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Abstract

Visual Question Answering (VQA) is the task of answering questions about an
image. Some VQA models often exploit unimodal biases to provide the correct
answer without using the image information. As a result, they suffer from a huge
drop in performance when evaluated on data outside their training set distribution.
This critical issue makes them unsuitable for real-world settings.

We propose RUBI, a new learning strategy to reduce biases in any VQA model.
It reduces the importance of the most biased examples, i.e. examples that can be
correctly classified without looking at the image. It implicitly forces the VQA
model to use the two input modalities instead of relying on statistical regularities
between the question and the answer. We leverage a question-only model that
captures the language biases by identifying when these unwanted regularities are
used. It prevents the base VQA model from learning them by influencing its
predictions. This leads to dynamically adjusting the loss in order to compensate
for biases. We validate our contributions by surpassing the current state-of-the-art
results on VQA-CP v2. This dataset is specifically designed to assess the robustness
of VQA models when exposed to different question biases at test time than what
was seen during training.

Our code is available: github.com/cdancette/rubi.bootstrap.pytorch

1 Introduction

The recent Deep Learning success in computer vision [1] and natural language understanding [2]
allowed researchers to tackle multimodal tasks that combine visual and textual modalities [3, 4, 5, 6, 7].
Among these tasks, Visual Question Answering (VQA) attracts increasing attention. The goal of the
VQA task is to answer a question about an image. It requires a high-level understanding of the visual
scene and the question, but also to ground the textual concepts in the image and to use both modalities
adequately. Solving the VQA task could have tremendous impacts on real-world applications such as
aiding visually impaired users in understanding their physical and online surroundings, searching
through large quantities of visual data via natural language interfaces, or even communicating with
robots using more efficient and intuitive interfaces.

Several large real image VQA datasets have recently emerged [8, 9, 10, 11, 12, 13, 14]. Each one
of them targets specific abilities that a VQA model would need to be used in real-world settings
such as fine-grained recognition, object detection, counting, activity recognition, commonsense
reasoning, etc. Current end-to-end VQA models [15, 16, 17, 18, 19, 20, 21, 22] achieve impressive
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Figure 1: Our RUBI approach aims at reducing the amount of unimodal biases learned by a

VQA model during training. As depicted, current VQA models often rely on unwanted statistical
correlations between the question and the answer instead of using both modalities.

results on most of these benchmarks and are even able to surpass the human accuracy on a specific
benchmark accounting for compositional reasoning [23]. However, it has been shown that they tend
to exploit statistical regularities between answer occurrences and certain patterns in the question
[24, 10, 25, 23, 13]. While they are designed to merge information from both modalities, in practice
they often answer without considering the image modality. When most of the bananas are yellow, a
model does not need to learn the correct behavior to reach a high accuracy for questions asking about
the color of bananas. Instead of looking at the image, detecting a banana and assessing its color, it is
much easier to learn from the statistical shortcut linking the words what, color and bananas with the
most occurring answer yellow.

One way to quantify the amount of statistical shortcuts from each modality is to train unimodal
models. For instance, a question-only model trained on the widely used VQA v2 dataset [9] predicts
the correct answer approximately 44% of the time over the test set. VQA models are not discouraged
to exploit these statistical shortcuts from the question modality, because their training set often follows
the same distribution as their testing set. However, when evaluated on a test set that displays different
statistical regularities, they usually suffer from a significant drop in accuracy [10, 25]. Unfortunately,
these statistical regularities are hard to avoid when collecting real datasets. As illustrated in Figure 1,
there is a crucial need to develop new strategies to reduce the amount of biases coming from the
question modality in order to learn better behaviors.

We propose RUBI, a training strategy to reduce the amount of biases learned by VQA models. Our
strategy reduces the importance of the most biased examples, i.e. examples that can be correctly
classified without looking at the image modality. It implicitly forces the VQA model to use the two
input modalities instead of relying on statistical regularities between the question and the answer.
We take advantage of the fact that question-only models are by design biased towards the question
modality. We add a question-only branch on top of a base VQA model during training only. This
branch influences the VQA model, dynamically adjusting the loss to compensate for biases. As
a result, the gradients backpropagated through the VQA model are reduced for the most biased
examples and increased for the less biased. At the end of the training, we simply remove the
question-only branch.

