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Abstract

It is a significant challenge to design probabilistic programming systems that can
accommodate a wide variety of inference strategies within a unified framework.
Noting that the versatility of modern automatic differentiation frameworks is based
in large part on the unifying concept of tensors, we describe a software abstraction—
functional tensors—that captures many of the benefits of tensors, while also being
able to describe continuous probability distributions. We demonstrate the versa-
tility of functional tensors by integrating them into the modeling frontend and
inference backend of the Pyro probabilistic programming language. As an example
application, we perform approximate inference on a switching linear dynamical
system.1

1 Introduction

Probabilistic programming systems allow specification of probabilistic models in high-level program-
ming languages and provide some level of automation for probabilistic inference [1]. It remains a
significant challenge to design systems that can accommodate a wide variety of inference strategies—
from MCMC to variational inference and beyond—within a unified framework. This work is
motivated by the general goal of enabling mixed inferences strategies for probabilistic programs.
As a concrete example consider an inference algorithm that exploits modern black-box variational
inference as well as classic algorithms that leverage conjugacy (e.g. the Kalman filter). Enabling the
former requires support for Monte Carlo sampling and automatic differentiation, while the latter calls
for a symbolic computation of sums (for discrete factors) and integrals (for Gaussian factors). To
address these requirements, we propose functional tensors, a software abstraction that generalizes the
algebraic properties of tensors to a wide class of continuous and discrete probability distributions,
thus enabling a wide variety of mixed inference strategies in probabilistic programming systems.2

2 Functional Tensors

Tensors, or more properly “multidimensional arrays", are a popular and versatile software abstraction
for performing parallelizable operations on large homogeneous contiguous blocks of memory. Each
tensor is backed by a single block of memory, and that memory can be addressed by a tuple of
bounded integers, where each integer indexes into a dimension of the tensor. Tensor libraries
provide operations that act on tensors, including pointwise operations like addition and multiplication,
reduction operations such as product and sum, and combined operations such as matrix multiplication
and convolution. A useful property of tensor operations is support for broadcasting, whereby an
operation defined on smaller tensors or scalars can be uniquely extended to an operation on tensors
with extra dimensions on the left, so long as all dimensions are of compatible shape.3

1The funsor library and experiments are available at https://github.com/pyro-ppl/funsor
2See Appendix B for a discussion of related work.
3A set of tensors is of compatible shape iff, aligning their shapes on the right, for each dimension counting

from the right, the set of sizes along each dimension contains no more than a single integer greater than 1.
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The observation motivating functional tensors is that tensor dimensions can be viewed as free
variables, batched tensors can be viewed as open terms, and operator support for broadcasting can
be viewed as extending ground operators to open terms, i.e. terms with free variables [2]. This
interpretation of tensors is exploited by the Pyro probabilistic programming language [3] and its
implementation of tensor variable elimination for exact inference in discrete latent variable models
[4].

Functional tensors (hereafter “funsors”) generalize tensors by allowing free variables to be of type
not only bounded integer, but also other types that appear in probabilistic models, such as real
number, real-valued vector, or real-valued matrix. While in general there is no finite representation of
functions of real variables, we provide an interface for restricted classes of functions (or properly
distributions), including lazy algebraic expressions, non-normalized Gaussian functions, and Dirac
delta distributions.

The remainder of this section is organized as follows: in Sec. 2.1-2.2 we overview funsor syntax and
operational semantics; in Sec. 2.3 we illustrate funsor usage in probabilistic programming 2.3; and in
Sec. 2.4 we describe the atomic distribution funsors Tensor, Gaussian, and Delta.

2.1 Funsor syntax

Funsors are terms in a first order language of arrays and array indices; we exclude higher order
functions.

Definition 1. A type is defined by the grammar

τ ∈ Type ::= Zn “bounded integer"∣∣ Zn1× · · ·×Znk
→ R “real-valued array"

for any n, n1, . . . , nk, k ∈ N. A type context is a list Γ = (v1:τ1, . . . , vk:τk) of name:type pairs for
names v ∈ S in a countable set of symbols S and types τ .

