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ABSTRACT

Rethinking physics in the era of deep learning is an increasingly important topic.
This topic is special because, in addition to data, one can leverage a vast library
of physical prior models (e.g. kinematics, fluid flow, etc) to perform more ro-
bust inference. The nascent sub-field of physics-based learning (PBL) studies this
problem of blending neural networks with physical priors. While previous PBL
algorithms have been applied successfully to specific tasks, it is hard to generalize
existing PBL methods to a wide range of physics-based problems. Such general-
ization would require an architecture that can adapt to variations in the correctness
of the physics, or in the quality of training data. No such architecture exists. In
this paper, we aim to generalize PBL, by making a first attempt to bring neural ar-
chitecture search (NAS) to the realm of PBL. We introduce a new method known
as physics-based neural architecture search (PhysicsNAS) that is a top-performer
across a diverse range of quality in the physical model and the dataset.

1 INTRODUCTION

Advances in machine learning can transform the way physical calculations are performed. Many
physical models are idealized and do not precisely match real-world data. An elementary exam-
ple would be equations for projectile motion which do not account for air resistance. Using these
idealized equations, a completely physics-driven approach would have large errors on real-world
data. A separate approach is completely data-driven, e.g., one could repeatedly record real-world
projectile tosses and use a regression model to estimate a future trajectory; unfortunately, this ap-
proach requires large datasets and lacks interpretability. To bridge this gap, the field of physics-based
learning (PBL) aims to blend physical priors with data-driven inference, to combine the best of both
worlds.

Previous PBL architectures have achieved competitive performance on a wide variety of tasks in
microscopy (Rivenson et al.,[2019; Nehme et al., [2018}; Nguyen et al., 2018 Sinha et al., [2017} |Goy
et al., 2018)), low level and high level computer vision (Ba et al.| 2019} |Sun et al., 2019), medical
imaging (Jin et al., |2017; [Kang et al., 2017), and robot control (Zeng et al.,[2019; |Ajay et al.|[2019).
These seemingly diverse problem statements share a common thread: the presence of a partially
known physical prior that can be blended with a neural network.

Unfortunately, existing PBL methods are typically designed for a specific task. Generalization would
(as a first step) require a PBL architecture capable of adapting to variations in the correctness of
physics or the quality of training data. Our experiments show that no such architecture exists (Fig-
ure [T and Section 4.3). Having a general recipe for blending physics and learning is an important
step in adopting physics-based learning to encompass the wide range of physical problems, where
priors are only approximate and training data can be sparse.

In this work, we approach the problem of PBL from a different angle. Inspired by work in neural
architecture search (NAS) (Zoph & Le, 2016; Baker et al.| 2016; [Liu et al., [2018; [Cai et al., |2018)),
we propose a first attempt to automatically find the optimal PBL architecture, taking into account
characteristics of not just data, but also physics. To incorporate physical models into NAS, we find
that three modifications must be made to the existing NAS framework: (1) the inclusion of physical
inputs; (2) the inclusion of physical operation sets; and (3) edge weights to normalize variations in
the degrees of freedom introduced by the inclusion of physical operators. As these modifications are
specific to the PBL problem, we refer to our algorithm as PhysicsNAS. As shown in Figure |1} the
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Figure 1: Generalizing PBL across a range of sparsity in training data and correctness in the
physical model.

goal of PhysicsNAS is to handle a diverse range of quality in the physical prior or data. Experiments
in Section [4.3] offer support for this goal, where PhysicsNAS outperforms previous PBL methods
on multiple physical tasks across a range of physical prior and dataset conditions. The performance
improvement over existing PBL methods ranges from 3% to 60%.

Our contributions to physics-based learning can be summarized as follows:

o We make a first attempt at bringing neural architecture search (NAS) into the realm of physics-
based learning (PBL), introducing PhysicsNAS as a new method for PBL.

e We show in our experiments that PhysicsNAS generalizes to a wider range of diversity in data
and physical priors, as compared to previous PBL methods;

e We interpret the converged architectures of PhysicsNAS in context of prior PBL work, to provide
general evidence that: (a) Accurate physical operations can be embedded into the network design
if there is enough training data available; (b) Residual Physics is a preferred alternative to inaccu-
rate physical operations; (c) Physical Fusion is a general strategy that can be adopted in various
physical environments. Separate from our work, these insights can help lay a foundation for how
to explain the choice of PBL models in future work.