We run extensive experiments on VQA-CP v2 [10] and demonstrate the ability of RUBI to surpass
current state-of-the-art results from a significant margin. This dataset has been specifically designed
to assess the capacity of VQA models to be robust to biases by the question modality. We show
that our RUBI learning framework provides gains when applied on several VQA architectures such
as Stacked Attention Networks [26] and Top-Down Bottom-Up Attention [15]. We also show that
RUBI is competitive on the standard VQA v2 dataset [9] when compared to approaches that reduce
unimodal biases.

2 Related work

Real-world datasets display some form of inherent biases due to their collection process [27, 28, 29].
As aresult, machine learning models tend to reflect these biases because they capture often undesirable



correlations between the inputs and the ground truth annotations [30, 31, 32]. Procedures exist to
identify certain kinds of biases and to reduce them. For instance, some methods are focused on gender
biases [33, 34], some others on the human reporting biases [35], and also on the shift in distribution
between lab-curated data and real-world data [36]. In the language and vision context, some works
evaluate unimodal baselines [37, 38] or leverage language priors [39]. In the following, we discuss
about related works that assess and reduce unimodal biases learned by VQA models.

Assessing unimodal biases in datasets and models Despite being designed to merge the two
input modalities, it has been found that VQA models often rely on superficial correlations between
inputs from one modality and the answers without considering the other modality [40, 32]. An
interesting way to quantify the amount of unimodal biases that can potentially be learned by a VQA
model consists in training models using only one of the two modalities [8, 9]. The question-only
model is a particularly strong baseline because of the large amount of statistical regularities that can
be leveraged from the question modality. With the RUBIi learning strategy, we take advantage of this
baseline model to prevent VQA models from learning question biases.

Unfortunately, biased models that exploit statistical shortcuts from one modality usually reach
impressive accuracy on most of the current benchmarks. VQA-CP v2 and VQA-CP v1 [10] were
recently introduced as diagnostic datasets containing different answer distributions for each question-
type between train and test splits. Consequentially, models biased towards the question modality fail
on these benchmarks. We use the more challenging VQA-CP v2 dataset extensively in order to show
the ability of our approach to reduce the learning of biases coming from the question modality.

Balancing datasets to avoid unimodal biases Once the unimodal biases have been identified, one
method to overcome these biases is to create more balanced datasets. For instance, the synthetic
datasets for VQA [23, 13] minimize question-conditional biases via rejection sampling within families
of related questions to avoid simple shortcuts to the correct answer.

Doing rejection sampling in real VQA datasets is usually not possible due to the cost of annotations.
Another solution is to collect complementary examples to increase the difficulty of the task. For
instance, VQA v2 [9] has been introduced to weaken language priors in the VQA v1 dataset [8] by
identifying complementary images. For a given VQA v1 question, VQA v2 also contains a similar
image with a different answer to the same question. However, even with this additional balancing,
statistical biases from the question remain and can be leveraged [10]. That is why we propose an
approach to reduce unimodal biases during training. It is designed to learn unbiased models from
biased datasets. Our learning strategy dynamically modifies the loss values to reduce biases from
the question. By doing so, we reduce the importance of certain examples, similarly to the rejection
sampling approach, while increasing the importance of complementary examples which are already
in the training set.

Architectures and learning strategies to reduce unimodal biases In parallel of these previous
works on balancing datasets, an important effort has been carried out to design VQA models to
overcome biases from datasets. [10] proposed a hand-designed architecture called Grounded VQA
model (GVQA). It breaks the task of VQA down into a first step of locating and recognizing the visual
regions needed to answer the question, and a second step of identifying the space of plausible answers
based on a question-only branch. This approach requires training multiple sub-models separately. In
contrast, our learning strategy is end-to-end. Their complex design is not straightforward to apply
on different architectures while our approach is model-agnostic. While we rely on a question-only
branch, we remove it at the end of the training.

