-p
language. Such a trend is represented by the blue arrows and red crossed-arrows in Figure [@: the
blue one means a decrease of the MSE at the specific position while the red one means increases of
MSE. In other words, for a high-p languages, an update corresponding to one data sample is likely
to have a larger positive effect on other data samples, and hence ensure a higher learning speed.
Meanwhile, for a low-p language, one data sample would have both positive and negative effects on
its neighbors and thus lead to a lower learning speed.

16

Published as a conference paper at ICLR 2020

APPENDIX E: ROBUSTNESS OF NIL

In this section, we will provide experimental results to demonstrate the robustness of the proposed
method. The influence of hyperparameters (e.g. vocabulary size, message length) as well as the role
played by Alice and Bob are both elaborated.

Robustness for Hyperparameters on Message Space:

The message space are decided by the vocabulary size |V| and the message length Ny. Thus, we
first make experiments to see the effects of different [V'| and Nz on Ez.p(cinmw)[p(L)].

From the discussion in Appendix B, we know that when |V| and N, are large, making high-p
language dominate in the posterior probability is very hard, as the compositional languages only
occupy an extremely small portion. Such a trend could also be found in Table B, as the finally
converged expectation of topological similarity becomes lower with larger |V'| or Ny..

Our algorithm, however, is very robust to different values of |V| and Ny,. By comparing different
columns in Table B, E... p 2Ny [p(£)] decreases very slow with the increasement of |V'| and Np.
An extreme example is that, the converged p can still be roughly 0.8 with |V | = 72. The performance
of validation accuracy seems more robust when |V'| and N, changes: the NIL can always obtain
more than 80% accuracy compared to the none reset case (roughly 15%).

Furthermore, compared with |V|, Ny, has a stronger impact on the performance in terms of all
metrics but the validation performance, as it is shown in Table B that the performance with Ny, = 3
is significantly lower than its counterpart when N; = 2. One possible explanation is that the
increasing of Ny, brings an exponential change to the message space. However, no matter how
|V| and Ny, change, E.p(zniw)[p(£)] is always significantly higher that the compositionality of
emergent languages given by baseline model, i.e. 0.3.

N, |V|=8 V=12 V=16 [V]=24 [V]=40 V=72
Elpriso] 2 0.986£0.01 00937£0.02 0933£0.01 0.8540.02 0.830£0.02 0.7930.02
307124001 0.833+£0.01 0.798+0.02 0.777+0.01 0.793+0.02 0.780+0.03
Elprio] 2 0.76710.18 0.69010.18 0.6841020 0.630L0.17 0.66810.19 0.57210.14
3 0.528+0.11 0.647+0.15 0.640+£0.17 0.664:£0.14 0.637+£0.16 0.628-:0.21
Goss 2 9 16 10 37 68 -
3 - - 39 - - 59
Valid Acc. 2 0.86810.14 09141006 0.83310.11 0.86620.11 0.801£0.10 0.828%0.14
3 0.804+0.13 0.677+0.16 0.773+0.15 0.858+£0.10 0.867-0.01 0.900-:0.07

Table 5: Values of 4 metrics when |V| and Ny, changes. Metric G g5 means the first generation
that the average p of the previous three generations exceed 0.85. The notation “-” means the agents
never satisfy the requirement.

Robustness on Degenerate Components:

From the discussions in Appendix B, we know that the p of a language who has many degenerate
components will also be high, and hence can be learned faster by Alice in the learning phase. Thus,
it is necessary to check whether our algorithm can avoid the mode collapse caused by the degenerate
components. Intuitively, the degenerate components can be filtered out during the interacting phase,
as the REINFORCE algorithm ensure that the parameters of the agent will only be updated with
respect to R = 1, i.e. the language is effective and thus unambiguous.

To verify our hypothesis, we first observe how the number of message types, i.e. the number of
different messages used to describe all 64 objects, changes during NIL. It is straightforward to see
that a language without any degenerate component would have 64 different message types. As
shown in Figure B, all methods could achieve high numbers if message types, which indicates that
the REINFORCE algorithm could always filter out the degenerate components efficiently.

Furthermore, we design two challenging tasks for NIL:

17

Published as a conference paper at ICLR 2020

60 1

50 4

40 1

30 A

Number of message types

201 —— Reset Alice and Bob
/ Only reset Alice
101 / —— Only reset Bob
oA —— None reset
T T T T T T T T T
0 10 20 30 40 50 60 70 80

Number of generations

Figure 8: Numbers of message types from different settings.

1. Degenerate initialized: We let Alice learn from a pure degenerate language at the begin-
ning of each generation, before it learns from D;.

2. Degenerate mixed: We mix the data pair generated by a pure degenerate language to D;
and ensures the proportion of the degenerate pairs is more than 50%, which makes Alice
easier to collapse to a degenerate language during learning phase.

