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ABSTRACT

Most deep learning for NLP represents each word with a single point or single-
mode region in semantic space, while the existing multi-mode word embeddings
cannot represent longer word sequences like phrases or sentences. We introduce a
phrase representation (also applicable to sentences) where each phrase has a dis-
tinct set of multi-mode codebook embeddings to capture different semantic facets
of the phrase’s meaning. The codebook embeddings can be viewed as the cluster
centers which summarize the distribution of possibly co-occurring words in a pre-
trained word embedding space. We propose an end-to-end trainable neural model
that directly predicts the set of cluster centers from the input text sequence (e.g., a
phrase or a sentence) during test time. We find that the per-phrase/sentence code-
book embeddings not only provide a more interpretable semantic representation
but also outperform strong baselines (by a large margin in some tasks) on bench-
mark datasets for unsupervised phrase similarity, sentence similarity, hypernym
detection, and extractive summarization.

1 INTRODUCTION

Many widely-applicable NLP models learn a representation from only co-occurrence statistics in
the raw text without any supervision. Examples include word embedding like word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014), sentence embeddings like skip-thoughts (Kiros
et al., 2015), and contextualized word embedding like ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019). Most of these models use a single embedding to represent one sentence or one phrase
and can only provide symmetric similarity measurement when no annotation is available.

However, a word or phrase might have multiple senses, and a sentence can involve multiple topics,
which are hard to analyze based on a single embedding without supervision. To address the issue,
word sense induction methods (Lau et al., 2012) and recent multi-mode word embeddings (Nee-
lakantan et al., 2014; Athiwaratkun & Wilson, 2017; Singh et al., 2018) represent each target word
as multiple points or regions in a distributional semantic space by (explicitly or implicitly) clustering
all the words appearing beside the target word.

In Figure 1, the multi-mode representation of real property is illustrated as an example. Real prop-
erty can be observed in legal documents where it usually means a real estate, while a real property
can also mean a true characteristic in philosophic discussions. The previous approaches discover
those senses by clustering observed neighboring words (e.g., company and tax). In contrast with
topic modeling like LDA (Blei et al., 2003), the approaches need to solve a distinct clustering prob-
lem for every target word while topic modeling finds a single set of clusters by clustering all the
words in the corpus.

Extending these multi-mode representations to arbitrary sequences like phrases or sentences is dif-
ficult due to two efficiency challenges. First, there are usually many more unique phrases and
sentences in a corpus than there are words, while the number of parameters for clustering-based
approaches is O(|V | × |K| × |E|), where |V | is number of unique sequences, |K| is number of
modes/clusters, and |E| is the number of embedding dimensions. Estimating and storing such a
large number of parameters take time and space. More important, many unique sequences imply
much fewer co-occurring words to be clustered for each sequence, especially for long sequences
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Figure 1: The target phrase real property is represented by four clustering centers. The previous
work discovers the four modes by finding clustering centers which well compress the embedding of
observed co-occurring words. Instead, our compositional model learns to predict the embeddings
of cluster centers from the sequence of words in the target phrase so as to reconstruct the (unseen)
co-occurring distribution well.

like sentences, so an effective model needs to overcome this sample efficient challenge (i.e., sparse-
ness in the co-occurring statistics). However, clustering approaches often have too many parameters
to learn the compositional meaning of each sequence without overfitting.

Nevertheless, the sentences (or phrases) sharing multiple words tend to have similar cluster centers,
so we should be able to compress many redundant parameters in these local clustering problems
to circumvent the challenges. In this work, we adopt a neural encoder and decoder to achieve the
goal. As shown in Figure 1, instead of clustering co-occurring words beside a target sequence at
test time as in previous approaches, we learn a mapping between the target sequence (i.e., phrases
or sentences) and the corresponding cluster centers during training so that we can directly predict
those cluster centers using a single forward pass of the neural network for an arbitrary unseen input
sequences during testing.

To allow the neural network to generate the cluster centers in an arbitrary order, we use a non-
negative and sparse coefficient matrix to dynamically match the sequence of predicted cluster cen-
ters and the observed set of co-occurring word embeddings during training. After the coefficient
matrix is estimated for each input sequence, the gradients are back-propagated to cluster centers
(i.e., codebook embeddings) and weights of decoder and encoder, which allows us to train the whole
model jointly and end-to-end.

In experiments, we show that the proposed model captures the compositional meanings of words
in unsupervised phrase similarity tasks much better than averaging their (contextualized) word em-
beddings, strong baselines that are widely used in practice. In addition to similarity, our model can
also measure asymmetric relations like hypernymy without any supervision. Furthermore, the multi-
mode representation is shown to outperform the single-mode alternatives in sentence representation,
especially as demonstrated in our extractive summarization experiment.

2 METHOD

In this section, we first formalize our training setup in Section 2.1. Next, our objective function and
the architecture of our prediction mode will be described in Section 2.2 and Section 2.3, respectively.
The approach is summarized in Figure 2 using an example sentence.
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Figure 2: Our model for sentence representation. We represent each sentence as multiple code-
book embeddings (i.e., clustering centers) predicted by our sequence to embeddings model. Our
loss encourages the model to generate codebook embeddings whose linear combination can well
reconstruct the embeddings of co-occurring words (e.g., Music), while not able to reconstruct the
negatively sampled words (i.e., the co-occurring words from other sentences) to avoid predicting
common topics which co-occur with every sentence (e.g., is in this example).

2.1 SELF-SUPERVISION SIGNAL

We express tth sequence of words in the corpus as It = wxt
...wyt<eos>, where xt and yt are the

start and end position of the target sequence, respectively, and <eos> is the end of sequence symbol.

We assume neighboring words beside each target phrase or sentence are related to some aspects of
the sequence, so given It as input, our training signal is to reconstruct a set of neighboring words,
Nt = {wxt−dt1 , ...wxt−1, wyt+1, ...wyt+dt2}.

1 For phrase representation, dt1 = dt2 is a fixed window
size. For sentence representation, Nt is the set of all words in the previous and the next sentence.
Notice that the training signal for sentences and phrases are different, which means we need to train
one model for phrase and one model for sentence if both representations are desired.

Since there are not many co-occurring words for a long sequence (none are observed for unseen
testing sequences), our goal is to cluster the set of words which could "possibly" occur beside the
sequence instead of the actual occurring words in the training corpus (e.g., the hidden co-occurring
distribution instead of green and underlined words in Figure 2). Although most of the possibly
co-occurring words are not observed in the corpus, we can still learn to predict them by observing
co-occurring words from similar sequences.