Although our primary contributions are to PBL, it is worth noting that conventional differentiable
NAS approaches (L1u et al., 2018]) are not designed to incorporate physical priors; in developing this
paper we found it necessary to modify such approaches to incorporate physical priors as both inputs
and candidate operations.

2 CATEGORIZING PRIOR WORK IN PHYSICS-BASED LEARNING

There has been remarkable progress in blending physical priors with neural networks, over the past
few years. Here, we make a first attempt to group previous methods into the four categories as
illustrated in Figure 2}

o Physical Fusion feeds the solution from physics-based models as part of the input (Karpatne et al.}
2017;Ba et al.,[2019). The solutions can be stacked with the original input, or additionalidentical
network branches can be used to extract features separately;

o Residual Physics is another way to improve the model-based solutions with deployments in robot
control (Zeng et al |2019; |Ajay et al.l 2019) and medical imaging (Jin et al., 2017} |Kang et al.,
2017). By adding the physical solution onto the network output, the neural networks only need to
learn the mismatch between the model-based solution and the ground truth in this case;

o Physical Regularization harnesses the regularization term from a set of physical constraints to
penalize the network solutions. The regularization term can be appended as part of the loss func-
tion explicitly (Karpatne et al., |2017; |Stewart & Ermon| 2017} Raissi et al., 2017} Raissi, [2018}
Fei et al.l 2019), or through a reconstruction process from physics (Che et al., 2018; |Chen et al.}
2018 Pan et al.,|[2018));

o Embedded Physics takes the physical model inside the network optimization loop, where the
physical model acts as a skeleton, and the network is in charge of learning parameters used in these
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Figure 2: An overview of proposed NAS-based blending approach. Our PhysicsNAS takes ad-
vantage of all the existing methods on blending physical prior, and is capable of generating new
hybrid architectures for tasks under diversified physical environments. With the augmented search
space and knowledge from prior information, it is possible for the proposed PhysicsNAS to gener-
alize its performance with limited number of training samples.

models. Unrolled networks (Gregor & LeCunl 2010; Diamond et al., 2017; [Kellman et al., 2019;
Monakhova et al., 2019} [Sitzmann et al., 2018), PDE-Nets (Long et al., 2017), and variational
networks (Hammernik et al. [2018; |(Chakrabarti|, |2016) can all be classified into this category.
During training, auxiliary intermediate losses can be inserted to guarantee the learned parameters
indeed carry their corresponding physical meanings as well (Hui et al., 2019} |Song & Funkhouser,
2019; [Li et al.,[2019).

Continuing to propose new models for PBL is a viable direction, however this may not address
adaptability to diverse scenarios of physical model mismatch and sparsity in training data. Physic-
sNAS is a different tack, where we design basic operation sets inspired by PBL strategies, and allow
networks to customize their architectures during training.

3 PHYSICSNAS

In what follows, we describe the PhysicsNAS algorithm. In Section 3.1} we discuss the problem
setup. We then describe the search algorithm in Section[3.2)and the detailed features of PhysicsNAS
in Section

3.1 PROBLEM SETUP

In the PBL problem, we have access to a training set Dy,.qin = {(2:,%:)}}L, and a partially known
physical operator A, . Each sample within the training set is a data pair (;, y;) formed by an input
instance z; € X and the corresponding output (label) y; € Y, and the objective is to learn a function
f(+) that maps input space to output space X — Y. f(-) is approximated by a physics network
from a search space ‘H with hypotheses f (w, @, Aphy), where w denotes network parameters and o
denotes architecture parameters. The learning algorithm searches inside # and tries to find {w, o}
that parameterizes the optimal f (w, &, Aphy) for Dypain. The challenge for these problems lies in
finding a suitable method to incorporate Ay, into the network design under diverse regimes of
physical model mismatch.