We then compare the performance, i.e. the expected p and validation accuracy, of agents in different
tasks. The results shown in Figure B demonstrate that our NIL is very robust to the influence of
degenerate component, as both E. p(z iy [2(£)] and the validation score are much higher than
the none reset baseline’s performance.

1.0 9
Q o >)
= Y 0.8
b 0.8 %
=
© € Y,
= S 061 i
g 061 g E —— NIL baseline 1
n Q —— NIL, degenerate initialized
© Q — NIL, degenerate mixed
o c 0.4+
= 0.4 o —-— None reset converged
oS | B — NiLbaseline ©
2 0. —— NIL, degenerate initialized D2
IE ’ [—— NIL, degenerate mixed g v -
—-— None reset converged
0.0 — T r r r T T r r 001 T T - - - - - -
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of generations Number of generations
(a) Performance on topological similarity (b) Performance on validation accuracy.

Figure 9: Two corner case test. NIL with degenerate initialized means Alice is initialized with a
degenerate language at the beginning of each generation. NIL with degenerate mixed means Alice
is initialized with a degenerate language, AND the D; is mixed with I, degenerate language pairs.

The Role of Bob’s Pre-training

From the discussions above, it is easy to understand why E. . p(zni)[p(£)] would gradually in-
crease in NIL and how the REINFORCE applied in interacting phase can filter the degenerate
component. However, the role played by Bob, especially in the learning phase where Bob only
update its own parameters, is not straightforward. In short, the pre-training of Bob makes the al-
gorithm more robust, especially at the beginning of the interacting phase. We record the value of
Ez~pecinwy[p(L)] every 20 iterations among learning phase and interacting phase, and plot the
results of two generations in Figure M.

18

Published as a conference paper at ICLR 2020

o
o
|

o
wn

A

<
S
L

o
w

o
N

—— NIL with Bob Pre-train
—— NIL without Bob Pre-train
—-— Range of Bob Pre-train

Topological similarity:p

o
S)
|

6 560 1(;00 15'00 20'00 25'00 30'00
Time index in one generation

Figure 10: The change of E;..p(zni)[p(£)] in generation 3 and 6.

In this figure, the x-axis is the index of iterations. With I,=1000, I;=400, and 1,=1600, we split
(by dotted lines) each generation to three parts: Alice pre-training, Bob pre-training, and interacting
phase. The blue lines are generated by NIL with the pre-training of Bob while the red lines are
generated when Bob is not pre-trained (here /,=2000 to make a fair comparison). For the blue
lines, Ez p(ziniy[p(£)] will not change when Bob is pre-training (begins at the 1000th iteration),
because Alice do not update parameters at that time. However, for the red lines, Ez. p(zniw) [0(£)]
begin to decrease at the 1000th iteration. That is because when Bob is not pre-trained, the language
learned by Alice may be impacted by playing with a fresh new Bob at the beginning of interacting
phase! That is why the pre-training of Bob can make the NIL more efficient and robust. If Bob are
pre-trained by the data generated by Alice in the current generation, Bob would be more “familiar”
with Alice’s language, and hence ensures a more stable interacting phase.

Looking at the Emergent Languages

From the discussions above, we know that NIL can ensure a high expected p of the emergent lan-
guage, and a high validation performance. Here we show the evolution of the distributions of emer-
gent languages to provide a better intuition on how NIL works.

We first provide two examples of converged language (i.e., the language generated by Alice in the
last generation) using the none-reset method and the resetting-both method in Table B and [, respec-
tively. In these examples, both languages can almost unambiguously represent all 64 different types
of objects in X', and hence they can help Alice and Bob to play the game successfully. However,
the language generated using iterated learning has a clear compositional structure: the first position
of the message represents different colors, and the second position represents the shape. Such a
structure is quite similar to what humans do, e.g., combine an adjective and a noun to represent a
complex concept.

To better illustrate the posterior probability of emergent languages as a function of the corresponding
value of p and the generation, we provide the 3D views of P(p(L)|D;, R;) in 80 generations in
Figure [and 3. The heat-map provided in Figure [l can be considered as the top views of these
3D illustrations. In these two figures, the x-axis and y-axis represent the index of generation and the
topological similarity, and the z-axis represents the probability of languages with a specific value of
p, in a specific generation. To make the figures easier to read, we smooth the distribution of p in
each generation using linear interpolation (Boyd & Vandenberghe, P004).

Figure [4-(a) and (b) compare the posterior distributions at some typical generations, which can also
be considered as the side views of the 3D illustration from the direction of x-axis. In these figures,
we find that the initial distribution of p is not flat. That is because even the prior probability for each
language is uniform, the amounts of languages with extremely high p and low p only occupy a small
portion among all possible languages, as stated in (Brighton, 2007). Hence the initial probability
of p(L) is no longer uniform and has a bell shape which is similar to the Gaussian distribution.
One new trend provided by these figures is that, in the none-reset case, the width of the curves in
different generations do not change much, while in the resetting-both case, the width of the curves

19

Published as a conference paper at ICLR 2020

will gradually decrease (i.e., becomes more peaky). Such a trends means when iterated learning is
applied, language tend to converge to some high-p types.