To focus on the semantics rather than syntax, we view the co-occurring words as a set rather than
a sequence as in skip-thoughts (Kiros et al., 2015). Notice that our model considers the word order
information in the input sequence It, but ignores the order of the co-occurring words Nt.

2.2 NON-NEGATIVE SPARSE CODING LOSS

In this work, we model the distribution of co-occurring words in a pre-trained word embed-
ding space. The embeddings of co-occurring words Nt are arranged into a matrix W (Nt) =

1The self-supervised signal is a generalization of the one used in prediction-based word embedding like
Word2Vec (Mikolov et al., 2013). They are the same when the length of input sequence |It| is 1.
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[wt
j ]j=1...|Nt| with size |E| × |Nt|, where |E| is the dimension of pre-trained word embedding, and

each of its column wt
j is a normalized word embedding whose 2-norm is 1. The normalization

makes the cosine distance between two words become half of their Euclidean distance.

Similarly, we denote the predicted cluster centers ctk of the input sequence It as a |E| ×K matrix
F (It) = [ctk]k=1...K , where F is our neural network model and K is the number of clusters. We
fix the number of clusters K in this work to simplify the design of our prediction model and how
it is applied to downstream tasks. The effect of different cluster numbers will be discussed in the
experimental section.

The reconstruction loss of k-means clustering in the word embedding space (Singh et al., 2018) can
be written as ||F (It)M −W (Nt)||2 =

∑
j ||(

∑
kMk,jc

t
k) −wt

j ||2, where Mk,j = 1 if the jth
word belongs to the k cluster and 0 otherwise. That is, M is a permutation matrix which matches
the cluster centers and co-occurring words and allow the neural network to generate the centers in
an arbitrary order.

Non-negative sparse coding (NNSC) (Hoyer, 2002) relaxes the constraints by allowing the coeffi-
cient Mk,j to be a positive value but encouraging it to be 0. In this work, we adopt the relaxation
because for all neural architectures (including transformers and LSTMs) we tried, the models us-
ing a NNSC loss learn to generates diverse K cluster centers while the predicted cluster centers
using the kmeans loss collapse to much fewer modes which cannot well capture the conditional
co-occurrence distribution. We hypothesize that it is because a NNSC loss is smoother and easier
to be optimized for a neural network, while finding the nearest cluster center in the kmeans loss
cannot stably encourage predicted clusters to play different roles for reconstructing the embeddings
of observed co-occurring words.

Using NNSC, we define our reconstruction error as

Er(F (It),W (Nt)) = ||F (It)M
Ot −W (Nt)||2

s.t.,MOt = argmin
M

||F (It)M −W (Nt)||2 + λ||M ||1, ∀k, j, 0 ≤Mk,j ≤ 1, (1)

where λ is a hyper-parameter controlling the sparsity of M . We force the coefficient value Mk,j ≤ 1
to avoid the neural network learning to predict centers with small magnitudes which makes the
optimal values of Mk,j large and unstable.

Having multiple outputs and estimating the permutation between the prediction and ground truth
words is often computationally expensive (Stern et al., 2018; Qin et al., 2019). However, the pro-
posed loss is efficient because we minimize the L2 distance in a pre-trained embedding space as
in Kumar & Tsvetkov (2019) rather than using softmax, and MOt can be efficiently estimated on
the fly using convex optimization (we use RMSprop (Tieleman & Hinton, 2012) in our implementa-
tion). After MOt is estimated, we can treat it as a constant and back-propagate the gradients to our
neural network to achieve end-to-end training.

To prevent the neural network from predicting the same global topics regardless of the input, our
loss function for tth sequence is defined as

Lt(F ) = Er(F (It),W (Nt))− Er(F (It),W (Nrt)), (2)

where Nrt is a set of co-occurring words of a randomly sampled sequence Irt . In our experiment,
we use SGD to solve F̂ = argminF

∑
t Lt(F ). Our method could be viewed as a generalization

of Word2Vec (Mikolov et al., 2013) that can encode the compositional meaning of the words and
decode multiple embeddings.

2.3 SEQUENCE TO EMBEDDINGS

Our neural network architecture is similar to transformation-based sequence to sequence (seq2seq)
model (Vaswani et al., 2017). We use the same encoder TE(It), which transforms the input se-
quence into a contextualized embeddings

TE(wxt
...wyt<eos>) = ext

...eyte<eos>, (3)

where the goal of the encoder is to map the sentences which are likely to have similar co-occuring
word distribution closer together.
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Table 1: Examples of the codebook embeddings which are predicted by models with different K
given an input phrase or an unseen input sentence. The embedding in each row is visualized by the
three words whose GloVe embeddings are closest to the codebook embedding (in terms of cosine
distances) and their corresponding cosine similarities.

Target Phrase: civil order <eos>
Output Embedding (K = 1):
e1 | government 0.817 civil 0.762 citizens 0.748
Output Embeddings (K = 3):
e1 | initiatives 0.736 organizations 0.725 efforts 0.725
e2 | army 0.815 troops 0.804 soldiers 0.786
e3 | court 0.758 federal 0.757 judicial 0.736

Target Sentence: SMS messages are used in some countries as
reminders of hospital appointments . <eos>
Output Embedding (K = 1):
e1 | information 0.702, use 0.701, specific 0.700
Output Embeddings (K = 3):
e1 | can 0.769, possible 0.767, specific 0.767
e2 | hospital 0.857, medical 0.780, hospitals 0.739
e3 | SMS 0.791, Mobile 0.635, Messaging 0.631
Output Embeddings (K = 10):
e1 | can 0.854, should 0.834, either 0.821
e2 | hospital 0.886, medical 0.771, hospitals 0.745
e3 | services 0.768, service 0.749, web 0.722
e4 | SMS 0.891, sms 0.745, messaging 0.686
e5 | messages 0.891, message 0.801, emails 0.679
e6 | systems 0.728, technologies 0.725, integrated 0.723
e7 | appointments 0.791, appointment 0.735, duties 0.613
e8 | confirmation 0.590, request 0.568, receipt 0.563
e9 | countries 0.855, nations 0.737, Europe 0.732
e10 | Implementation 0.613, Application 0.610,

| Programs 0.603

Different from the typical seq2seq model (Sutskever et al., 2014; Vaswani et al., 2017), our decoder
does not need to make discrete decisions because our outputs are a sequence of embeddings instead
of words. This allows us to predict all the codebook embeddings in a single forward pass while
still well capturing the dependency between output without the need of auto-regressive decoding.
Similar to BERT, we treat the embedding of <eos> as the sentence representation. To make different
codebook embeddings capture different aspects, we pass the embeddings of <eos> to different linear
layers Lk before becoming the input of the decoder TD. Specifically, the codebook embeddings

F (It) = TD(L1(e<eos>)...LK(e<eos>), ext
...eyt). (4)

We find that removing the attention on the ext
...eyt , contextualized word embeddings from the

encoder, significantly increases our validation loss for sentence representation because there are
often too many facets to be compressed into a single embedding. On the other hand, the attention
does not change the performance of phrase representation too much, and we remove the attention
connection between encoder and decoder (i.e., encoder and decoder have the same architecture)
when evaluating our phrase representation.