3.2 SEARCH ALGORITHM

We develop PhysicsNAS based on differentiable NAS techniques (Liu et al., 2018} |Cai et al., 2018]).
With learnable architecture parameters o and continuity relaxation, both network architectures and
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Figure 3: Search space of our PhysicsNAS. In the proposed PhysicsNAS, all the nodes are densely
connected by mixed operators from predefined candidate operation sets. The hidden nodes can
obtain information from the original inputs or from previous hidden nodes within this search setup.
The training process is supervised by both ground truth and physical constraints.
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parameters can be updated using gradient descent. In contrast to NAS for complicated vision tasks,
we do not search the cell structures and apply these searched cells to predefined meta-architectures
in PhysicsNAS. As such, PhysicsNAS tries to learn an architecture that links the network input and
network output directly. The search space of PhysicsNAS is illustrated in Flgure@ where the whole
architecture is represented by a directed acyclic graph with nodes {N;}¥ | and edges {E,,}M_,.

Each edge connects two nodes (N;, N;) through a mixed operator, and each node corresponds to a
type of input or a feature vector extracted from previous nodes through the mixed operators. The
output of the mixed operator between (N;, N;) is the gated sum of all candidate operations {0y } X_;:

ng nz Zgokok nz (1)

where m,; is the output of this mixed operator, n; is the feature vector of node /V;, g, is the binarized
operation mask based on the softmax probability of architecture parameters o, in 2018),
and K is the number of operations inside a edge, which depends on the properties of node pair
(N;, N;). The nodes are densely connected, so that n;, the output features of node N, is the gated
sum of features from all its previous nodes:

delmu nz del Zgokok nz (2)
=0

where g, is the binarized edge mask based on the softmax probability of architecture parameters o,
and NV; can either be an intermediate node or the output node.

During training, we retain two incoming edges for each node and one operation for each edge
through the binary gate sampling in 2018). While for inference, we pick two candi-
date edges with the largest edge probabilities, and select the operation with maximum operation
probability for each of the two edges. We choose two edges for each node to leave the potential
for PhysicsNAS to learn complicated structures, like skip connection and multi-stream encoding.
In order to learn both the network weights and the associated architecture parameters, we update
these two sets of parameters alternately. In the architecture step, we freeze the network weights w
and minimize the validation loss £,4;(w, &) by updating . In the network step, we update w to
minimize the training 1oss L,.qin (w, &) with frozen a.

3.3 PHYSICSNAS FEATURES

To incorporate priors into existing differentiable NAS (Liu et al., [2018}; [Cai et all, 2018)), we make
three unique modifications into the search process of PhysicsNAS.

Physical Inputs As a first step in blending physics into PhysicsNAS, we need to prepare unique
input nodes that take into account four categories of input information: 1) the data input X; 2) the
duplicated data input X 4, to verify whether physical information is indeed necessary since each
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Figure 4: We evaluate our method on a simulator of classical tasks. The first task (Left) is
predicting the trajectory of a ball being tossed, and the second task (Right) is estimating the velocities
of two objects after collision.

node has to pick two edges; 3) the estimated solution from physics )A/phy = Apny(X); and 4) the
concatenation of X and thy to test which stage to conduct the physical fusion.

Physical Operations To merge physical models inside the network, we create physics-informed
operation sets O = {onNn,, ..., ON NL,ophy}, where oy, denotes the neural network operations
(e.g..fully-connected layer, skip connection) and oy, denotes the physical forward operation.
Specifically, for the physical forward module, we also use a light-weight network layer, such as a
fully-connected (FC) layer, to make the size of its input consistent with the parameter size required
by the physical module. Physical forward modules are only included in the edges that connect to the
output node in our implementation.

Edge Weights In PhysicsNAS, not all edges are created with the same amount of operations, since
they are used to connect different types of nodes. Consequently, if we select the edges purely based
on the operation probabilities, edges with fewer operations are naturally preferred due to the softmax
probability, which causes a biased architecture selection. We solve this issue by introducing the edge
weight as described in Equation [2] After searching, we first pick a desired edge according to the
edge weights, and then select the desired operation for that edge based on the operation weights.

