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Abstract
Neural sequence-to-sequence models are a re-
cently proposed family of approaches used
in abstractive summarization of text docu-
ments, useful for producing condensed ver-
sions of source text narratives without being
restricted to using only words from the orig-
inal text. Despite the advances in abstractive
summarization, custom generation of sum-
maries (e.g. towards a user’s preference) re-
mains unexplored. In this paper, we present
CATS, an abstractive neural summarization
model, that summarizes content in a sequence-
to-sequence fashion but also introduces a new
mechanism to control the underlying latent
topic distribution of the produced summaries.
Our experimental results on the well-known
CNN/DailyMail dataset show that our model
achieves state-of-the-art performance.

1 Introduction

Automatic document summarization is defined as
producing a shorter, yet semantically highly re-
lated, version of a source document. Solutions
to this task are typically classified into two cate-
gories: Extractive summarization and abstractive
summarization.

Extractive summarization refers to methods that
select sentences of a source text based on a scor-
ing scheme, and eventually combine those exact
sentences in order to produce a summary. Con-
versely, abstractive summarization aims at produc-
ing shortened versions of a source document by
generating sentences that do not necessarily ap-
pear in the original text. Recent advances in neural
sequence-to-sequence modeling have sparked in-
terest in abstractive summarization due to its flex-
ibility and broad range of applications.

The majority of research on text summarization
thus far has been focused on extractive summa-
rization (Nallapati et al., 2017), due its simplicity
compared to abstractive methods.

Beyond providing a generic summary of a
longer passage of text, a system which would
allow selective summarization based on a user’s
preference of topic would be of great value in an
array of domains. For example, in the field of in-
formation retrieval, it could be used to summarize
the results of a user search based on the content of
the query.

Summarization is also extensively used in other
domains such as concisely describing the gist of
news articles and stories (Tombros and Sanderson,
1998; See et al., 2017), supporting the minute-
taking process (Shang et al., 2018) in corporate
meetings and in the electronic health record do-
main (Galkó and Eickhoff, 2018), to name a few.

In this paper, we introduce CATS, a customiz-
able abstractive topic-based sequence-to-sequence
summarization model, which is not only capa-
ble of summarizing text documents with an im-
proved performance as compared to the state of
the art, but also allows to selectively focus on a
range of desired topics of interest when generating
summaries. Our experiments corroborate that our
model can selectively add or remove certain topics
from the summary. Furthermore, our experimental
results on a publicly available dataset indicate that
the proposed neural sequence-to-sequence model
can effectively outperform state-of-the-art base-
lines in terms of ROUGE.

The main contributions of this paper are:
(1) We introduce a novel neural sequence-to-
sequence model based on an encoder-decoder
architecture that outperforms the state-of-the-art
baselines in the task of abstractive summarization
on a benchmark dataset.
(2) We show how the attention mechanism (Bah-
danau et al., 2014) may be used for simultaneously
identifying important topics as well as recognizing
those parts of the encoder output that are vital to
be focused on.
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The remainder of this paper is organized is as fol-
lows: Section 2 discusses related work on abstrac-
tive neural summarization. In Section 3, we in-
troduce the CATS summarization model. In Sec-
tion 4, we discuss our experimental setup and re-
sults comparing CATS to a broad range of com-
petitive state-of-the-art baselines. Finally, in Sec-
tion 5, we conclude this paper and present future
directions of inquiry.

2 Related Work

Recent work approaches abstractive summariza-
tion as a sequence-to-sequence problem. One
of the early deep learning architectures that was
shown to be effective in the task of abstractive
summarization was the Attention-based Encoder-
Decoder (Nallapati et al., 2016) proposed by Bah-
danau et al. (Bahdanau et al., 2014). This model
had originally been designed for machine transla-
tion problems, where it defined the state of the art.