Definition 2. A funsor is defined by the grammar

e ∈ Funsor ::= Tensor(Γ, w) “discrete factor”
∣∣ f̂(e1, . . . , en) “apply function”∣∣ Gaussian(Γ, i, P ) “Gaussian factor"
∣∣ e1[v = e2] “substitute"∣∣ Delta(v, e) “point mass"
∣∣ ∑

v
e “marginalize"∣∣ Variable(v, τ) “delayed value"

∣∣ ∏
v
e “product"

where Γ is a type context, w, i, P are numerical arrays, v ∈ S is a variable name, τ ∈ T is a type,
and f is any function defined on numerical objects, e.g. binary multiplication e1 × e2 and nullary
constants 0 and 1 for each type.

Definition 3. The set of free variables of a funsor e is denoted fv(e). A funsor is open if it has
free variables and closed otherwise. Each basic numerical object x ∈ τ defines a ground funsor
x̂ = Tensor((), x).

2.2 Operational semantics

Funsor computations are executed by seminumerical term rewriting. We specify a set of rewriting
rules and rely on a dispatch mechanism to match and execute rules until termination. Each rule
contains a pattern and behavior to perform on match. The behavior includes both symbolic term
rewriting and low-level numerical computation, similar to operations in tensor libraries for automatic
differentiation (AD). In contrast to tensor operations in AD libraries, funsor expressions can be
non-analytic, in which case they can only be evaluated approximately.

To support approximation of non-analytic funsor expressions and optimization of large funsor
expressions, we rely on nonstandard interpretation [6, 7]. Each interpretation is a set of rewrite rules,
and interpretations can be selected and interleaved at runtime. For example an EXACT interpretation
eagerly evaluates tractable funsors but leaves non-analytic integrals lazy; a fully LAZY interpretation
records an expression for optimization and static analysis; and MONTE CARLO and MOMENT
MATCHING interpretations add extra rules for approximate evaluation of integrals.
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2.3 Application to probabilistic programming

Funsors fill two roles in probabilistic programming: as compute graphs for lazy tensor computations
in user-facing model code, and as seminumerical representations of joint distributions in automatic
inference strategies. In the following we consider two probabilistic inference tasks that leverage
delayed sampling [8] in detail.

Figure 1 illustrates a funsor computation for MAP inference in a simple generative model. Inference
steps on the right are triggered by execution of each line of model code on the left. On line 1 the joint
distribution is initialized to the trivial normalized distribution. On line 2 a delayed sample statement
triggers creation of a new free variable z in the model code and accumulation of an unevaluated
factor distribution Pz[v = z] in inference code. (We assume by convention distributions like Pz , Px,
Q name their variate v and parameter, if any, θ.) On line 3 a nonlinear function is lazily applied
to z creating a lazy funsor expression y. On line 4 a distribution is conditioned on ground data x,
triggering accumulation of a factor Px[θ = y, v = x] with free variable z (because x is ground and y
has free variable z). Model termination on line 5 triggers marginalization of the x variable, which
can be performed either exactly by pattern matching or approximately by Monte Carlo sampling.
The resulting objective is differentiable with respect to any parameters. Optimization is achieved by
stochastic gradient ascent, repeatedly executing model code and accumulating factors.

Figure 2 illustrates a typical funsor computation in variational inference, where a data-dependent
variational distribution Q is fit to data. Lines 1–6 execute delayed sample statements and accumulate
distributions p and q with a single free variable z. Line 7 computes the ELBO, which can be performed
either exactly by pattern matching or approximately by Monte Carlo sampling z from Q.

1 fun GenerativeModel(x) p← 1

2 z ← sample(Pz) p← p× Pz[v = z]
3 y ← exp(z)

4 observe(Px[θ = y], x) p← p× Px[θ = y, v = x]

5 end maximize:
∑
z
p

Figure 1: User-facing probabilistic program (left) and
automatic inference (right) for (delayed) MAP infer-
ence.

1 fun GenerativeModel(x) p← 1

2 z ← sample(Pz) p← p× Pz[v = z]
3 observe(Px[θ = z], x) p← p× Px[v = x, θ = z]
4 end
5 fun InferenceModel(x) q ← 1

6 z ← sample(Q[θ = x]) q ← q ×Q[v = z, θ = x]

7 end maximize:
∑
z
q log p

q

Figure 2: User-facing probabilistic program (left) and
automatic inference (right) for variational inference
with delayed sampling. The quantity maximized is the
ELBO.