Figure [3-(a) and (b) track the ratio of languages with different values of p, which can also be
considered as the side views of the 3D illustration from the direction of y-axis. In these figures, we
divide all possible languages into five groups based on their topological similarity, i.e., languages
with p <0.2,02<p<0.4,04<p<0.6,0.6 <p<0.8,and 0.8 < p. We plot the ratio of these
five different groups of languages at the end of each generation. From Figure [3-(a), we can see that
the high-p language, which is represented by the bold curve, always occupy a small portion. The
topological similarity of the dominant languages are p < 0.4. Howeyver, in the resetting-both case, as
illustrated in Figure [3-(b), the portion of high-p language will increase significantly, which further
verifies that the iterated learning can gradually make the high-p language dominate in posterior.

blue green cyan brown red black yellow white

box aa th af hh cg fc ha hf
circle da df hb db fa da dh fb
triangle gc ff ge of gg fg ge he
square ae b be bb bg b gb ba
star ad fd de db dg fd ce hc
diamond ac dd dc db dg fd dc dd
pentagon ad fe ef bd eg fc ee ed

capsule aa dd de db dg ed de th

Table 6: Example of the converged language in none-reset case p = 0.23

blue green cyan brown red black yellow white

box aa ea ba ga da ca ha fa
circle ab eb bb gb db cb hb fb
triangle ae eb be ge de ce he fe
square af ef bf of df cf hf ff
star ac ec bc gc dc cc dh fc
diamond ad ed bd gd dd cd hd fd
pentagon ag eg bg gg dg cg hg fg
capsule ah eh bh gh hc ch hh th

Table 7: Example of the converged language in resetting-both case p = 0.93

o- o -

- -
9 o 0.75 Q -] 0.75
327 _‘3\27 IMERRRRRRNES
T o 0.60 T o e 0.60
© ~ -) ~ - g EMNLE
= o = o T
€ o- € o-
3 045 = 3| 0.45
G 53]
o) e -0.30 S < :' -0.30
O m O n
o ° o °
o N -0.15 Q N - -0.15
P g

— — -

s . | s

' ' ' ' ' ' ' -0.00 ' ' ' ' ' ' ' ' -0.00
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of generations Number of generations
(a) The none-reset case. (b) The resetting-both case.

Figure 11: Distribution of P(p(L)|D;, R;) through 80 generations. Values of p are divided into ten
groups. The distribution of p in each generation is smoothed using linear interpolation.

20

Published as a conference paper at ICLR 2020

Probability
=3 Isd o I o o o I
- N w S w o ~ <]

o
o

Figure 13: Language evolution of resetting-both case in a 3D illustration.

S S

T T 0.8 T T
—— Generation 1 —— Generation 1 /\
— G ion5 074 — G ion 5
\ —— Generation 10 —— Generation 10 / \
—— Generation 30 | 0.6 1 —— Generation 30
/ \ —— Generation 75 > —— Generation 75 / \
2 o5
| 3 [A\
@ 0.4
/ 2
So
l o

/NS~ [\
/ \

0.2 /
0.1 J -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Topological similarity:p Topological similarity:p
(a) None-reset case. (b) Resetting-both case.

Figure 14: Distribution of p(£) at different generations.

21

Published as a conference paper at ICLR 2020

Probability

1.0
0.8
— p€0.0,02]
061 —— pE€[0.2,04]
— p€I0.4,06]
041 — p€106,08]
— p€[0.8,1.0]
021
0.0

Probability

0.8 1

o
o

o
IS

o
N

0.0 1

— p€[0.0,0.2]
—— p€E[0.2,0.4]
—— PE[0.4,06]
—— p€[0.6,0.8]
—p €[0.8,1.0]

T T T T

0 1‘0 2‘0 3‘0 40 50 60 70
Number of generations

(a) None-reset case.

T T T T

T T T
0 10 20 30 40 50 60 70

Number of generations

(b) Resetting-both case.

Figure 15: Evolution of language with different values of p.

22

80

	Introduction
	Background
	Referential Game
	Neural Agent Structures
	Measuring Compositionality

	Neural Iterated Learning Model
	Learning Speed Advantage for the Neural Agents
	Neural Iterated Learning and Probabilistic Analysis

	Experiments and Discussions
	Learning Speed Advantages
	Performance of NIL
	High Topological Similarity and Interval of Advantage
	Topological Similarity and Validation Performance

	Discussion: a parallel with Language Evolution
	Conclusion

