
Latent3DU-net: Multi-level Latent Shape
Space Constrained 3D U-net for

Automatic Segmentation of the Proximal
Femur from Radial MRI of the Hip

Guodong Zeng1, Qian Wang2, Till Lerch3, Florian Schmaranzer3,
Moritz Tannast3, Klaus Siebenrock3, and Guoyan Zheng1(B)

1 Institute of Surgical Technology and Biomechanics, University of Bern,
Bern, Switzerland

guoyan.zheng@istb.unibe.ch
2 School of Biomedical Engineering, Shanghai Jiao Tong University,

Shanghai, China
3 Department of Orthopaedic Surgery, Inselspital,

University of Bern, Bern, Switzerland

Abstract. Radial 2D MRI scans of the hip are routinely used for the
diagnosis of the cam-type of femoroacetabular impingement (FAI) and
of avascular necrosis (AVN) of the femoral head, which are considered
causes of hip joint osteoarthritis in young and active patients. However,
for computer assisted planning of surgical treatment, it is highly desired
to have 3D models of the proximal femur. In this paper, we propose a
novel volumetric convolutional neural network (CNN) based framework
to fully automatically extract 3D models of the proximal femur from
sparsely hip radial slices. Our framework starts with a spatial transform
to interpolate sparse 2D radial MR images to a densely sampled 3D
volume data. Automated segmentation of the interpolated 3D volume
data is very challenging due to the poor image quality and the inter-
polation artifact. To tackle these challenges, we introduce a multi-level
latent shape space constrained 3D U-net, referred as Latent3DU-net, to
incorporate prior shape knowledge into voxelwise semantic segmentation
of the interpolated 3D volume. Comprehensive results obtained from 25
patient data demonstrated the effectiveness of the proposed framework.

1 Introduction

Femoroacetabular Impingement (FAI) and avascular necrosis (AVN) of the
femoral head are known causes of osteoarthritis of the hip joint in young
and active patients. Depending on clinical and imaging findings, two types of
impingement are distinguished: pincer impingement is the acetabular cause of
FAI and is characterized by focal or general over-coverage of the femoral head.
Cam impingement is the femoral cause of FAI and is due to aspherical portion
of the femoral-neck junction [1]. On the other hand, in AVN the blood flow to
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the femoral head is interrupted, which can progressively lead to the collapse of
the hip. A lot of joint-preserving treatments have been developed in an attempt
to slow or reverse its progression, as it usually affects young patients [2]. MRI
has been recognized as an important assisting tool for the diagnosis and the
assessment of FAI and AVN as, in addition to the non-ionizing nature, MRI
can capture the vascular status of the femoral head. Moreover, MR scanners
typically have the capability to directly scan planes of arbitrary orientation. A
radiologist can take advantage of this in order to acquire planes perpendicular
to the curvature of the acetabulum. Such a scanning protocol is often referred to
as radial imaging of the hip. The appeal of using radial scans over 3D MRI for
image-assisted diagnosis is its motion insensitivity and reduced scanning time,
as a typical radial scan of the hip consists of much fewer slices. Radial scans
around the femoral neck axis are increasingly recognized as an important tool
for morphological assessment of FAI.

To enhance surgeon’s ability to assess the presence, location, and severity
of impingement as well as to plan hip preservation surgery, computer-assisted
diagnosis and planning systems have been developed [3]. In such a system, it is
highly desired to have 3D models of the proximal femur, better derived from the
radial MR images of the hip to avoid extra logistic efforts and cost.

The topic of automated MR image segmentation of the hip joint has been
addressed by a few studies which relied on atlas-based segmentation [4], active
shape models [5] and statistical shape models [6]. Recently, with the advance
of deep convolutional neural network (CNN) based techniques, deep CNN-based
methods, especially those based on fully convolutional networks (FCN), are intro-
duced for segmentation of 3D volumetric data [7–9]. Despite impressive results
achieved by these methods, they all assume that densely sampled 3D volumetric
data are available. To the best of our knowledge, no 3D segmentation method
has been proposed for segmenting the proximal femur that relies solely on sparse
radial slices, though there exists work on segmentation of other organs such as
the cardiac left ventricle from radial images [10]. The method introduced in [10]
depends on a matching of 3D-active shape model to sparse, arbitrarily oriented
image data. The initialization of the matching is done manually. After that, the
matching is driven by feature points detected using fuzzy inference.