Notice that the framework is flexible. We can replace the encoder and decoder with other architec-
tures. Besides transformers, we also try (bi-)LSTMs in our experiments. This flexibility also allows
us to incorporate other input features (e.g., the author who writes the sentence).

3 EXPERIMENTS

We first visualize the cluster centers predicted by our model in Table 1 (like we visualize the meaning
of the red cluster center in Figure 2 using the word song or Music). The centers summarize the
target sequence well and more codebook embeddings capture more semantic facets of a phrase or
a sentence. Due to the difficulty of evaluating the topics conditioned on the input sequence using
the classic metrics for global topic modeling, we show that the codebook embeddings can be used
to improve the performances of various unsupervised semantic tasks, which indirectly measures the
quality of the generated topics.
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Table 2: Performance of phrase similarity tasks. Every model is trained on a lowercased corpus. In
SemEval 2013, AUC (%) is the area under the precision-recall curve of classifying similar phrase
pairs. In Turney, we report the accuracy (%) of predicting the correct similar phrase pair among
5 or 10 candidate pairs. In BiRD and WikiSRS, the correlation coefficient (%) between predicted
similarity and ground truth similarity is presented. *The results are taken from Yu & Dredze (2015).

Method SemEval 2013 Turney (5) Turney (10) BiRD WikiSRS-Sim WikiSRS-Rel
Model Score AUC F1 Accuracy Accuracy Pearson Spearman

BERT CLS 54.7 66.7 29.2 15.5 17.2 5.4 4.2
Avg 66.5 67.1 43.4 24.3 44.4 43.3 40.7

GloVe Avg 79.5 73.7 25.9 12.9 47.94 47.7 49.1
Word2Vec Avg - 65.5* 39.6* 19.8* - - -
FCT LM Emb - 67.2* 42.6* 27.6* - - -

Ours SC 80.3 72.8 45.6 28.8 49.9 58.9 52.5
(K=10) Emb 85.6 77.1 49.4 31.8 57.3 67.4 66.9

Ours SC 81.1 72.7 45.3 28.4 47.3 59.5 55.2
(K=1) Emb 87.8 78.6 50.3 32.5 60.6 67.1 65.8

We use the cased version (840B) of pre-trained GloVe embedding (Pennington et al., 2014) for
sentence representation and use the uncased version (42B) for phrase representation.2 Our model is
trained on Wikipedia 2016 while the stop words are removed from the set of co-occurring words.

In the phrase experiments, we only consider noun phrases, and their boundaries are extracted by
applying simple regular expression rules to POS tags before training. The sentence boundaries and
POS tags are detected using spaCy.3 Our models do not need resources such as PPDB (Pavlick et al.,
2015) or other multi-lingual resources, so our models are compared with the baselines that only use
the raw text and sentence/phrase boundaries. This setting is particularly practical for the domains
with low resources such as scientific literature.

To control the effect of embedding size, we set the number of dimensions in our transformers as the
GloVe embedding size (300). Limited by computational resources, we train all the models using one
modern GPU within a week. Because of the relatively small model size, we find that our models
underfit the data after a week (i.e., the training loss is very close to the validation loss).

It is hard to make a fair comparison with BERT (Devlin et al., 2019). BERT is trained on a masked
language modeling loss, which preserves more syntax information and can produce an effective pre-
trained embedding for many supervised downstream tasks. We report the performance of the BERT
base model, which is still trained using more parameters, more output dimensions, larger corpus,
and more computational resources during training compared with our models. Furthermore, BERT
uses a word piece model to alleviate the out-of-vocabulary problem. Nevertheless, we still provide
its unsupervised performances based on cosine similarity as a reference.

3.1 PHRASE SIMILARITY

Semeval 2013 task 5(a) English (Korkontzelos et al., 2013) and Turney 2012 (Turney, 2012) are
two standard benchmarks for evaluating phrase similarity (Yu & Dredze, 2015; Huang et al., 2017).
BiRD (Asaadi et al., 2019) and WikiSRS (Newman-Griffis et al., 2018), which are recently collected,
contain ground truth phrase similarities derived from human annotations.

The task of Semeval 2013 is to distinguish similar phrase pairs from dissimilar phrase pairs. In
Turney (5), given each query bigram, the goal is to identify the unigram that is most similar to the
query bigram among 5 unigram candidates,5 and Turney (10) adds 5 more negative phrase pairs by
pairing the reverse of bigram with the 5 unigrams. BiRD and WikiSRS-Rel measure the relatedness
of phrases and WikiSRS-Sim measures the similarity of phrases.

2nlp.stanford.edu/projects/glove/
3spacy.io/
4The number is different from the one reported in Asaadi et al. (2019) because we use the uncased version

(42B), the embedding space our model is trained on, and they use the cased version (840B).
5We follow the evaluation setup of Yu & Dredze (2015); Huang et al. (2017), which ignores two unigram

candidates being contained in the target phrase, because the original setup (Turney, 2012) is too difficult for
unsupervised methods to get a meaningful score (e.g., the accuracy of GloVe Avg is 0 in the original setting).

6
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For our model, we evaluate two scoring functions that measure phrase similarity. The first way av-
erages the contextualized word embeddings from our transformer encoder as the phrase embedding
and computes the cosine similarity between two phrase embeddings. We label the method as Ours
Emb. The similar phrases should have similar multi-facet embeddings, so we compute the recon-
struction error from the set of normalized codebook embeddings of one phrase S1

q to the embeddings
of the other phrase S2

q , vice versa, and add them together to become a symmetric distance SC:

SC(S1
q , S

2
q ) = Er(F̂u(S

1
q), F̂u(S

2
q))+ Er(F̂u(S

2
q), F̂u(S

1
q)), (5)

where F̂u(Sq) = [
cq
k

||cq
k||

]k=1...K . When ranking for retrieving similar phrases, we use the negative
distance to represent similarity.