Attention mechanisms are shown to enhance
the basic encoder-decoder model (Bahdanau et al.,
2014). The main bottleneck of the basic encoder-
decoder architecture is its fixed-sized representa-
tion (”thought vector”), which is unable to capture
all the relevant information of the input sequence
as the model or input scaled up. However, the at-
tention mechanism relies on the notion that at each
generation step, only parts of the input are rele-
vant. In this paper, we build on the same notion to
force our proposed model to attend to parts of the
input which together represent a semantic topic.

Based on the Attention-based encoder-decoder
architecture, several models were introduced. The
Pointer Generator Network (PGN) (Vinyals et al.,
2015) was applied by See et al. (See et al., 2017)
to the task of abstractive summarization. This
model aims at solving the challenge of out-of-
vocabulary words and factual errors. The main
idea behind this model is to choose between ei-
ther generating a word from the fixed vocabu-
lary or copying one from the source document at
each step of the generation process. It incorpo-
rates the power of extractive methods by “point-
ing” (Vinyals et al., 2015). At each step, a gen-
eration probability is computed, which is used as
a switch to choose words from the target vocab-
ulary or the source document. Our model dif-
fers from the PGN firstly in the use of a differ-
ent attention mechanism which forces the model
to focus on certain topics when generating an out-

put summary. Secondly, our model enables the
selective inclusion or exclusion of certain topics
in a generated summary, which can have several
potential applications. This is done by incor-
porating information from an unsupervised topic
model. By definition, topic models are hierarchi-
cal Bayesian models of discrete data, where each
topic is a set of words, drawn from a fixed vocab-
ulary, which together represent a high-level con-
cept (Wang et al., 2008). According to this defi-
nition, Blei et al. introduced the Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) topic model.
We further elaborate on the connection between
this and our model in Section 3.

The work of (Paulus et al., 2017) is another
approach which utilizes reinforcement learning to
optimize ROUGE L, such that sub-sequences sim-
ilar to a reference summary are generated. Similar
to (See et al., 2017) they also use the pointer gen-
erator mechanism to switch between generating a
token or extracting it from the source.

(Gehrmann et al., 2018) propose using a con-
tent selector to select phrases in a source docu-
ment that should be part of a generated summary.
Likewise, (Li et al., 2018) introduce an informa-
tion selection layer to explicitly model the infor-
mation selection process in abstractive document
summarization. They perform information filter-
ing and local sentence selection in order to gener-
ate summaries. The two latter approaches report
best performances on the CNN/DailyMail bench-
mark. Our proposed model relies on information
selection in the form of topics.

Existing neural models do not directly take ad-
vantage of the latent topic structure underlying in-
put texts. To the best of our knowledge, this paper
is the first work to include this source of informa-
tion explicitly in a neural abstractive summariza-
tion model. The experimental section will demon-
strate the merit of this approach empirically.

3 Proposed Model: CATS

3.1 Model Overview

Our abstractive summarization scheme CATS is a
neural sequence-to-sequence model based on the
attention encoder-decoder architecture (Nallapati
et al., 2016). Additionally, we incorporate the con-
cept of pointer networks (Vinyals et al., 2015) into
our model, which enables copying words from the
encoder output while also being able to generate
words from a fixed vocabulary. Furthermore, we
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Figure 1: The architecture of our proposed model

introduce a novel attention mechanism controlled
by an unsupervised topic model. This ameliorates
attention by way of focusing not only on those
words which it learns as important for producing
a summary (as in the standard attention mecha-
nism), but also by learning the topically impor-
tant words in a certain context. We refer to this
novel mechanism as topical attention. Over the
encoder-decoder training steps, the model param-
eters adapt in a way to learn the topics of each doc-
ument. During testing, when the model decoder
generates summaries of test documents, it there-
fore no longer requires the input information from
the topic model, as it learns a generalized pattern
of the word weights under each topic.

We depict our model in Figure 1. In the fol-
lowing we describe the various components of our
model.