In this paper, we propose a novel volumetric FCN-based framework to fully
automatically extract 3D models of the proximal femur from sparse radial MR
images of the hip. More specifically, we first perform a spatial transform to
interpolate the sparse radial slices to a densely sampled volumetric data. Auto-
mated segmentation of the proximal femur from such a 3D volumetric data is
challenging due to the poor image quality and the interpolation artifacts. To
solve these challenges, we introduce a multi-level latent shape constrained 3D
U-net, referred as Latent3DU-net, to incorporate prior shape knowledge into a
voxelwise semantic segmentation of the proximal femur from the interpolated
3D volume.
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2 Methods

Figure 1 illustrate the proposed framework, which mainly consists of two steps,
i.e., spatial transform and Latent3DU-net-based segmentation of the proximal
femur. Below the details about each step will be presented.

Fig. 1. A schematic illustration of the proposed framework, which mainly consists of
two steps, i.e, spatial transform and Latent3DU-net-based 3D segmentation.

Fig. 2. A schematic illustration of how to do spatial transform.

2.1 Spatial Transform

The purpose of spatial transform is to interpolate the sparse hip radial slices to
a densely sampled 3D volume data, which is done as follows. First, we compute
the common axis of the radial scan by computing the intersections of all radial
imaging planes. Around this axis, we then define a volume data sampling space.
In order to fill the space with image data, we conduct an intensity interpolation
as shown in Fig. 2. More specifically, for a point with coordinate (x, y, z) in the
sampling space, we first determine the two radial planes which have the shortest
distances to this point, as shown in Fig. 2-left, and denote these two plane as
the ith plane and the jth plane, respectively. Assuming that the distances from
this point to the two planes are d1 and d2, respectively, and further assuming
that projections of this point onto these two planes have image coordinates of
(a1, b1) and (a2, b2), respectively, we can compute the intensity value f(x, y, z)at
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point (x, y, z) via interpolation. Although there exist many different interpolation
methods, empirically we find that a distance inversely weighted interpolation as
follows is enough for our purpose.

f(x, y, z) = (
1
d1

+
1
d2

)−1 · (
1
d1

· gi(a1, b1) +
1
d2

· gj(a2, b2)) (1)

where gi(a1, b1) and gj(a2, b2) denotes the image intensity values of the two
image point (a1, b1) and (a2, b2), respectively.

Figure 3 shows several slices extracted from an interpolated 3D volume data.

Fig. 3. Slices extracted from an interpolated 3D volume data.

Fig. 4. Fully convolutional denoising auto-encoder for volumetric representation.

2.2 Segmentation of the Proximal Femur

It is useful to incorporate prior shape knowledge into image segmentation algo-
rithms to obtain more accurate and plausible results. As summarized in a recent
survey paper on deep learning in medical image analysis [11], most of the clas-
sification and regression models utilize a pixel-level loss function such as cross-
entropy or Dice loss. Prior knowledge is usually incorporated in a post-processing
step. Recently, based on the TL networks of [12], Oktay et al. [13] proposed
anatomically constrained neural networks to incorporate anatomical prior knowl-
edge into CNNs. In this paper, inspired by the fully convolutional denoising
auto-encoder of [14], we propose a fully convolutional volumetric auto-encoder
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that learns volumetric representation from noisy data. The learned volumetric
representation can then be treated as a denoised generative vector representa-
tion of anatomical knowledge in a latent space. We further propose a multi-level
latent shape constrained 3D U-net, referred as Latent3DU-net, for accurate seg-
mentation of the proximal femur from the interpolated volume data.