We compare our performance with 5 baselines. GloVe Avg and Word2Vec Avg compute the cosine
similarity between two averaged word embeddings, which has been shown to be a strong base-
line (Asaadi et al., 2019). BERT CLS and BERT Avg are the cosine similarities between CLS em-
beddings and between the averages of contextualized word embeddings from BERT (Devlin et al.,
2019), respectively. FCT LM Emb (Yu & Dredze, 2015) learns the weights of linearly combining
word embeddings based on several linguistic features.

The performances are presented in Table 2. SemEval 2013 and Turney have training and testing split
and the performances in test sets are reported. Our models significantly outperform all baselines
in the 4 datasets. Furthermore, our strong performances in Turney (10) verify that our encoder
incorporates the word order information when producing phrase embeddings. The results indicate
the effectiveness of non-linearly composing word embeddings (unlike GloVe, Word2Vec, and FCT
baselines) in order to predict the set of co-occurring word embeddings (unlike the BERT baselines).

The performance of Ours (K=1) is usually slightly better than Ours (K=10). This result supports
the finding of Dubossarsky et al. (2018) that multi-mode embeddings may not improve the perfor-
mance in word similarity benchmarks even if they capture more senses or aspects of polysemies.
Even though being slightly worse, the performances of Ours (K=10) remain strong compared with
baselines. This indicates that the similarity performance is not sensitive to the number of clusters,
which alleviates the problem of selecting K in practice.

3.2 SENTENCE SIMILARITY

STS benchmark (Cer et al., 2017) is a widely used sentence similarity task. Each model predicts
a semantic similarity score between each sentence pair, and the scores are compared with average
similarity annotations using the Pearson correlation coefficient.

Intuitively, when two sentences are less similar to each other, humans tend to judge the similarity
based on how they are similar in each aspect. Thus, we also compare the performances on lower
half the datasets where their ground truth similarities are less than the median similarity score, and
we call this benchmark STSB Low.

In addition to BERT CLS, BERT Avg, and GloVe Avg, we compare our method with word mover’s
distance (WMD) (Kusner et al., 2015) and cosine similarity between skip-thought embeddings (ST
Cos) (Kiros et al., 2015). Recently, Arora et al. (2017) propose to weight the word w in each
sentence according to α

α+p(w) , where α is a constant and p(w) is the probability of seeing the
word w in the corpus. Following its recommendation, we set α to be 10−4 in STS benchmark.
After the weighting, we adopt the post-processing method from Arora et al. (2017) to remove the
first principal component that is estimated using the training distribution and denote the method as
GloVe SIF. The post-processing is not desired in some applications (Singh et al., 2018), so we also
report the performance before removing principal components, which is called GloVe Prob_avg.

The strong performance of (weighted) average embedding (Milajevs et al., 2014; Arora et al., 2017)
suggests that we should consider the embeddings of words in the sentence in addition to the sentence
embedding(s) when measuring the sentence similarity. This is hard to be achieved in other sentence
representation methods because their sentence embeddings and word embeddings are in different
semantic spaces.

Since our multi-facet embeddings are in the same space of word embeddings, we can use the multi-
facet embeddings to estimate the word importance (in terms of predicting possible co-occurring
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Table 3: Pearson correlation (%) in the develop-
ment and test sets in the STS benchmark. The
performances of all sentence pairs are indicated
as All. Low means the performances on the half
of sentence pairs with lower similarity (i.e., STSB
Low). † indicates the methods which use train-
ing distribution to approximate testing distribu-
tion. The best score with and without † are high-
lighted.

Method Dev Test
Model Score All Low All Low

ST Cos 43.2 28.1 30.4 21.2

BERT CLS 9.6 -0.4 4.1 0.2
Avg 62.3 42.1 51.2 39.1

GloVe

WMD 58.8 35.3 40.9 25.4
Avg 51.6 32.8 36.6 30.9

Prob_avg 70.7 56.6 59.2 54.8
SIF† 75.1 65.7 63.2 58.1
SC 55.7 43.7 47.6 45.4

Ours Avg 54.5 40.2 44.1 40.6
K=1 Prob_avg 68.5 56.0 58.1 55.2

SIF† 72.5 64.0 61.7 58.5
Ours SC 58.9 49.2 49.8 46.4

LSTM Avg 60.4 45.2 46.8 42.8
EN-DE Prob_avg 71.7 60.1 61.3 58.3
K=10 SIF† 74.6 66.9 64.3 60.9

SC 63.0 51.8 52.6 47.8
Ours Avg 61.7 47.1 50.0 46.5
K=10 Prob_avg 72.0 60.5 61.4 59.3

SIF† 75.2 67.6 64.6 62.2

Table 4: Hypernym detection performances
in the development and test set of HypeNet.
AUC (%) measures the quality of retrieving
hypernym phrases. Acc (%) means the accu-
racy of predicting specificity given a pair of
hypernym phrases.

Method Dev Test
AUC Acc AUC Acc

BERT (CLS) 20.6 0.5 21.3 0.5
BERT (Avg) 25.6 0.5 25.6 0.5
GloVe (Avg) 17.4 0.5 17.7 0.5
Ours (K=10) 29.4 78.9 29.6 79.1
Ours (K=1) 29.3 82.7 29.6 81.0

Table 5: The ROUGE F1 scores of different
methods on CNN/Daily Mail dataset. The re-
sults with † are taken from Zheng & Lapata
(2019). The results with * are taken from Ce-
likyilmaz et al. (2018).

Setting Method R-1 R-2 Len

Unsup,
No

Order

Random 28.1 8.0 68.7
Textgraph (tfidf)† 33.2 11.8 -

Textgraph (BERT)† 30.8 9.6 -
W Emb (GloVe) 26.6 8.8 40.0

Sent Emb (GloVe) 32.6 10.7 78.2
W Emb (BERT) 31.2 11.2 44.9

Sent Emb (BERT) 32.3 10.6 91.2
Ours (K=3) 32.2 10.1 75.4

Ours (K=10) 34.0 11.6 81.3
Ours (K=100) 35.0 12.8 92.9

Unsup Lead-3 40.3 17.6 87.0
PACSUM (BERT)† 40.7 17.8 -

Sup RL* 41.7 19.5 -

words beside the sentence). To compute the importance of a word in the sentence, we first compute
the cosine similarity between the word and all predicted codebook embeddings, truncate the negative
similarity to 0, and sum all similarity. Specifically, our simple importance/attention weighting for
all the words in the query sentence Sq is defined by

aq = max(0,W (Sq)
T F̂u(Sq)) 1, (6)

where 1 is an all-one vector. The importance weighting is multiplied with the original weighting
vectors on GloVe Avg (uniform weight), GloVe Prob_avg, and GloVe SIF to generate the results
of Our Avg, Our Prob_avg, and Our SIF, respectively.