The work most related to ours in terms of approach is [25]. The authors propose a learning strategy
to overcome language priors in VQA models. They first introduce an adversary question-only branch.
It takes as input the question encoding from the VQA model and produces a question-only loss. They
use a gradient negation of this loss to discourage the question encoder to capture unwanted biases that
could be exploited by the VQA model. They also propose a loss based on the difference of entropies
between the VQA model and the question-only branch output distributions. These two losses are
only backpropagated to the question encoder. In contrast, our learning strategy targets the full VQA
model parameters to reduce the impact of unwanted biases more effectively. Instead of relying on
these two additional losses, we use the question-only branch to dynamically adapt the value of the
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Figure 2: Visual comparison between the classical learning strategy of a VQA model and our RUBi
learning strategy. The red highlighted modules are removed at the end of the training. The output a;
is used as the final prediction.

classification loss in order to reduce the learning of biases in the VQA model. A visual comparison
between [25] and RUBI can be found in Figure 5 in the supplementary materials.

3 Reducing Unimodal Biases Approach

We consider the common formulation of the Visual Question Answering (VQA) task as a multi-class
classification problem. Given a dataset D consisting of n triplets (v;, ¢;, ai)ie[l’n] with v; € V
an image, ¢; € Q a question in natural language and a; € A an answer, one must optimize the
parameters 6 of the function f : V x Q@ — RI! to produce accurate predictions. For a single
example, VQA models use an image encoder e, : V — R™ X% to output a set of n, vectors of
dimension d,, a question encoder e, : @ — R« xdq o output a set of n, vectors of dimension d, a

multimodal fusion m : R™ *dv x R™a*da — R4m and a classifier ¢ : R% — RIAl, These functions

are composed as follows:
fi, qi) = c(m(en(vs), eq(4:))) 1

Each one of them can be defined to instantiate most of the state of the art models, such as [26, 41, 19,
42,17, 43, 16] to cite a few.

Classical learning strategy and pitfall The classical learning strategy of VQA models, depicted
in Figure 2, consists in minimizing the standard cross-entropy criterion over a dataset of size n.

£(0D) = —- Y logsoftmax(f(v1,))) o] @

i=1

VQA models are inclined to learn unimodal biases from the datasets [10]. This can be shown by
evaluating models on datasets that have different distributions of answers for the test set, such as
VQA-CP v2. In other words, they rely on statistical regularities from one modality to provide accurate
predictions without having to consider the other modality. As an extreme example, strongly biased
models towards the question modality always output yellow to the question what color is the banana.
They do not learn to use the image information because there are too few examples in the dataset
where the banana is not yellow. Once trained, their inability to use the two modalities adequately
makes them inoperable on data coming from different distributions such as real-world data. Our
contribution consists in modifying this cost function to avoid the learning of these biases.

3.1 RUBI learning strategy

Capturing biases with a question-only branch One way to measure the unimodal biases in VQA
datasets is to train an unimodal model which takes only one of the two modalities as input. The key
idea of our approach, depicted in Figure 2, is to adapt a question-only model as a branch of our VQA
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Figure 3: Detailed illustration of the RUBi impact on the learning. In the first row, we illustrate how
RUBI reduces the loss for examples that can be correctly answered without looking at the image.
In the second row, we illustrate how RUBI increases the loss for examples that cannot be answered
without using both modalities.

model, that will alter the main model’s predictions. By doing so, the question-only branch captures
the question biases, allowing the VQA model to focus on the examples that cannot be answered
correctly using the question modality only. The question-only branch can be formalized as a function
fo : Q@ — RII parameterized by 6, and composed of a question encoder e, : Q — R™*% to
output a set of n,, vectors of dimension d,, a neural network nn,: R"*4 — RI4l and a classifier
cq: RAI - RIAL

fq(gi) = cq(nng(eq(qi))) 3)

During training, the branch acts as a proxy preventing any VQA model of the form presented in
Equation (1) from learning biases. At the end of the training, we simply remove the branch and use
the predictions from the base VQA model.