Fully convolutional denoising auto-encoder. Figure 4 shows the archi-
tecture of the fully convolutional denoising auto-encoder to learn an end-to-end,
voxel-to-voxel mapping. The left half of our network can be seen as an encoder
stage that results in a condensed representation (indicated by “latent vector rep-
resentation”). In the second stage (right half), the network reconstructs back the
input from the latent vector representation by deconvolutional (3DDeconv) lay-
ers. The network is trained using cross-entropy loss. After training, the encoder
f(y; θf ) can be used to map a noisy volumetric label to a vector representation
h in the latent space.

Latent3DU-net. Figure 5 illustrates the architecture of the Latent3DU-
net. It is an extension of 3D U-net [7] with multi-level deep supervision. We
further leverage multi-level Euclidean losses calculated at the latent space to
enforce the prediction to follow the learnt shape/label distributions. More specif-
ically, let W be the weights of main network and {wc} be the weights of clas-
sifiers. Then the cross-entropy loss function of a classier is: Lc

ce(χ;W,wc) =∑
xi∈χ − log p(yi = t(xi)|xi;W,wc), where χ represents the training samples; yi

is the ground truth label; p(yi = t(xi)|xi;W,wc) is the probability of target class
label t(xi) corresponding to sample xi ∈ χ. Additionally, as shown in Fig. 5, the
Euclidean loss at latent space of a classifier is: Lc

he = ‖f(φ(x)c; θf ) − f(y; θf )‖22,
where φ(x)c is the prediction of the cth classifier and y is the ground truth
segmentation. Then the total loss function of the Latent3DU-net is:

L(χ,W, {wc}) =
∑

c

(αcLc
ce(χ,W,wc) + λcLc

he) + γ(ψ(W ) +
∑

c

ψ(wc)) (2)

where ψ() is the regularization term (L2 norm in our experiment) with hyper
parameter γ, {αc} and {λc}.

For both fully convolutional denoising auto-encoder as shown in Fig. 4 and
Latent3DU-net as shown in Fig. 5. All convolutional layers use kernel size of
3 × 3 × 3 and strides of 1 and all max pooling layers use kernel size of 2 × 2 × 2
and strides of 2. In the convolutional and deconvolutional layers of our networks,
batch normalization (BN) [15] and rectified linear units (ReLU) [16] are adopted
to speed up the training and to enhance the gradient back-propagation.

3 Experiments and Results

3.1 Dataset and Preprocessing

We evaluated the proposed framework on a dataset consisting of MR gadolinium-
enhanced radial scans of 25 patients with symptomatic FAI or AVN. No 3D MR
data was available for these patients. The intra-slice spacing of these radial scans
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is 0.28 mm and the size of the images is either 448×448 or 512×512. There are 14
radial slices in each radial scan. A reference, manual segmentation of every slice
of the radial scans was also provided. From the 2D manual segmentation of each
radial scan, we used the method introduced by Carr et al. [17] to reconstruct
a smooth 3D surface model of the proximal femur. We then conducted spatial
transform for all radial scans. After that, we also converted the reconstructed
3D surface models of the proximal femur into dense binary volumetric labels. As
there was no 3D MR scan available for these patients, we took the corresponding
dense binary volumetric labels as the ground truth segmentation.

All the interpolated volume data and the corresponding binary volumetric
labels were rescaled to a size of 96×96×96 due to memory restrictions. To enlarge
the training samples and to mitigate possible over-fitting problem, random noise
was injected: random value between (−3, 3) was added to each voxel. Finally,
each training sample was normalized as zero mean and unit variance before fed
into the network. A standard 5-fold cross-validation study was performed to
evaluate the performance of the proposed framework.

Fig. 5. Illustration of the architecture of Latent3DU-net.