4 EXPERIMENTS AND RESULTS

To comprehensively evaluate PhysicsNAS, we simulate two representative physical tasks for which
we can vary the model mismatch: 1) predicting trajectories of an object being tossed; and 2) esti-
mating the speed of rigid objects after collision. Figure []illustrates these tasks; further details are
provided in Section Comparison PBL architectures are described in Section Finally, we
evaluate PhysicsNAS and provide a detailed analysis on the searched architectures in Section[4.3]

4.1 DESCRIPTION OF TASKS

For the TOSSING TRAJECTORY PREDICTION task (see Figure 4] for visualization), the initial three
locations of the object {l1,2,l3} are given as input X, and our objective is to predict locations
of this object in the following 15 time stamps, {l4, (s, ...,l15}. We only consider the displacement
within a 2D plane, therefore, the coordinates of each location can be represented by two numbers, i.e.
l; = (Ig;,1y,). We adopt the following elementary free-falling equations as the prior, and examine
different methods under this inadequate physical prior:

Y/h . {lwi = lzy + gt
o by, = Ly, + oyt — %gt?

) 3)

where [, and [,, denote the object location at time ¢;, I, and l,, are the initial location of the
object, v, and v, denote the initial velocities along horizontal and vertical directions respectively,
and g is the fixed gravitational acceleration of 9.8m/s?. We introduce two model mismatches: the
random acceleration as the winds and an additional damping factor based on Fi;, = k x v? to
simulate the air resistance. The future locations estimated according to mismatched prior are used

as the physical input thy. As to the physical modules in Embedded Physics and PhysicsNAS, we
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estimate parameters {le , fyl , Uz, Uy }, and substitute these parameters into Equationas the physical
operation.

In the COLLISION SPEED ESTIMATION task (see Figure [] for visualization), we use the speed of
two objects at the initial two time stamps, object mass, and the distance between these two objects
{Vay»Vays Vb, 5 Uy, Ma, My, D} as the input X to estimate the speed after their collision {vg, v, }.
We assume the objects have the different mass, and can only move along one direction. Based
on energy conservation and momentum conservation for perfectly elastic collision, we adopt the
following prior:

/ {Uaf = ma—l&-mb [val (ma - mb) + 2mbvb1]

Y} :
phy vy, = m[vbl (my — mg) + 2mgvg, |

“4)

We add sliding friction to the system as intentional model mismatch, where conservation prior in

Equation (4| does not hold. Solutions without the consideration of friction are used as )A/phy, and
{"q, b, Vay , Up, } are estimated for the physical modules.

4.2 MANUALLY DESIGNED PBL METHODS

For the sake of comparison, several manually designed architectures from Section 2] are also eval-
uated. We use a three-layer multilayer perceptron (MLP) as the naive data-driven baseline, since it
has sufficient expressiveness to fit any continuous function, especially the elementary physical tasks
we have chosen (Csaji, [2001). Network structures for the Physical Regularization model and the
Residual Physics model are the same as the naive model. The output of the Residual Physics model

is a summation of thy and the learned residual from the network, while there is an additional regu-
larization term in loss function of the Physical Regularization model. Since only a partially correct
physical prior is used, directly using physical solution as the regularization will in turn aggravate the
error. Thus, we introduce an ReLLU-based regularization similar to (Karpatne et al.,[2017). The reg-
ularization loss penalizes the network solution based on the assumption that the object moves along
one direction in the horizontal axis for the trajectory prediction task, and the total kinetic energy is
less than the initial kinetic energy for the speed estimation task. In the Physical Fusion approach,

two separate branches are utilized to extract features from X and thy respectively, and each of
them is a two-layer MLP. The extracted features will then be concatenated and fed into the output
layer. The Embedded Physics model first estimates necessary parameters in Equation |3| and Equa-
tion [ with a three-layer MLP, and then produces trajectory estimation based on the fixed physical
process. All the above models are supervised by the ground-truth future locations with mean square
error (MSE) loss, and the hidden dimension for FC layers are 128.