We compare all the results in the development set and test set in Table 3. Ours SC, which matches
between two sets of topics outperforms WMD, which matches between two sets of words in the sen-
tence, and also outperforms BERT Avg, especially in STSB Low. All the scores in Ours (K=10) are
significantly better than Ours (K=1) ,which demonstrates the benefits of multi-mode representation.
Multiplying the proposed attention weighting boosts the performance from (weighted) averaging-
based methods especially in STSB Low and when we do not rely on the generalization assumption
of our training distribution.

We also test a variant of our method which uses a bi-LSTM as the encoder and a LSTM as the
decoder. Its average validation loss (-0.1289) in equation 2 is significantly higher than that of
the transformer alternative (-0.1439), and it performances on Table 3 are also worse. Notice the
architecture of this variant is similar to skip-thoughts except that skip-thoughts decodes a sequence
instead of a set. The variant significantly outperforms ST Cos, which further justifies our approach
of ignoring the order of co-occurring words in our NNSC loss.
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3.3 HYPERNYMY DETECTION

We apply our model to HypeNet (Shwartz et al., 2016), an unsupervised hypernymy detection
dataset, based on an assumption that the co-occurring words of a phrase are often less related to
some of its hyponyms. For instance, fly is a co-occurring word of animal which is less related to
brown dog.

Thus, the predicted codebook embeddings of a hyponym Shypoq (e.g., brown dog), which cluster
the embeddings of co-occurring words (e.g., eats), often reconstruct the embeddings of its hyper-
nym Shyperq (e.g., animal) better than the other way around (i.e., Er(F̂u(S

hypo
q ),W (Shyper

q )) is
smaller than Er(F̂u(S

hyper
q ),W (Shypo

q ))).

Based on the assumption, our asymmetric scoring function is defined as

Asym(Shyperq , Shypoq ) = Er(F̂u(S
hyper
q ),W (Shypo

q ))− Er(F̂u(S
hypo
q ),W (Shyper

q )). (7)

The AUC of detecting hypernym among other relations and accuracy of detecting the hypernym di-
rection are compared in Table 4. Our methods outperform baselines, which only provide symmetric
similarity measurement, and Ours (K=1) performs similarly compared with Ours (K=10).

3.4 EXTRACTIVE SUMMARIZATION IN A SINGLE DOCUMENT

A good summary should cover multiple aspects that well represent all topics/concepts in the whole
document. The objective can be quantified as discovering a summary A with a set of normalized
embeddings C(A) which best reconstructs the distribution of normalized word embedding w in the
document D (Kobayashi et al., 2015). That is,

argmax
A

∑
w∈D

γw max
s∈C(A)

wTs, (8)

where γw is the importance of the word w, which is set as α
α+p(w) as we did in Section 3.2. We

further assume that the summary A consists of T sentences A1 ... AT and the embedding set of the
summary is the union of the embedding sets of the sentences C(A) = ∪Tt=1C(At), and we greedily
select sentences to optimize equation 8 as did in Kobayashi et al. (2015).

This extractive summarization method provides us a way to evaluate the embedding(s) of sentence.
Our model can generate multiple codebook embeddings, which capture its different aspects as we
see in Table 1, to represent each sentence in the document, so we let C(At) = {F̂u(At)}, a set of
column vectors in the matrix F̂u(At).

We compare our approach with other alternative ways of modeling the aspects of sentences. For
example, we can compute average word embeddings as a single-aspect sentence embedding. This
baseline is labeled as Sent Emb. We can also use the embedding of all the words in the sentences as
different aspects of the sentences. Since longer sentences have more words, we normalize the gain
of the reconstruction loss by the sentence length. The method is denoted as W Emb. In contrast, the
fixed number of codebook embeddings in our method avoids the problem. We also test the baselines
of selecting random sentences (Rnd) and first n sentences (Lead) in the document.

The results on the testing set of CNN/Daily Mail (Hermann et al., 2015; See et al., 2017) are com-
pared using F1 of ROUGE (Lin & Hovy, 2003) in Table 5. R-1, R-2, and Len mean ROUGE-1,
ROUGE-2, and average summary length, respectively. All methods choose 3 sentences by follow-
ing the setting in Zheng & Lapata (2019). Unsup, No Order means the methods do not use the
sentence position information in the documents.

In CNN/Daily Mail or other English news corpora, the sentence order information is a very strong
signal. For example, the unsupervised methods such as Lead-3 are very strong baselines (Bohn
& Ling, 2018) with performances similar to supervised methods such as RL (Celikyilmaz et al.,
2018), a state-of-the-art approach in this evaluation. To evaluate the quality of unsupervised sentence
embeddings, we focus on comparing the unsupervised methods which do not assume the first few
sentences form a good summary.

In Table 5, predicting more aspects (i.e., using higher cluster numbers K) yields better results, and
setting K = 100 gives us the best performance after selecting 3 sentences. This demonstrates that
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larger cluster numbers K is desired in this application. Our method allows us to set K to be a
relatively large number because of greatly alleviating the computational and sample efficiency chal-
lenges.

4 RELATED WORK

Topic modeling (Blei et al., 2003) has been extensively studied and widely applied due to its inter-
pretability and flexibility of incorporating different forms of input features (Mimno & McCallum,
2008). Cao et al. (2015); Srivastava & Sutton (2017) demonstrate that neural networks could be ap-
plied to discover semantically coherent topics. However, instead of optimizing a global topic model,
our goal is to jointly and efficiently discovering different sets of topics/clusters on the small subsets
of words that co-occur with target phrases or sentences.

Sparse coding on word embedding space is used to model the multiple aspects of a word (Faruqui
et al., 2015; Arora et al., 2018), and parameterizing word embeddings using neural networks is used
to test hypothesis (Han et al., 2018) and save storage space (Shu & Nakayama, 2018). Besides, to
capture asymmetric relations such as entailment, words are represented as single or multiple regions
in Gaussian embeddings (Vilnis & McCallum, 2015; Athiwaratkun & Wilson, 2017) rather than
a single point. However, the challenges of extending these methods to longer sequences are not
addressed in these studies.

One of our main challenges is to design a neural decoder for a set rather a sequence while modeling
the dependency between the elements. This requires a matching step between two sets and compute
the distance loss after the matching (Eiter & Mannila, 1997). One popular loss is called Chamfer
distance, which is widely adopted in the auto-encoder models for point clouds (Yang et al., 2018;
Liu et al., 2019), while more sophisticated matching loss options are also proposed (Stewart et al.,
2016; Balles & Fischbacher, 2019). The goal of the studies focus on measuring symmetric distances
between the ground truth set and predicted set (usually with the equal size), while our set decoder
tries to reconstruct a set using a set of much fewer bases.