Both of the above delayed sampling computations (MAP and ELBO) proceed by first building
a large sum-product expression4 and then evaluating this expression through a combination of
pattern matching and approximation. An alternative to delayed sampling is eager sampling, where
sample statements in the model trigger Monte Carlo sampling, no free variables are created, and
marginalization

∑
z is not needed. Funsors allow eager and delayed sampling to be combined freely.

2.4 Numerics of distribution funsors

Distribution funsors are the basic latent factors in sum-product expressions constructed during
probabilistic inference. While we implement a large number of distribution funsors to serve as
likelihoods in observe statements, we focus attention on three atomic distributions that are closed
under sums and products, and thus especially attractive as distributions for latent variables. These
three special funsors are: i) Tensor funsors to represent non-normalized discrete joint probability mass
functions; ii) Gaussian funsors to represent non-normalized joint multivariate normal distributions
among a set of real-tensor valued variables, possibly dependent on other discrete variables; and iii)
Delta funsors to represent degenerate distributions and Monte Carlo samples.

Tensor funsors represent a non-normalized mass function as a single tensor (multidimensional array)
of weights. Thus standard variable elimination can be seen as mere tensor contraction. Memory cost
and computation cost are both exponential in the number of free variables. The crucial rewrite rule for

4For clarity this paper uses the (+,×) semiring, but our implementation performs inference computations in
log-space using the (logaddexp,+) semiring.
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Tensor funsors allows operations f(e1, . . . , en) on Tensor funsors e1, . . . , en to be eagerly evaluated
even in the presence of free variables; this is especially useful when e.g. f is a neural network whose
inputs depend on lazily sampled discrete random variables:

f̂ (Tensor, . . . ,Tensor) ⇒ Tensor “batched apply”

Gaussian funsors represent a log density function among multiple real-tensor-valued free variables
using the information form of the Kalman filter [9, 10], i.e. as pair (v, P ), where v = Pµ is
the information vector, µ is the mean, and P = Σ−1 is the precision matrix, the inverse of the
covariance matrix Σ. The information form is useful in information fusion problems because it
allows representation of rank-deficient joint distributions, such as a conditional distribution treated
as a single Gaussian factor; in practice a joint distribution often becomes full rank only after fusing
multiple individually rank-deficient Gaussian factors. Memory cost is quadratic and computation
cost is cubic in the total number of elements in all free real-tensor-valued variables; both costs are
exponential in the number of bounded integer free variables.

Delta funsors represent a normalized point distribution as a pair (v, x), where v is a symbol and x is
a Tensor funsor, possibly with free discrete variables corresponding to batch dimensions. The crucial
rewrite rule for Delta funsors triggers substitution:

Delta(v, e1)× e2 ⇒ Delta(v, e1)× e2[v = e1] if v ∈ fv(e2)

Tensors, Gaussians, and Deltas are algebraically closed in combination, i.e. any sum-product of
Tensor, Gaussian, and Delta factors can be rewritten5 to a product of zero or more deltas, an optional
Tensor, and an optional Gaussian. Our rewrite system captures this fact as a “joint normal form”
funsor representing a lazy finitary product, together with rules for commutativity, associativity,
distributivity, and substitution.

3 Experiment: Switching Linear Dynamical System

To demonstrate the versatility of funsors as a substrate for probabilistic programming, we perform
approximate inference on a switching linear dynamical system [11], leveraging a moment-matching
approximation to make inference tractable. See Appendix A for details.