Preventing biases by masking predictions Before passing the predictions of our base VQA model
to the loss function defined in Equation (2), we merge them with a mask of length |.4]| containing a
scalar value between 0 and 1 for each answer. This mask is obtained by passing the output of the
neural network nn, through a sigmoid function . The goal of this mask is to dynamically alter
the loss by modifying the predictions of the VQA model. To obtain the new predictions, we simply
compute an element-wise product ® between the mask and the original predictions as defined in the
following equation.

fom(vi, qi) = f(vi,q:) © o(nng(eq(q:))))) “4)

Our method modifies the predictions in this specific way to prevent the VQA model to learn biases
from the question. To better understand the impact of our approach on the learning, we examine two
scenarios. First, we reduce the importance of the most biased examples, i.e. examples that can be
correctly classified without using the image modality. To do so, the question-only branch outputs



a mask to increase the score of the correct answer while decreasing the scores of the others. As a
result, the loss is much lower for these biased examples. In other words, the gradients backpropagated
through the VQA model are smaller, thereby reducing the importance of these examples in the
learning. As illustrated in the first row of Figure 3, given the question what color is the banana,
the mask takes a high value of 0.8 for the answer yellow which is the most likely answer for this
question in the training set. On the other hand, the value for the other answers green and white are
smaller. We see that the mask influences the VQA model to produce new predictions where the score
associated with the answer yellow increases from 0.8 to 0.94. Compared to the classical learning
approach, the loss is smaller with RUBIi and decreases from 0.22 to 0.06. Secondly, we increase the
importance of examples that cannot be answered without using both modalities. For these examples,
the question-only branch outputs a mask that increases the score of the wrong answer. As a result, the
loss is much higher and the VQA model is encouraged to learn from these examples. We illustrate
this behavior in the second row of Figure 3 for the same question about the color of the banana. When
the image contains a green banana, RUBI increases the loss from 0.69 to 1.20.

Joint learning procedure We jointly optimize the parameters of the base VQA model and its
question-only branch using the gradients computed from two losses. The main loss L refers to the
cross-entropy loss associated with the predictions of fgas(v;, ¢;) from Equation 4. We backpropagate
this loss to optimize all the parameters ;s which contributed to this loss. gz is the union of the
parameters of the base VQA model, the encoders, and the neural network nn,, of the question-only
branch. In our setup, we share the parameters of the question encoder e, between the VQA model
and the question-only branch. The question-only loss Lgo is a cross-entropy loss associated with
the predictions of fg(g;) from Equation 3. We use this loss to only optimize 6go, union of the
parameters of ¢, and nn,. By doing so, we further improve the question-only branch ability to
capture biases. Note that we do not backpropagate this loss to the question encoder ¢, preventing it
from directly learning question biases. We obtain our final loss Lrygi by summing the two losses
together in the following equation:

Lrugi(0gnrr, 000; D) = Lom(Bon; P) + Loo(0go; D) )
3.2 Baseline architecture

Most VQA architectures from the state of the art are compatible with our RUBI learning strategy.
To test our strategy, we design a fast and simple architecture inspired from [16]. This baseline
architecture is detailed in the supplementary material. As common in the state of the art, our baseline
architecture encodes the image as a bag of n,, visual features v; € R% using the pretrained Faster
R-CNN by [15], and encodes the question as a vector q € R% using a GRU, pretrained on the
skipthought task [3]. The VQA model consists of a Bilinear BLOCK fusion [17] which merges the
question representation q with the features v; of each region of the image. The output is aggregated
using a max pooling on the n, regions. The resulting vector is then fed into a MLP classifier which
outputs the final predictions. While most of our experiments are done with this fast and simple
baseline architecture, we experimentally demonstrate that the RUBi learning strategy is effective on
other VQA architectures.

4 Experiments

Experimental setup We train and evaluate our models on VQA-CP v2 [10]. This dataset was
developed to evaluate the models robustness to question biases. We follow the same training and
evaluation protocol as [25], who also propose a learning strategy to reduce biases. For each model,
we report the standard VQA evaluation metric [8]. We also evaluate our models on the standard VQA
v2 [9]. Further implementation details are included in the supplementary materials, as well as results
on VQA-CP vl and grounding experiments on VQA-HAT [44].

4.1 Results

State-of-the-art comparison In Table 1, we compare our approach consisting of our baseline
architecture trained with RUBi on VQA-CP v2 against the state of the art. To be fair, we only report
approaches that use the strong visual features from [15]. We compute the average accuracy over 5
experiments with different random seeds. Our RUBI approach reaches an average overall accuracy



Table 1: State-of-the-art results on VQA-CP v2 test. All reported models use the same features
from [15]. Models with * have been trained by [25]. Models with ** have been trained by [45].