Other ways to achieving the permutation invariants loss for neural networks includes removing
the elements in the ground truth set which have been predicted (Welleck et al., 2018), beam
search (Qin et al., 2019), or predicting the permutation using a CNN (Rezatofighi et al., 2018), a
transformer (Stern et al., 2019; Gu et al., 2019) or reinforcement learning (Welleck et al., 2019). In
contrast, our goal is to efficiently predict a set of clustering centers that can well reconstruct the set
of observed instances instead of predicting the set or sequence of the observed instances.

5 CONCLUSIONS AND FUTURE WORK

In this work, we overcome the computational and sampling efficiency challenges of learning the
multi-mode representation for long sequences like phrases or sentences. We use a neural encoder to
model the compositional meaning of the target sequence and use a neural decoder to predict a set of
codebook embeddings as the representation of the sentences or phrases. During training, we use a
non-negative sparse coefficient matrix to dynamically match the predicted codebook embeddings to
a set of observed co-occurring words and allow the neural decoder to predict the clustering centers
with an arbitrary permutation.

We demonstrate that the proposed models can learn to predict interpretable clustering centers con-
ditioned on an (unseen) sequence, and the representation outperforms widely-used baselines such as
BERT, skip-thoughts and various approaches based on GloVe in several unsupervised benchmarks.
The experimental results also suggest that multi-facet embeddings perform the best when the input
sequence (e.g., a sentence) involves many aspects, while multi-facet and single-facet embeddings
perform similarly good when the input sequence (e.g., a phrase) usually involves only one aspect.

In the future, we would like to train a single model which could generate multi-facet embeddings
for both phrases and sentences, and evaluate the method as a pre-trained embedding approach for
supervised or semi-supervised settings. Furthermore, we plan to apply this method to other un-
supervised learning tasks that heavily rely on co-occurrence statistics such as graph embedding or
recommendation.
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A EXPERIMENTAL DETAILS

Given the computational resource constraints, we keep our model simple enough to have a nearly
converged training loss after 1 or 2 epoch(s). Since training takes a long time, we do not fine-tune
the hyper-parameters in our models. We use a much smaller model compared with BERT but the
architecture details in our transformer and most of its hyper-parameters are the same as the ones
used in BERT.

The sparsity penalty weights on coefficient matrix λ is set to be 0.4. The maximal sentence size
is set to be 50 and we ignore the sentences longer than that. The maximal number of co-occurring
words is set to be 30 (after removing the stop words), and we sub-sample the words if there are more
words in the previous and next sentence.

The number of dimensions in transformers is set to be 300. For sentence representation, the number
of transformer layers on the decoder side is 5 and dropout on attention is 0.1 for K = 10 and the
number of transformer layer on the decoder side is set to be 1 for K = 1 because we do not need to
model the dependency of output basis. For phrase representation, the number of transformer layers
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on the decoder side is 2 and the dropout on attention is 0.5. The window size d1t = d2t is set to be 5.
We will release the code to reveal more hyper-parameter setting details.

All the architecture and hyperparameters (except the number of codebook embeddings) in our mod-
els are determined by the validation loss of the self-supervised co-occurring word reconstruction
task. The number of codebook embeddings K is chosen by the performance of training data in
each task, but we observe that the performances are usually not sensitive to the numbers as long as
K is large enough. We also suspect that the slight performance drops of models with too large K
might just be caused by the fact that larger K needs longer training time and 1 week of training is
insufficient to make the model converges.

For skip-thoughts, the hidden embedding of is set to be 600. To make the comparison fair, we retrain
the skip-thoughts in Wikipedia 2016 for 2 weeks.

B COMPARISON WITH BERT LARGE

As mentioned in Section 3, our model has fewer parameters than the BERT base model and uses
much less computational resources for training, so we only present the BERT base performance in
the experiment sections. Nevertheless, we still wonder how well BERT large can perform in these
unsupervised semantic tasks, so we compare our method with BERT Large in Table 6, Table 7, and
Table 8. As we can see, BERT large is usually better than BERT base in the similarity tasks, but
perform worse in the hypernym detection task. The performance gains of BERT in similarity tasks
might imply that training a larger version of our model might be a promising future direction.

Although increasing the model size boosts the performance of BERT, our method is still much
better in most of the cases, especially in the phrase similarity tasks. One of the main reasons we
hypothesize is that BERT is trained by predicting the masked words in the input sequence and the
objective function might not be good if sequences are short (like phrases).

C SUMMARIZATION COMPARISON GIVEN THE SAME SUMMARY LENGTH

In Section 3.4, we compare our methods with other baselines when all the methods choose the
same number of sentences. We suspect that the bad performances for W Emb (*) methods (i.e.,
representing each sentence using the embedding of words in the sentence) might come from the
tendency of selecting shorter sentences.6 To verify the hypothesis, we plot the R-1 performance of
different unsupervised summarization methods that do not use sentence order information versus the
sentence length in Figure 3.

In the figure, we first observe that Ours (K=100) significantly outperforms W Emb (GloVe) and
Sent Emb (GloVe) when summaries have similar length. In addition, we find that W Emb (*) actu-
ally usually outperform Sent Emb (*) when comparing the summaries with a similar length. Notice
that this comparison might not be fair because W Emb (*) are allowed to select more sentences
given the same length of summary and it might be easier to cover more topics in the document using
more sentences. In practice, preventing choosing many short sentences might be preferable in an
extractive summarization if fluency is an important factor.

Nevertheless, if our goal is simply to maximize the ROUGE F1 score given a fixed length of sum-
mary without accessing the ground truth summary and sentence order information, the figure indi-
cates that Ours (K=100) is the best choice when the summary length is less than around 50 words
and W Emb (BERT) becomes the best method for a longer summary. The BERT in this figure is
the BERT base model. The mixed results suggest that combining our method with BERT in a way
might be a promising direction to get the best performance in this task (e.g., use contextualized word
embedding from BERT as our pre-trained word embedding space).

6In our implementation, we define the similarity between each word and an empty set of embeddings from
sentences as -1000, so W Emb (*) nearly always choose the shortest sentence when selecting the first sentence.
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Table 6: Compare BERT Large with Ours in Table 2.
Method SemEval Turney (5) Turney (10) BiRD WikiSRS-Sim WikiSRS-Rel

Model Score AUC F1 Acc Acc Pearson Spearman
BERT Base Avg 66.5 67.1 43.4 24.3 44.4 43.3 40.7
BERT Large Avg 72.4 66.7 51.3 32.1 47.5 49.6 48.1
Ours (K=1) Emb 87.8 78.6 50.3 32.5 60.6 67.1 65.8

Table 7: Compare BERT Large with Ours in Ta-
ble 3.