4 Conclusion

We introduced funsors, a software abstraction that generalizes tensors to provide finite representations
for a restricted class of discrete and continuous distributions, including lazy algebraic expressions,
non-normalized Gaussian distributions, and Dirac delta distributions. We demonstrated how funsors
can be integrated into a probabilistic programming system, thereby enabling a wide variety of
inference strategies. In future work we will describe how funsors can be used to represent generalized
variable elimination [4] and parallel-scan filtering algorithms [14] that enable parallel exact inference
for a large family of structured probabilistic models.
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L = 1 L = 3 L = 5

Model MSE LL MSE LL MSE LL
SLDS-I 0.574 -10.13 0.574 -10.13 0.574 -10.13
SLDS-II 0.527 -9.55 0.497 -9.64 0.498 -9.64
SLDS-III 0.512 -9.33 0.511 -9.41 0.482 -9.46

Table 1: Test log likelihoods and mean squared errors for SLDS variants with various moment-matching window
lengths L. See Sec. A for details.
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Figure 3: Smoothing estimates (red) and 1-step-ahead ahead predictions (blue; with 90% confidence intervals)
for three randomly selected output dimensions (y1, y5, y11) for the SLDS experiment in A. The bottom figure
depicts the observed eye state (black) as well as the smoothing estimate of the inferred switching label st (red).

A Switching Linear Dynamical System

We use a switching linear dynamical system (SLDS) [11] to model an EEG time series dataset
{yt}Tt=1 from the UCI database [12]. The generative model is as follows. At each time step t there is
both a discrete switching label st ∈ [1, ...,K] and a continuous latent state xt; both follow Markovian
dynamics, see Fig. 4. We consider three model variants: I) the transition probabilities p(xt|xt−1, st)
depend on the switching state; II) the emission probabilities p(yt|xt, st) depend on the switching
state; and III) both the transition and emission probabilities depend on the switching state.

Exact inference for this class of models is O(KT ). To make inference tractable, we use a moment-
matching approximation with window length L, reducing the complexity to O(KL+1). Representing
this approximate inference algorithm follows immediately by employing a moment_matching inter-
pretation for funsor reductions. For parameter learning we use gradient ascent on the (approximate)
log marginal likelihood log p(y1:T ). See Table 1 for the results we obtain for all three model variants
with K = 2 switching states and window lengths L ∈ {1, 3, 5}. We obtain the best results with
the richest model (SLDS-III), with the most expensive moment-matching approximation (L = 5)
yielding the lowest mean squared error.

In Fig. 3 we depict smoothing estimates for the training data and one-step-ahead predictions for
the held-out data using the best performing model, validating the efficacy of the moment-matching
approximation. The EEG data also include an observed eye state (0: open, 1: closed) at each time
step. We note that the transitions between switching states in the learned model correlate reasonably
well with eye state transitions, despite the fact that the model did not have access to observed eye
states during training.

The joint probability p(y1:T , s1:T , x1:T ) of model variant SLDS-I is given by
T∏

t=1

p(st|st−1)N (xt|Astxt−1, σ
st
trans)N (yt|Bxt, σobs)

where Ast is a state-dependent transition matrix, σst
trans is a state-dependent diagonal transition

noise matrix, B is a state-independent observation matrix, and σobs is a state-independent diagonal
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Figure 4: Graphical structure for the SLDS-III model in Sec. A. The {st} form a chain of discrete switching
states and the {xt} are continuous. Here the transition probabilities p(xt|xt−1, st) and emission probabilities
p(yt|xt, st) both depend on the switching label st.

observation noise matrix. Similarly, the joint probability of variant SLDS-II is given by:

T∏
t=1

p(st|st−1)N (xt|Axt−1, σtrans)N (yt|Bstxt, σ
st
obs)

where now A and σtrans are state-independent and Bst and σst
obs are state-dependent. Finally, the

joint probability of variant SLDS-III is given by

T∏
t=1

p(st|st−1)N (xt|Astxt−1, σ
st
trans)N (yt|Bstxt, σ

st
obs)

where now both the transition and emission probabilities are state-dependent. In all our experiments
we use K = 2 switching states and set the dimension of the continous state to dim(xt) = 5.

To compute the log marginal likelihood used in training we use a moment-matching approximation
with a window length of L, see Ex. 5. During prediction and smoothing we use L = 1.

The raw dataset has T = 14980 timesteps, which we subsample by a factor of 20, yielding a dataset
with T = 749. We use the first 400 timesteps for training. Of the remaining 349 timesteps, we use
random subsets of size 149 and 200 for validation and testing, respectively. In particular we use the
validation set to choose learning hyperparameters and determine early stopping for gradient ascent.
The 14-dimensional outputs {yt} are normalized to have zero mean and unit variance.