4.3 RESULTS ANALYSIS

Training Details To evaluate the importance and success of the proposed approach, we vary the
physical model mismatch and sparsity in training data in a controlled manner. When training Physic-
sNAS, we split the training set into two subsets of the same size to update architecture variables and
network variables respectively. We limit the number of learnable nodes in PhysicsNAS to be 5, and
retrain the searched architectures with full training sets after searching. The models are implemented
in PyTorch (Paszke et al.| 2017), and are trained using the Adam optimizer (Kingma & Ba, [2014).
Moreover, for all baseline approaches we compare in this paper, we fine tune their hyperparameters
in order to make fair comparisons. We choose three hyperparameter sets for each scenario and run
five times for each method. We finally pick out the best result for each method.

Performance Comparison We apply the proposed PhysicsNAS to learn architectures embedded in
the search space. The testing results of PhysicsNAS and other existing PBL methods (as detailed
in Section .2) are summarized in Table [T] and Table 2] As shown in these two tables, the perfor-
mance of different PBL models varies based on the disparity of mismatch levels and training data
sizes, while PhysicsNAS is capable of generating architectures that outperform these manual PBL
models consistently. Results in Figure [5] further demonstrate this capability along data dimension
and physics dimension in a fine-grained scale. We also conduct an ablation study on PhysicsNAS by
removing task-specific adaptations such as physical inputs and operations. Results in Appendix [D]
show the task-specific adaptations improve the performance of PhysicsNAS at different mismatch
levels, demonstrating that having physical inputs and physical operations in PhysicsNAS’s search
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Mismatch Level
Sample Amount

Low High
32 128 32 128

0.684 0.232 0.696 0.267
Physical Fusion  0.266 0.200 0.321 0.178
Residual Physics  0.323 0.192 0.481 0.279
Embedded Physics 0.617 0.169 0.617 0.305
Physics Reg. 0.459 0.272 0.674 0.315

PhysicsNAS 0.183 0.097 0.264 0.152

Naive Network

Table 1: Testing performance on tossing task.
We adopt the average Euclidean distance be-
tween the ground truth and the predicted loca-
tions as the evaluation metric (lower distance is
better). The low mismatch level corresponds
to a small random initial acceleration range
[—1m/s%, 1m/s?] and a small damping factor
0.2. The high mismatch level corresponds to a

Mismatch Level
Sample Amount

Low High
32 128 32 128

1.974 0.319 8.865 4.534
Physical Fusion ~ 0.868 0.174 6.892 4.596
Residual Physics  1.053 0.173 11.750 5.859
Embedded Physics 2.105 0.258 7.962 4.546
Physics Reg. 1.916 0.271 8.631 4.451

PhysicsNAS 0.724 0.121 6.741 4.157

Naive Network

Table 2: Testing performance on collision
task. We use similar Euclidean distance be-
tween the estimated speed and the ground-truth
speed as the metric (lower distance is better).
The low mismatch level corresponds to a ran-
dom initial friction coefficient in range [0.28,
0.32], and the high mismatch level corresponds
to a friction coefficient in range [0.45, 0.55].

The best model is marked in red and the sub-
optimal is in blue.

large acceleration range [—3m/s?, 3m/s?] and
a large damping factor 0.5. The best model is
marked in red and the sub-optimal is in blue.
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Figure 5: PhysicsNAS has lower errors compared with the best PBL methods over a range
of quality conditions in physics and data. The left figure shows comparison between best PBL
methods and PhyisicsNAS along different physical mismatch levels. The physical mismatch levels
are from extreme to low, respectively. Here (r : i, k : j) refers to the mismatch level of a initial
acceleration range [—im/s2, im/s?] and a damping factor j. Analogously, the right figure shows
comparison along different data amounts. Results in the left figure are all trained with 32 samples
and the results in the right figure are trained at low physical mismatch level.The plots show error;
lower curves are preferred.

space is necessary. Our experiments also show that PhysicsNAS is able to perform inference on
small training datasets: the physical prior reduces the demand for high-fidelity training samples.
We find that PhysicsNAS only requires less than 64 training samples to reach the same testing
performance of a naive MLP with 256 training samples. Moreover, the performance gap between
PhysicsNAS and naive MLP method minimizes as the number of training samples increases. This
suggests that PhysicsNAS is more favorable in scenarios where training data is not rich enough on
the other hand. A detailed discussion about how PhysicsNAS reduces the demand on training data
is provided in Appendix [E]