Method Dev Test
Model Score All Low All Low

BERT Base Avg 62.3 42.1 51.2 39.1
BERT Large Avg 68.4 52.6 59.5 49.4
Ours K=10 Prob_avg 72.0 60.5 61.4 59.3

Table 8: Compare BERT Large with Ours in
Table 4.

Method Dev Test
AUC Acc AUC Acc

BERT Base (Avg) 25.6 0.5 25.6 0.5
BERT Large (Avg) 20.2 0.5 20.1 0.5

Ours (K=1) 29.3 82.7 29.6 81.0
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Figure 3: Comparing the F1 of ROUGE-1 score on unsupervised methods that do not access the
sentence order information

D MORE EXAMPLES

We visualize predicted embeddings from 10 randomly selected sentences in our validation set. The
format of the file is similar to Table 1. The first line of an example is always the prepossessed input
sentence, where <unk> means an out-of-vocabulary placeholder. The embedding in each row is
visualized by the nearest five neighbors in a GloVe embedding space and their cosine similarities to
the vector.

Stanley ( 1870 ) , <unk> of American Indians : Proof <unk> , Ithaca , NY : Cornell University
<unk> Library Rare Manuscripts , Archives . <eos>
J. 0.871 M. 0.854 R. 0.853 D. 0.849 A. 0.839
York 0.929 New 0.911 NY 0.858 Brooklyn 0.731 NYC 0.716
1874 0.970 1872 0.967 1877 0.964 1876 0.963 1885 0.962
History 0.724 Historical 0.681 Manuscripts 0.665 Histories 0.635 Literature 0.628
American 0.939 America 0.714 U.S. 0.619 States 0.609 Americans 0.593
Indians 0.878 Indian 0.666 Native 0.665 Tribe 0.658 indians 0.615
University 0.933 Faculty 0.734 Sciences 0.727 College 0.725 Stanford 0.684
ISBN 0.825 paperback 0.757 Paperback 0.712 Hardcover 0.712 hardcover 0.693
Stanley 0.925 Merrill 0.576 Rowe 0.554 Raymond 0.535 Phillips 0.528
0 0.821 1 0.702 4 0.663 3 0.658 6 0.649

Edison Oil Field : California Division of Oil and Gas , Summary of Operations . 2 , p
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5 - 9 The Edison post office opened in 1903 , closed in 1929 , and re - opened in 1946 . <eos>
California 0.939 San 0.805 Diego 0.791 Sacramento 0.769 Angeles 0.764
1925 0.970 1923 0.969 1921 0.964 1924 0.963 1927 0.963
Edison 0.934 Westinghouse 0.553 Emerson 0.497 Tesla 0.480 Franklin 0.461
Field 0.854 Operations 0.636 Division 0.636 National 0.544 Fields 0.542
located 0.788 downtown 0.732 adjacent 0.709 situated 0.709 east 0.698
opened 0.784 reopened 0.626 relocated 0.614 closed 0.606 operated 0.596
Gas 0.860 gas 0.808 Oil 0.707 fuel 0.689 Fuel 0.688
office 0.839 Office 0.711 offices 0.673 department 0.619 desk 0.566
Oil 0.922 oil 0.835 Oils 0.663 oils 0.651 OIL 0.601
4 0.906 6 0.893 3 0.890 5 0.879 2 0.870

Chris van Wyk ( 19 July 1957 3 October 2014 ) was a South African children‘s book
author , novelist and poet . Van Wyk is famous for his poem In Detention on the suspicious
deaths that befell South African political prisoners during Apartheid . <eos>
Africa 0.893 African 0.876 Kenya 0.722 Zimbabwe 0.701 Ghana 0.699
Wyk 0.940 Louw 0.695 Smit 0.683 Merwe 0.673 Visser 0.639
poem 0.900 poems 0.865 poetry 0.853 poet 0.795 poetic 0.749
book 0.801 author 0.792 books 0.749 novels 0.738 nonfiction 0.715
prisoners 0.829 detention 0.775 prison 0.771 detainees 0.754 prisoner 0.734
Van 0.940 van 0.811 Holland 0.558 VAN 0.553 Gogh 0.513
van 0.933 Van 0.744 een 0.657 op 0.652 het 0.650
born 0.892 married 0.738 daughter 0.708 died 0.700 Born 0.661
1972 0.785 1973 0.781 1971 0.776 1974 0.776 1977 0.773
South 0.917 North 0.767 West 0.689 East 0.682 Africa 0.674

The temple is one of the 275 Paadal Petra Sthalams ( Holy <unk> of Shiva ) on the
continent . <unk> Samhita , Chapter 11 on the <unk> of the North , in Shiva Purana mentions
this Shivalinga as the <unk> of all wishes . <eos>
Shiva 0.937 Vishnu 0.821 Siva 0.754 Ganesha 0.723 Krishna 0.719
temple 0.971 temples 0.816 Temple 0.766 shrine 0.741 shrines 0.681
Shivalinga 0.691 Purana 0.685 Skanda 0.669 Bhagavata 0.629 Ranganatha 0.619
Pradesh 0.769 Andhra 0.765 Karnataka 0.757 India 0.750 Nadu 0.749
gods 0.790 divine 0.742 heaven 0.741 heavens 0.723 eternal 0.713
Petra 0.908 Daniela 0.539 Nadia 0.538 Simona 0.527 Katarina 0.521
Sanskrit 0.657 Samhita 0.657 texts 0.637 Vedic 0.619 Puranas 0.619
God 0.697 blessed 0.694 blessing 0.685 heaven 0.672 divine 0.664
southeast 0.732 north 0.720 northeast 0.718 south 0.714 east 0.709
Chapter 0.877 chapter 0.725 CHAPTER 0.674 Chapters 0.654 chapters 0.623