3.2 Training

We trained our networks from scratch. The training was done in two stages.
In the first stage, the fully convolutional denoising auto-encoder was trained
for 5, 000 iterations. After that, we trained the Latent3DU-net for another
5, 000 iterations. All weights were initialized from a Gaussian distribution
(μ = 0, σ = 0.01) and were updated by the stochastic gradient descent(SGD)
algorithm (momentum = 0.9, weight decay = 0.005). For each stage of the train-
ing, the initial learning rate was initialized as 1×10−3 and halved by every 1, 500
times.
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3.3 Testing and Evaluation

In the inference phase, only the prediction φ(x)0 of the 0th classifier was used
to generate the segmentation result. After that, the segmentation was rescaled
back to the original size. Implemented with Python using TensorFlow framework
on a workstation with a 3.6GHz Intel(R) i7 CPU and a GTX 1080 Ti graphics
card with 11GB GPU memory, on average it took Latent3DU-net about 10 s to
finish one test case while the spatial transform took another 30 s.

The segmented results were compared with the associated ground truth seg-
mentation. For each test case, we evaluated the distance between the surface
models extracted from different segmentation as well as the volume overlap mea-
surements including Dice overlap coefficient, precision and recall.

For further comparison, we implemented the 3D U-net with multi-level deep
supervision (we referred it as “3DU-net-MLDS”) as introduced in [9], which
reported state-of-the-art results when applied to segmentation of the proximal
femur from 3D MR images, and a 3D U-net [7].

Table 1. Comparison of the results achieved by different methods. HD: Hausdorff
distance; ASD: average surface distance; DC: Dice Coefficient.

Methods DC HD (mm) ASD (mm) Precision Recall

Latent3DU-net 0.954 6.18 0.74 0.958 0.950

3DU-net-MLDS 0.943 12.07 0.83 0.959 0.929

3DU-net 0.941 10.36 0.92 0.943 0.940

Fig. 6. Qualitative comparison of different methods. Data cropped for visualization
purpose. For each method, the probability maps and the segmentation results are
displayed. Green circles highlight the differences of different methods.
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3.4 Results

Table 1 shows the segmentation results achieved by different methods. On aver-
age, our method achieved a mean ASD of 0.74 mm, a mean HD of 6.18 mm, a
mean DC of 0.954, a mean precision of 0.958 and a mean recall of 0.95. When
evaluated on the same dataset, the method introduced in [9] achieved a mean
ASD of 0.83 mm, a mean HD of 12.07 mm, and a mean DC of 0.943 while 3D
U-net achieved a mean ASD of 0.92 mm, a mean HD of 10.36 mm, and a mean
DC of 0.941. Pairwise T-test on the DC measurements demonstrated that the
difference between our method and the method introduced in [9] is statistically
significant (p-value < 0.01). Figure 6 shows a qualitative comparison of the
results achieved by these three methods.

4 Conclusions

In this paper, we presented a deep CNN-based framework to fully automatically
extract a 3D model of the proximal femur from sparse hip radial slices. To
the best of our knowledge, this is probably the first study addressing such a
problem using deep learning. We compared the results achieved by our method
to those achieved by a state-of-the-art methods. The experimental results clearly
demonstrated the effectiveness of incorporating the latent space constraint for
accurate segmentation of the proximal femur.

Acknowledgments. This study was partially supported by the Swiss National Sci-
ence Foundation via project 205321 163224/1.

References

1. Leunig, M., Beaule, P., Ganz, R.: The concept of femoroacetabular impingement:
current status and future perspectives. Clin. Orthop. Relat. Res. 467, 616–622
(2009)

2. Chughtai, M., Piuzzi, N.: An evidence-based guide to the treatment of osteonecrosis
of the femoral head. Bone Joint J. 99(10), 1267–1279 (2017)

3. Tannast, M., Kubiak-Langer, M.: Noninvasive three-dimensional assessment of
femoroacetabular impingement. J. Orthop. Res. 25(1), 122–131 (2007)

4. Xia, Y., Fripp, J.: Automated bone segmentation from large field of view 3d MR
images of the hip joint. Phys. Med. Biol. 58(20), 7375–7390 (2013)

5. Arezoomand, S., Lee, W.: A 3d active model framework for segmentation of prox-
imal femur in MR images. Int. J. CARS 10(1), 55–66 (2015)

6. Chandra, S.S., Xia, Y., et al.: Focused shape models for hip joint segmentation in
3d magnetic resonance images. Med. Image Anal. 18(3), 567–578 (2014)
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