Utilization of Physical Inputs The physical inputs are always selected in our searched architectures
for these two tasks, which verifies the importance of physical information during learning. Please re-
fer to Appendix [B]for the illustration of a range of searched architectures corresponding to scenarios
in Table[Tland Table 2l

Utilization of Physical Operations The selection of physics-inspired operations are more nuanced,
depending on the accuracy of physical information encoded in the physical operations as well as the
amount of training data. Figure [6]shows two examples, one where physical operations are selected
and the other where they are not selected. In particular, the inaccurate physical operation in the
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trajectory task is preferred at early training epochs. However, as training proceeds, the learned
FC modules achieve higher accuracy and the network thus discards the physical operations. As a
result, the Residual Physics strategy is adopted in the final searched architecture. For the collision
task, the physical operation could model the perfectly elastic collision completely, and the estimated
physical solutions are precise if the estimated physical parameters are accurate. Therefore, physical
operations are selected when there exists a robust estimation of physical parameters. However, it
usually requires sufficient training samples to obtain this robust estimation, which might be a reason
why physical operations are only selected in the cases with 128 training samples. More details about
the changes of network architectures during searching can be found in Appendix [F}

[x, y_phy]
fc_relu

({)-skip_comnect
. o
y-phy skip_connect

(a) Tossing task, high mismatch, 128 samples (b) Collision task, high mis-
match, 128 samples

Figure 6: Utilization of physical operations in PhysicsNAS. The selection of physics-inspired
operation depends on its accuracy. PhysicsNAS tends to utilize the physical operations when they
are more accurate (like the elastic collision model), and prefers a residual connection when they are
inaccurate (like the parabola equation).

Failure Case In differentiable NAS, the training algorithm aims to optimize the over-parameterized
network with all the edges and operations. Therefore, it is necessary to prune the redundant edges
and operations after training. We adopt the pruning mechanism in (Liu et al., 2018)), where each node
has to retain two incoming edges. For extreme cases where single-stream architectures are optimal,
PhysicsNAS may generate sub-optimal architectures due to this arrangement. As shown in Figure[7}
we make a toy comparison between two lightweight architectures on the collision task with the
friction coefficient range [0.15,0.25] and 32 training samples. It is notable that by simply adding an
additional stream to the input x, the new searchable architecture deteriorates the result. Introducing
an adaptive edge selection mechanism might be a meaningful future work. This limitation could
also be overcome by resorting to other NAS frameworks, such as those based on reinforcement
learning (Pham et al.l 2018)).

fc_relu _ fc out fc_relu > fc_out
° a — N fc_relu vo — N
skip_connect ,

y_phy y_phy

(a) Lightweight Residual Physics (Error: 0.650) (b) Exampled searchable architecture. (Error:
0.835)

Figure 7: Failure case. In rare situations, a single-stream network could be preferred. PhysicsNAS
is unable to converge to single-stream architectures due to the edge selection mechanism.

5 CONCLUSION

In conclusion, our experiments show that PhysicsNAS can handle a wider range of input physical
models and data, as compared to existing PBL methods. This is only a first attempt at increasing
the diversity of PBL through architecture search. Ultimately, our hope is to apply PhysicsNAS to
problems as diverse as microscopy(Barbastathis et al.,|2019), computer vision (Velten et al., 2012),
sensor fusion (Eitel et al., 2015} Xu et al., 2018)) and astrophysics (Bouman et al., 2016} |Akiyama
et al.,|[2019), where it is important to handle variations in model mismatch and dataset quality across
these problem domains.
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A  GENERALIZABILITY FROM PHYSICAL PRIOR