Model Overall Answer type
Yes/No Number Other
Question-Only [10] 15.95 35.09 11.63 7.11
UpDn [15] ** 38.01 . . .
RAMEN [45] 39.21
BAN [19] ** 39.31 . . .
MuRel [16] 39.54 42.85 13.17 45.04
UpDn [15] * 39.74 42.27 11.93 46.05
UpDn + Q-Adv + DoE [25] 41.17 65.49 15.48 3548
Balanced Sampling 40.38 57.99 10.07 39.23
Q-type Balanced Sampling 42.11 61.55 11.26 40.39
Baseline architecture (ours) 38.46 £0.07 42.854+0.18 12.81 020 43.20+£0.15
RUBI (ours) 47.11 £0.51 68.65+1.16 20.28 090 43.18 £0.43
Table 2: Effectiveness of the RUBI learning strategy Table 3: Overall accuracy of the
when used on different architectures on VQA-CP v2 RUBI learning strategy on VQA v2
test. Detailed results can be found in the supplemen- val and test-dev splits.
tary materials. i
Model val test-dev

SAN Overall UpDn Overall Baseline (ours) 63.10 64.75
Baseline [26] 24.96 Baseline [15] 39.74 RUBi (ours) 61.16 63.18
+ Q-Adv + DoE [25] 33.29 + Q-Adv + DoE [25] 41.17
+ RUBI (ours) 37.63 + RUBI (ours) 44.23

of 47.11% with a low standard deviation of £0.51. This accuracy corresponds to a gain of +5.94
percentage points over the current state-of-the-art UpDn + Q-Adv + DoE. It also corresponds to a
gain of +15.88 over GVQA [10], which is a specific architecture designed for VQA-CP. RUBI reaches
a +8.65 improvement over our baseline model trained with the classical cross-entropy. In comparison,
the second best approach UpDn + Q-Adv + DoE only achieves a +1.43 gain in overall accuracy over
their baseline UpDn. In addition, our approach does not significantly reduce the accuracy over our
baseline for the answer type Other, while the second best approach reduces it by 10.57 point.

Additional baselines We compare our results to two sampling-based training methods. In the
Balanced Sampling method, we sample the questions such that the answer distribution is uniform. In
the Question-Type Balanced Sampling method, we sample the questions such that for every question
type, the answer distribution is uniform, but the question type distribution remains the same overall
Both methods are tested with our baseline architecture. We can see that the Question-Type Balanced
Sampling improves the result from 38.46 in accuracy to 42.11. This gain is already +0.94 higher than
the previous state of the art method [25], but remains significantly lower than our proposed method.

Architecture agnostic RUBI can be used on existing VQA models without changing the underlying
architecture. In Table 2, we experimentally demonstrate the generality and effectiveness of our
learning scheme by showing results on two additional architectures, Stacked Attention Networks
(SAN) [26] and Bottom-Up and Top-Down Attention (UpDn) [15]. First, we show that applying
RUBI on these architectures leads to important gains over the baselines trained with their original
learning strategy. We report a gain of +11.73 accuracy point for SAN and +4.5 for UpDn. This
lower gap in accuracy may show that UpDn is less driven by biases than SAN. This is consistent
with results from [25]. Secondly, we show that these architectures trained with RUBi obtain better
accuracy than with the state-of-the-art strategy from [25]. We report a gain of +3.4 with SAN + RUBi
over SAN + Q-Adv + DoE, and +3.06 with UpDn + RUBi over UpDn + Q-Adv + DoE. Full results
splitted by question type are available in the supplementary materials.



Impact on VQA v2  We report the impact of our method on the standard VQA v2 dataset in Table 3.
VQA v2 train, val and test sets follow the same distribution, contrarily to VQA-CP v2 train and test
sets. In this context, we usually observe a drop in accuracy using approaches focused on reducing
biases. This is due to the fact that exploiting unwanted correlations from the VQA v2 train set is not
discouraged and often leads to a higher accuracy on the test set. Nevertheless, our RUBi approach
leads to a comparable drop to what can be seen in the state-of-the-art. We report a drop of 1.94
percentage points with respect to our baseline, while [10] report a drop of 3.78 between GVQA
and their SAN baseline. [25] report drops of 0.05, 0.73 and 2.95 for their three learning strategies
with the UpDn architecture which uses the same visual features as RUBi. As shown in this section,
RUBI improves the accuracy on VQA-CP v2 from a large margin, while maintaining competitive
performance on the standard VQA v2 dataset compared to similar approaches.