3.2 Encoder & Decoder

The tokens of a document (i.e. extracted by a doc-
ument tokenizer) are given one-by-one as input to
the encoder layer. Our encoder is a single-layer
Bi-directional Long Short Term Memory (BiL-
STM) network (Graves and Schmidhuber, 2005).
The network outputs a sequence of encoder hidden
states hi, each state being a concatenation of for-
ward and backward hidden states, as in (Bahdanau
et al., 2014).

At each decoding time step t, the decoder re-
ceives as input xt the word embedding of the pre-
vious word (while training, this is the previous
word of the reference summary and at test time it
is the previous word output by the decoder) and
computes a decoder state st. Our decoder is a
single-layer Long Short Term Memory (LSTM)

network (Greff et al., 2017).

3.3 Topical Attention
We propose the topical attention distribution at to
be calculated as a combination of the usual atten-
tion weights as in (Bahdanau et al., 2014) and a
”topical word vector” derived from a topic model.
We use LDA (Blei et al., 2003) as the topic model
of choice. Besides the experimentally shown ro-
bust performance (Blei et al., 2003), an important
reason for selecting LDA over other topic models
is that words under this model are always assigned
probabilities between 0 and 1 and the sum of the
probability scores of all words in each topic is 1.
This facilitates the fusion of these scores with at-
tention weights, which are then fed to a softmax
function without the need for additional normal-
ization steps.

In order to compute the topical attention
weights, after training an LDA model using the
training data, we map the target summary corre-
sponding to each document to its LDA space. This
gives us the strength of each topic in each target
summary. Furthermore, since for each topic we
also have the probability scores of each word in
a fixed vocabulary V , for a given document d we
could calculate a topical word vector τd of dimen-
sion |V| considering all the words in that docu-
ment, such that:

τd =
∑
i

P (topici|d) · w̃i (1)

where P (topici|d) is the probability of each LDA
topic being present in the target summary, and
w̃i is the |V|-dimensional vector of probabilities
w̃j = P (wordj |topici) of all words in vocabulary
V under topici.

Then, for an input sequence of length K, we
compute the final attention vector at ∈ RK at de-
coding step t as:

etk = vT tanh(Whhk +Wsst + battn) (2)

at = f(et, τd) (3)

where et ∈ RK is a precursor attention vector,
hk ∈ Rn represents the k-th encoder hidden state
and st ∈ Rl the decoder state at decoding step
t, while v ∈ Rm, Wh ∈ Rm×n, Ws ∈ Rm×l,
battn ∈ Rm are learnable parameters. Function f
combines the topical word vector with the precur-
sor attention vector. In order to combine the two,
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we define f as the following distribution over the
input sequence:

at =
softmax(et) + softmax(τ̃d)

2
(4)

where τ̃d ∈ RK denotes the ”reduced” topical
word vector which is formed by selecting the K
components of τd ∈ R|V| corresponding to the K
words of the input sequence.

The attention distribution can be viewed as a
probability distribution over the words from the
source document, which tells the decoder where
to look to produce the next word. Subsequently,
the attention distribution is used to produce a
weighted sum of the encoder hidden states, known
as the context vector h∗t ∈ Rn, as follows:

h∗t =
∑
k

atk · hk (5)

The context vector, which is a fixed-sized repre-
sentation of what has been read by the encoder at
this step, is concatenated with the decoder state st
and the result is linearly transformed and passed
through a softmax function to produce the final
output distribution PV(w) over all words w in vo-
cabulary V:

PV = softmax(V [st, h
∗
t ] + b) (6)

where V ∈ R|V|×(n+l) and b ∈ R|V| are learnable
parameters.

3.4 Pointer Generator

We utilize the concept of pointer generators in our
model, in order to give our model the flexibility
of choosing between generating a word from a
fixed vocabulary or copying it directly from source
when needed.

We define pg as a generation probability such
that pg ∈ [0, 1]. We calculate pg for time step t
from the context vector h∗t , the decoder state st
and the decoder input xt as:

pg = σ(wT
h∗h∗t + wT

s st + wT
x xt + bpt) (7)

where vectors wh∗ , ws, wx, and scalar value bpt
are learnable parameters and σ is a sigmoid func-
tion.