We present a VISUAL PHYSICS task to further illustrate why physical prior is significant to data-
driven approaches in a qualitative manner. The network tries to estimate the future trajectory of a
paper ball being tossed from the initial three frames. We deploy similar physical prior as shown
in Equation |3} This simple physical prior fails to generate reliable estimation due to the physical
disparity from real world, such as the existence of air resistance and the deformation of the paper
during traveling. From pure data-driven approach, we train a ResNet18 (He et al., 2016) with 32
tossing samples. This network still could not generate reliable estimation due to the limited number
of training samples. Most of the predicted trajectories are not physically plausible, since the ball
should not change its position suddenly in Frame 4. For the PBL method, we design a physics-
informed ResNet18 with physical estimation as an additional input (Physical Fusion) and a skip
connection between the physical estimation and the output (Residual Physics). The PBL network is
also trained with 32 samples. With the assistance of physical prior, the trajectory could be estimated
accurately. Some typical predictions of the above three methods are illustrated in Figure

B COMPLETE LIST OF SEARCHED ARCHITECTURES

Searched architectures of PhysicsNAS in Table[T|and Table[2)are displayed in Figure[0)and Figure

C EFFECTIVENESS OF EDGE WEIGHTS

We evaluate the effectiveness of edge weights, and exhibit the advantage of PhysicsNAS as com-
pared to the original NAS framework. We conduct comparison between two different NAS poli-
cies: 1) the NAS framework with physical inputs and operations, yet without edge weights; 2) the
proposed PhysicsNAS with both edge weights and physical modules. The initialized architectures
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Figure 8: Even from limited training samples, PBL has strong generalizability as compared
with conventional data-driven approaches. As exhibited in the left, estimation from physics can
not match the ground-truth trajectory due to the physical disparity. As a data hungry method, deep
neural networks also fail to generate physically plausible estimation with limited training samples
(the middle). As depicted in the right of the figure, PBL method solves the dilemma by utilizing
knowledge from both data and physical prior. The predicted trajectory (marked as green dots) from
PBL highly overlaps with the ground truth in the testing stage.
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Figure 9: Searched architectures of tossing task under diversified physical conditions.

before neural architecture searching are illustrated in Figure [TT] and the corresponding searched
architectures are illustrate in Figure [I2] We can observe that if the architectures are shallow in
the initialization stage, there is a high probability that they remain shallow after searching. This
phenomenon may come from the nature of differentiable NAS training process: once an operation
is selected in a training update, it obtains privilege over other operations due to the backpropaga-
tion process, which in turn increases its weight and probability of being selected in the following
training updates. Consequently, if the edges are selected merely based on the operation weights,
NAS frameworks without edge weights will lose their potential to generate deep architectures due to
the preference caused by difference in numbers of operations inside edges. PhysicsNAS addresses
this issue by introducing additional edge weights, and the initial preference caused by unbalanced
amount of operations within edges is thus alleviated. Comparison in Figure[TT|and Figure[12]is con-
ducted on the tossing task as detailed in Section The range of random accelerations is [—1m/s?,
1m/s?] and the damping factor is set to be 0.2. There are 128 training samples used for architecture
searching and retraining.

D EFFECTIVENESS OF TASK-SPECIFIC/PHYSICS-BASED ADAPTATIONS

We conduct an ablation study to demonstrate that the task-specific adaptations (i.e., adding physical
inputs and operations into search space) in PhysicsNAS improve the predicted result. To this end,
we conduct a comparison between: 1) the NAS framework with edge weights only; 2) the proposed
PhysicsNAS with both edge weights and physics-based adaptations. The comparison is conducted
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Figure 10: Searched architectures of collision task under diversified physical conditions.

phy_forward ]
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Figure 11: Initialized architectures of different NAS policies. The initialized architecture of NAS
without edge weights is generally shallow, since the number of the candidate operations between the
input nodes and the hidden nodes is less than the number of candidate operations between hidden
nodes themselves.

using the tossing task. As can be seen in Fig.[I3] the introduction of physics-based adaptations en-
ables PhysicsNAS to achieve significantly lower prediction error as compared to the NAS framework
without task-specific adaptations.