Validation of the masking strategy We compare different fusion techniques to combine the output
of nn, with the output from the VQA model. We report a drop of 7.09 accuracy point on VQA-CP
v2 by replacing the sigmoid with a ReLU on our best scoring model. Using an element-wise sum
instead of an element-wise product leads to a further performance drop. These results confirm the
effectiveness of our proposed masking method which relies on a sigmoid and an element-wise sum.

Validation of the question-only loss In Table 4, we validate the ability of the question-only loss
Lo to reduce the question biases. The absence of Lo implies that the question-only classifier ¢, is
never used, and nn, only receives gradients from the main loss Lgs. Using Lo leads to consistent
gains on all three architectures. We report a gain of +0.89 for our Baseline architecture, +0.22 for
SAN, +4.76 for UpDn.

Model Loo Overall Yes/No Number Other
| TN 58 53
ST
UDn+RUBL % 590 Gy o 3500

Table 4: Ablation study of the question-only loss Lgo on VQA-CP v2.

4.2 Qualitative analysis

To better understand the impact of our RUBI approach, we compare in Figure 4 the answer distribution
on VQA-CP v2 for some specific question patterns. We also display interesting behaviors on some
examples using attention maps extracted as in [16]. In the first row, we show the ability of RUBI to
reduce biases for the is this person skiing question pattern. Most examples in the train set have the
answer yes, while in the test set, they have the answer no. Nevertheless, RUBi outputs 80% of rno,
while the baseline almost always outputs yes. Interestingly, the best scoring region from the attention
map of both models is localized on the shoes. To get the answer right, RUBi seems to reason about
the absence of skis in this region. It seems that our baseline gets it wrong by not seeing that the skis
are not locked under the ski boots. This unwanted behavior could be due to the question biases. In
the second row, similar behaviors occur for the what color are the bananas question pattern. 80% of
the answers from the train set are yellow, while most of them are green in the test set. We show that
the amount of green and white answers from RUBI are much closer to the ones from the test set than
with our baseline. In the example, it seems that RUBI relies on the color of the banana, while our
baseline misses it. In the third row, it seems that RUBI is able to ground the textual concepts such
as top part of the fire hydrant and color on the right visual region, while the baseline relies on the
correlations between the fire hydrant, the yellow color of its core and the answer yellow. Similarly on
the fourth row, RUBI grounds color, star, fire hydrant on the right region, while our baseline relies
on correlations between color, fire hydrant, the yellow color of the top part region and the answer
yellow. Interestingly, there is no similar question that involves the color of a star on a fire hydrant in
the training set. It shows the capacity of RUBI to generalize to unseen examples by composing and
grounding existing visual and textual concepts from other kinds of question patterns.
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Figure 4: Qualitative comparison between the outputs of RUBIi and our baseline on VQA-CP v2
test. On the left, we display distributions of answers for the train set, the baseline evaluated on the
test set, RUBIi on the test set and the ground truth answers from the test set. For each row, we filter
questions in a certain way. In the first row, we keep the questions that exactly match the string is
this person skiing. In the three other rows, we filter questions that respectively include the following
words: what color bananas, what color fire hydrant and what color star hydrant. On the right, we
display examples that contains the pattern from the left. For each example, we display the answer of
our baseline and RUBI, as well as the best scoring region from their attention map.

5 Conclusion

We propose RUBI to reduce unimodal biases learned by Visual Question Answering (VQA) models.
RUBI is a simple learning strategy designed to be model agnostic. It is based on a question-only
branch that captures unwanted statistical regularities from the question modality. This branch
influences the base VQA model to prevent the learning of unimodal biases from the question. We
demonstrate a significant gain of +5.94 percentage point in accuracy over the state-of-the-art result
on VQA-CP v2, a dataset specifically designed to account for question biases. We also show that
RUBI is effective with different kinds of common VQA models. In future works, we would like to
extend our approach on other multimodal tasks.
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