Subsequently, pg is used to linearly interpolate
between copying a word from the source (specifi-
cally, to copy from the source document we sam-
ple over the input words using the attention distri-
bution) and generating it from the fixed vocabulary
using PV .

For each document, we define the union of the
fixed vocabulary V and all words appearing in the
source document as the ”extended vocabulary”.
Using the linear interpolation described above, the
probability distribution over the extended vocabu-
lary is:

P (w) = pgPV(w) + (1− pg)
∑

∀i:wi=w

ati (8)

In Equation 8, we note that if a word w would
be out-of-vocabulary, then PV(w) would be equal
to zero. Analogously, if w does not appear in
the source document, then

∑
∀i:wi=w a

t
i would be

equal to zero. In expectation, the most likely
words under this new distribution are the ones that
both receive a high likelihood under the output dis-
tribution of the decoder, as well as much attention
by the attention module. Words with a high like-
lihood under the initial output distribution, which
however receive little to no attention, will be gen-
erated with a reduced probability, while words re-
ceiving much attention, even if they receive a low
likelihood by the decoder or do not even exist in
the vocabulary V , will be generated with an in-
creased probability.

Therefore, by being able to switch between out-
of-vocabulary words and the words from the vo-
cabulary, the pointer generator model mitigates the
problem of factual errors or the lack of sufficient
vocabulary in the output summary.

3.5 Coverage Mechanism

The coverage mechanism (Tu et al., 2016) is a
method for keeping track of the level of atten-
tion given to each word at all time steps. In other
words, by summing the attention at all previous
steps, the model keeps track of how much cover-
age each encoding has already received.

This mechanism alleviates the repetition prob-
lem, which is a very common issue in recurrent
neural networks with attention.

We follow (Xu et al., 2015) and define the cov-
erage vector ct ∈ RK simply as the sum of atten-
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tion vectors at all previous decoding steps:

ct =
t−1∑
i=0

ai (9)

First, the coverage vector is taken into account
when calculating the attention vector by adding an
extra term and modifying Equation 2 as follows:

etk = vT tanh(Whhk +Wsst + ctk · wc + battn)
(10)

where wc ∈ Rm is a learnable parameter vector of
the same length as v.

Second, following (See et al., 2017), we use
the coverage vector to introduce an additional loss
term, which is added to the original negative log-
likelihood loss after being weighted by hyperpa-
rameter λ, to produce the following total loss at
decoding step t :

Lt = − logP (wt) + λ
k∑

i=0

min(ati, c
t
i) (11)

This additional loss term encourages the atten-
tion module to redistribute attention weights by
placing low weights to input words which have
already received much attention throughout pre-
vious decoding steps. The overall loss for the en-
tire output sequence of length T is the average loss
over all T decoding steps.

3.6 Decoding
In order to generate the output summaries we use
beam search. During evaluation of the model us-
ing the test data, contrary to training, we do not
provide the model with any topical information
from our trained LDA topic model. We believe
that during training, the model parameters learn
to best take advantage of the provided topical at-
tention distribution, implicitly learning patterns of
topic-words weights.

4 Evaluation

4.1 Dataset
We use the CNN/DailyMail dataset (Hermann
et al., 2015; Nallapati et al., 2016), which con-
tains news articles from the CNN and Daily Mail
websites. The experiments reported in this paper
are based on the non-anonymized version of the
dataset, containing 287,226 pairs of training arti-
cles and reference summaries, 13,368 validation

pairs, and 11,490 test pairs. On average, each doc-
ument in the dataset contains 781 tokens paired
with multi-sentence summaries (56 tokens spread
over 3.75 sentences).

Similar to (Nallapati et al., 2016; See et al.,
2017), we use a range of pre-processing scripts
to prepare the data. This includes the use of the
Stanford CoreNLP tokenizer to break down docu-
ments into tokens. For greater transparency and
reproducibility of our results, we make all pre-
processing scripts available together with our code
base.