Just prior to World War I , the real estate boom ended suddenly , causing the city ’s
population to decline <unk> over <unk> in 1914 to under 54,000 only two years later . <eos>
city 0.868 town 0.837 area 0.751 south 0.735 towns 0.733
1912 0.963 1902 0.961 1921 0.958 1905 0.954 1922 0.954
later 0.754 eventually 0.745 once 0.742 became 0.724 moved 0.716
population 0.857 populations 0.758 declining 0.666 economic 0.660 increasing 0.654
estate 0.883 property 0.776 homes 0.696 Estate 0.685 estates 0.673
100,000 0.834 200,000 0.821 300,000 0.818 60,000 0.817 80,000 0.813
City 0.836 Downtown 0.748 city 0.660 downtown 0.659 Town 0.609
War 0.887 war 0.782 WWII 0.715 WWI 0.681 WW2 0.665
wharfs 0.631 disused 0.625 embankments 0.616 farmsteads 0.604 bulldozed 0.594
Karlsruhe 0.644 Rostock 0.643 Dusseldorf 0.639 Magdeburg 0.630 Erfurt 0.627

The following year he ordered great festivities on the Mount <unk> to celebrate the an-
niversary of the victory over the Mongols , and massacred there all <unk> nobles . <eos>
army 0.779 troops 0.771 battle 0.766 forces 0.764 war 0.743
Mongols 0.728 Tartars 0.721 Seljuks 0.688 Bulgars 0.676 Manchus 0.667
came 0.811 had 0.788 knew 0.785 took 0.782 finally 0.778
Emperor 0.811 emperor 0.707 Emperors 0.656 Dynasty 0.648 Empire 0.644

16



Under review as a conference paper at ICLR 2020

Mian 0.696 Ahmad 0.678 Ali 0.671 Jia 0.669 Ahmed 0.665
princes 0.751 nobles 0.722 nobility 0.704 rulers 0.700 monarch 0.687
Xinjiang 0.711 Mongolia 0.666 Mongols 0.651 Mongol 0.650 Tibet 0.643
celebration 0.752 birthday 0.740 anniversary 0.711 celebrations 0.684 celebrate 0.678
842 0.861 794 0.857 782 0.849 823 0.837 758 0.835
Mount 0.912 Mt 0.696 Mt. 0.654 mount 0.577 Mounts 0.542

Administratively Nepal is divided into many Development regions , Zones , Districts ,
Village development committees , Metropolitan areas and Municipalities . Nepal is divided
into 5 Development regions Nepal is divided into 14 Zones . <eos>
municipalities 0.846 municipality 0.778 municipal 0.762 councils 0.716 Municipalities 0.711
Nepal 0.967 Bhutan 0.807 Kathmandu 0.742 India 0.691 Lanka 0.677
region 0.853 regions 0.834 northern 0.811 southern 0.807 southeastern 0.776
Administratively 0.686 Sunsari 0.588 Surkhet 0.581 Badulla 0.578 Baglung 0.571
development 0.857 developing 0.708 projects 0.697 project 0.695 initiatives 0.655
separate 0.706 divided 0.703 comprised 0.691 comprise 0.687 consists 0.663
Development 0.820 Planning 0.693 Management 0.677 Initiatives 0.675 Assessment 0.671
Metropolitan 0.797 Metro 0.601 City 0.581 metropolitan 0.567 Downtown 0.566
Zones 0.882 zones 0.796 Zone 0.684 zone 0.579 Areas 0.437
6 0.909 4 0.906 5 0.893 3 0.886 8 0.866

The main groups that lived or interacted in the Cambridge Bay area were the <unk> (
<unk> or <unk> ) , <unk> ( <unk> ) , the <unk> and the <unk> . The first Europeans to see it
was Thomas Simpson in 1839 and John Rae in 1851 . <eos>
area 0.833 north 0.760 south 0.756 east 0.754 northeast 0.752
1835 0.961 1839 0.961 1842 0.961 1838 0.960 1834 0.959
Cambridge 0.877 Oxford 0.799 London 0.740 Nottingham 0.691 Exeter 0.665
Rae 0.912 Carly 0.682 Mandy 0.661 Brooke 0.658 Melanie 0.651
Europeans 0.746 indigenous 0.695 Africans 0.658 peoples 0.641 natives 0.625
became 0.757 discovered 0.693 was 0.688 lived 0.686 existed 0.685
Bay 0.929 Harbor 0.733 Harbour 0.720 Beach 0.691 Cove 0.674
groups 0.907 group 0.879 members 0.639 Groups 0.625 organizations 0.550
groups 0.874 group 0.857 Groups 0.621 members 0.569 Group 0.496
Thomas 0.903 William 0.838 John 0.787 James 0.773 Henry 0.771

So , at the Queen of Empires stop at <unk> , Desh ’s Peace Brigade forces attack the
pleasure yacht and attempt to kidnap Elan and <unk> . <eos>
attack 0.846 attacks 0.783 enemy 0.781 attacked 0.749 fighting 0.723
let 0.857 want 0.828 trying 0.817 go 0.813 get 0.810
Desh 0.910 Mera 0.564 Apna 0.543 Aana 0.542 Prabhat 0.542
Brigade 0.900 Battalion 0.881 Infantry 0.863 Regiment 0.858 battalion 0.856
unspeakable 0.635 treachery 0.619 deceit 0.618 diabolical 0.603 malevolent 0.601
Kiran 0.712 Rajesh 0.702 Prakash 0.700 Chaudhary 0.698 Sharma 0.694
yacht 0.859 sailing 0.809 boat 0.803 boats 0.796 sail 0.790
Empires 0.904 Empire 0.719 Kingdoms 0.705 Civilization 0.689 empires 0.671
discovers 0.713 finds 0.678 realizes 0.677 sees 0.674 learns 0.661
Queen 0.912 King 0.797 Prince 0.692 Princess 0.686 queen 0.676

Retrieved 6 December 2014 In general , <unk> use of flowers in her manuscripts were
primarily used to produce attractive manuscripts , which would create employment or reward
opportunities . However , this may not have been the only reason Inglis decided to draw
flowers . <eos>
manuscript 0.816 manuscripts 0.814 books 0.736 publications 0.721 journals 0.712
flowers 0.925 flower 0.903 roses 0.822 blossoms 0.804 blooms 0.771
however 0.696 mentioned 0.689 perhaps 0.673 though 0.670 simply 0.665
Margaret 0.804 Elizabeth 0.784 Frances 0.781 William 0.765 Jane 0.765
Inglis 0.933 Innes 0.575 Cowan 0.564 Mackinnon 0.553 Mackay 0.552
manuscripts 0.718 Manuscripts 0.709 Manuscript 0.702 Texts 0.623 Bibliography 0.614
February 0.936 April 0.929 January 0.927 March 0.926 October 0.925
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Wales 0.733 Perth 0.699 Australian 0.671 Melbourne 0.669 Australia 0.669
September 0.910 October 0.909 January 0.907 February 0.906 August 0.904
2014 0.937 2015 0.866 2016 0.769 2017 0.727 2018 0.691
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