We use the Adam optimizer for training [13]. We train for up to 200 gradient steps and decay
the learning rate exponentially. We use the validation set to do a hyperparameter search over the
exponential decay factor γ and the momentum parameter β1. For each hyperparameter setting we do
7 independent runs with different random number seeds for parameter initialization. We then report
results on the test set.
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# returns the marginal log probability of the observed data. we use an interpretation decorator to

# signal to funsor that all reduce operations should be done using a moment−matching approximation.
#

# inputs:

# observations (torch.Tensor of shape (T, obs_dim))

# trans_probs, x_init_dist, x_trans_dist, y_dist (funsors)

@funsor.interpreter.interpretation(funsor.terms.moment_matching)

def marginal_log_prob(observations, trans_probs, x_init_dist, x_trans_dist, y_dist,

L=2, num_components=2, hidden_dim=5):

log_prob = funsor.Number(0.)

s_vars = {−1: funsor.Tensor(torch.tensor(0), dtype=num_components)}
x_vars = {}

for t, y in enumerate(observations):

s_vars[t] = funsor.Variable(f’s_{t}’, funsor.bint(num_components))

x_vars[t] = funsor.Variable(f’x_{t}’, funsor.reals(hidden_dim))

# incorporate discrete switching probability p(s_t | s_{t−1})
log_prob += dist.Categorical(trans_probs(s=s_vars[t − 1]), value=s_vars[t])

# incorporate continuous transition probability p(x_t | x_{t−1}, s_t)
if t == 0:

log_prob += x_init_dist(value=x_vars[t])

else:

log_prob += x_trans_dist(s=s_vars[t], x=x_vars[t − 1], y=x_vars[t])

# do a moment−matching reduction of latent variables from L time steps in the past
# [i.e. we retain a running (L+1)−length window of latent variables throughout the for loop]
if t > L − 1:

log_prob = log_prob.reduce(ops.logaddexp, {s_vars[t − L].name, x_vars[t − L].name})

# incorporate observation probability p(y_t | x_t, s_t)

log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)

T = data.shape[0]

for t in range(L):

log_prob = log_prob.reduce(ops.logaddexp, {s_vars[T − L + t].name, x_vars[T − L + t].name})

return log_prob

Figure 5: funsor code for the computation of the log marginal probability log p(y1:T ) for the SLDS model in
Sec. A.
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B Related Work

PSI Solver [17] implements exact inference algorithms for probabilistic programs using symbolic
algebra. Hakaru [18, 19] implements a probablistic program inference optimizer that compiles to
Maple expressions for symbolic manipulation, then performs MCMC inference. Our work can be
seen as a mixed symbolic-numerical approach that provides limited symbolic pattern manipulation
and relies on a high-level tensor library (PyTorch [20] or JAX [21]) for automatic differentiation
and parallelization. Indeed we see functional tensors as a compromise between fully symbolic and
fully numerical integration in the same way that automatic differentiation is a compromise between
symbolic differentiation and numerical differentiation [22].

Dillon et al. [23] describe a low-level software abstraction for implementing probability distributions,
in particular taking care to implement batching and broadcasting. Our work can be seen as gener-
alization of such distributions in three directions: from broadcastable dimensions to free variables,
from normalized to non-normalized, and from single distributions to joint distributions (still with
O(1) underlying tensors). Hoffman et al. [24] design a system for automatic conjugacy detection
in stochastic computation graphs; our system matches coarser patterns, e.g. Gaussians rather than
polynomials.

A number of inference algorithms naturally generalize to funsors. Obermeyer et al. [4] generalize
variable elimination to factor graphs with plates, proving that plated factor graphs can be easily sepa-
rated into those in which the complexity of discrete variable elimination grows either exponentially or
linearly in plate size. Särkkä and García-Fernández [14] adapt parallel scan algorithms to Bayesian
filtering settings, demonstrating exponential parallel speedup in inference in common probabilistic
graphical modeling methods such as discrete state hidden Markov models and Kalman filters. Bilmes
[15] leverages repeated (typically dynamic) structure in graphical models to quickly compute a
sequential variable elimination schedule. [16] develop bounded memory inference algorithms for
sequential probabilistic models.
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