4.2 Baseline Models
We empirically compare CATS with several ab-
stractive baselines as follows:
• Attention-based encoder-decoder (Nallapati

et al., 2016).
• PGN and PGN+Coverage (See et al., 2017).
• RL with Intra-Attention (Paulus et al., 2017).
• BottomUpSum (Gehrmann et al., 2018).
• InformationSelection (Li et al., 2018).
• ML+RL ROUGE+Novel, with LM (Kryscinski

et al., 2018).
• UnifiedAbsExt (Hsu et al., 2018).
• RNN-EXT + ABS + RL + Rerank (Chen and

Bansal, 2018).

4.3 Evaluation Metrics
We evaluate our proposed model against the
baseline methods in terms of F1ROUGE 1,
F1ROUGE 2, and F1ROUGE L scores us-
ing the official Perl-based implementation of
ROUGE (Lin, 2004), following common practice.

4.4 Experimental Results
We specify our model parameters as follows: the
hidden state dimension of RNNs is set to 256, the
embedding dimension of the word embeddings is
set to 128, and the mini-batch size is set to 16. Fur-
thermore, the maximum number of encoder steps
is set to 400 and the maximum number of decoder
steps is set to 100. In decoding mode (i.e. gener-
ating summaries on the test data) the beam search
size is 4 and the minimum decoder size which de-
termines the minimum length of a generated sum-
mary is set to 35. Finally, the size of the vocabu-
lary that the models use is set to 50,000 tokens.

To train a topic model we run LDA over the
training data. LDA returns M lists of keywords
representing the latent topics discussed in the col-
lection. Since the actual number of underlying
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topics (M ) is an unknown variable in the LDA
model, it is important to estimate it. For this
purpose, similar to the method proposed in (Grif-
fiths and Steyvers, 2004; Bahrainian and Crestani,
2018), we went through a model selection process.
It involves keeping the LDA parameters (com-
monly known as α and η) fixed, while assigning
several values to M and running the LDA model
for each value. We picked the model that min-
imizes logP (W |M), where W contains all the
words in the vocabulary. This process is repeated
until we have an optimal number of topics. The
training of each LDA model takes nearly a day, so
we could only repeat it for a limited number of M
values. In particular, we trained the LDA model
with values M ranging from 50 up to 500 with
an increment of 50, and the optimal value on the
CNN/Dailymail dataset was found to be 100.

Based on the setup described above, in the fol-
lowing present our experiments for evaluating our
model.

4.4.1 Experiment comparing all models in
terms of ROUGE

We first compare our proposed models against all
baselines in terms of the F1 ROUGE metrics pre-
sented in Section 4.3. The results of this compari-
son are given in Table 1.

As we observe in Table 1, our model with cov-
erage outperforms all other models in terms of
ROUGE 1. In order to verify the significance of
the difference we conduct a statistical significance
test based on the bootstrap re-sampling technique
using the official ROUGE package (Lin, 2004). In
the case of ROUGE 2 we achieve state-of-the-art
performance in a tie with the ’BottomUpSum’ ap-
proach of (Gehrmann et al., 2018). In the case of
ROUGE L, (Paulus et al., 2017) reports the highest
performance; however, this is due to their model
loss function optimizing directly on the evalua-
tion metric ROUGE L instead of the summariza-
tion loss. In fact, (Hsu et al., 2018) reports an ex-
periment that shows summaries generated by the
(Paulus et al., 2017) method achieve poorest read-
ability scores as compared with a number of mod-
els including PGN and their own UnifiedAbsExt
model, a finding which we also confirmed by com-
paring them with the output of our model (see Sec-
tion 4.4.2). We note that we did not include the
method of (Celikyilmaz et al., 2018) in our com-
parison, due to the fact that unlike most papers that
use preprocessing scripts of (See et al., 2017) for

the non-anonymized version of the dataset, they
use different scripts. The effect of this difference
on their LEAD-3 baseline remains unclear as they
do not report it. Thus, their results may not be
necessarily comparable with ours.