13



Under review as a conference paper at ICLR 2020

skip _connect

fc_relu

fc_relu

fc_relu
skip_connect

fc_relu

fc_relu

fc_relu

SKip_connect fc_relu

fc_relu

(a) Without edge weights (Error: 0.205) (b) With edge weights (Error: 0.097)

Figure 12: Searched architectures using edge weights alleviates model collapse. The searched ar-
chitecture without edge weights remains shallow due to the initial preference caused by unbalanced
amount of operations, and its corresponding testing error is inferior to PhysicsNAS. The proposed
PhysicsNAS has the potential to generate both deep and shallow architectures, while NAS with-
out edge weights would generally converge to shallow architectures. The searched architecture of
PhysicsNAS is thus superior to the one without edge weights in terms of the testing error.
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Figure 13: PhysicsNAS has lower errors compared with NAS framework without physics-
based adaptations over a range of quality conditions in physics and data.

E DATA EFFICIENCY OF PHYSICSNAS

We show that the introduction of physical prior knowledge reduces the data amount for learn-
ing/approximating an exact physical model by comparing PhysicsNAS with naive MLPs along the
data dimension. This comparison is conducted using the aforementioned tossing task in the high
mismatch level scenario. As shown in Figure [T4] PhysicsNAS can achieve significant, high pre-
diction precision with limited data. As for this model mismatch type and level, PhysicsNAS can
decrease the demand for training data by approximately 75%. This demonstrates the capability of
PhysicsNAS on fewer-shot learning, where training data are burdensome to acquire due to extreme
environments.

Performance gain decreases as data amount increases. As also shown in Figure [T4] the per-
formance gap between PhysicsNAS and the naive MLP continuously decreases as the amount of
training samples increases. When the size of the training data is increased to 1024 the performence
of the two models is nearly identical, with the MLP method slightly outperforming PhysicsNAS.
This indicates that performance gain for applying PhysicsNAS is more evident when the amount of
high-fidelity training data is limited.

14



Under review as a conference paper at ICLR 2020

e
9

—+— MLP
—&— PhysicsNAS

= 5
n )

Testing Mean Error
>
£

0.3

0\
0.2 \‘\\&
0.1

32 64 128 256 512 1024

Training Sample Amount

Figure 14: Data Efficiency of PhysicsNAS. With a rough physical prior, the demand of high-fidelity
training samples can be greatly reduced. PhysicsNAS only requires less than 64 training samples to
reach the testing performance of a Naive MLP with 256 training samples. It is reasonable to deploy
PhysicsNAS to alleviate the burden of data acquisition when there are limited training samples.

F ARCHITECTURE CHANGES AT DIFFERENT EPOCHS

We show the usage of physical operations along with the number of training epochs in this section.
In Figure [T3] the experiment is conducted in the tossing task with low mismatch level and 128
training samples, while Figure [I6] shows the architecture changes in the collision task with high
mismatch level and 128 training samples.
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Figure 15: Changes of searched topology in tossing task. Inaccurate physical operation is used at
early epochs, however, it is discarded as the training proceeds.
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Figure 16: Changes of searched topology in collision task. The physical operation is not adopted
initially, yet the searched topology eventually adopts the physical operation.
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G UNCERTAINTY OF DIFFERENTIABLE ARCHITECTURE SEARCH

DARTS (Liu et al., 2018) framework tries to find an optimal architecture by updating the architecture
parameters and network weights simultaneously. Therefore, the inconsistency between the architec-
ture optimizer and the network weight optimizer may impede this joint optimization process. The
performance of searched results relies on both the hyperparameters and the initialization, and im-
proper training process may lead to model collapse as addressed in (Liang et al.,[2019)). PhysicsNAS
is built based on the DARTS framework, and the model collapse issue also exists. Please refer to
Figure [17| for some collapsed models of PhysicsNAS in the two demonstrative tasks. In our paper,
we avoid the model collapse by tuning the learning rates of architecture and network optimizers, so
that architecture parameters and network parameters can converge synchronously.
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(a) Model collapse in the tossing task. (b) Model collapse in the collision task.

Figure 17: Model collapse of PhysicsNAS due to the uncertainty of training. The performance
of PhysicsNAS depends on the differentiable searching process. Model collapse may appear if
hyperparameters are not selected carefully.
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