4.4.2 Human Evaluation of Summaries
We conduct a human evaluation in order to
assess the quality of summaries produced by
CATS+coverage in comparison with that of
PGN+coverage (See et al., 2017) and summaries
of RL with Intra-Attention (Paulus et al., 2017)
provided by them, in terms of informativeness and
readability of 50 randomly chosen summaries by
the three models. By comparing the output pro-
duced by the three models, the three human asses-
sors1 assigned scores ranging from 1 to 5 to each
summary, while blinded to the identity of the mod-
els. The average overall scores of each model are
shown in Table 2.

Table 2: Human evaluation comparing quality of sum-
maries on a 1-5 scale using three evaluator.

Readability Informativeness
CATS 4.1 3.9
PGN 3.5 3.3

RL+Intra-Attention 2.6 2.9

We observe that the summaries generated by our
model are judged to be more readable and more
informative.

4.4.3 Human Evaluation of Customizing
Summaries

In this section, we report a human evaluation of
CATS’s capability to include only certain topics
in a summary and exclude others. As mentioned
earlier, CATS is the first neural abstractive sum-
marization model that allows its users to selec-
tively include or exclude latent topics from their
output summaries. In order to demonstrate this
feature, we remove a few topics from the output
of the topic model, fine-tune the trained summa-
rization model for a few additional training steps
and analyze the effect. Our expectation is that the
focus of certain output summaries which should
usually contain those topics will change, while
naturally the ROUGE values will decrease. For
this experiment, we chose two topics and removed
them from the summaries one at a time. The first
topic is related to health-care and its top five key-
words are ”dr”, ”medical”, ”patients”, ”health”,

1None of the assessors are affiliated with this paper.
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Table 1: Results of a comparison between our proposed models against the baselines in terms of F1 ROUGE
metrics on the CNN/Dailymail dataset. Statistical significance test was done with a confidence of 95%. ’*’ means
that results are based on the anonymized version of the dataset and not strictly comparable to our results.

Models ROUGE 1 (%) ROUGE 2 (%) ROUGE L (%)
CATS (Ours) 38.01 16.35 34.87
CATS+coverage (Ours) 41.73 18.64 38.17
LEAD-3 Baseline 40.34 17.70 36.57
Attn. Enc-Dec (Nallapati et al., 2016) 35.46 13.30 32.65
PGN (See et al., 2017) 36.44 15.66 33.42
PGN+coverage (See et al., 2017) 39.53 17.28 36.38
RL with Intra-Attention (Paulus et al., 2017) ’*’ 41.16 15.75 39.08
BottomUpSum (Gehrmann et al., 2018) 41.22 18.68 38.34
InformationSelection (Li et al., 2018) 41.54 18.18 36.47
ML+RL ROUGE+Novel, with LM (Kryscinski et al., 2018) 40.19 17.38 37.52
UnifiedAbsExt (Hsu et al., 2018) 40.68 17.97 37.13
RNN-EXT + ABS + RL + Rerank (Chen and Bansal, 2018) 40.88 17.80 38.54

and ”care”. The second topic is related to po-
lice arrests and charges with its top five words
being ”charges”, ”court”, ”arrested”, ”allegedly”,
and ”jailed”. We randomly selected a total of 50
test documents that originally contained either of
the above-mentioned topics. In order to do so we
used the LDA model described in the beginning
of Section 4.4. Using the LDA rankings of topics
of source documents, we randomly chose 50 that
contained either-mentioned topics and those topics
were not their sole or primary focus but in the sec-
ond rank. Three human judges evaluated whether
the summaries generated by CATS with restricted
topics showed exclusion or reduction of those top-
ics or there was no major difference. They were
instructed to look for existence of the top 20 words
of each topic in particular, except for cases that
one of these words is a part of a name (e.g. Amer-
ican Health Center). For each document, we take
the majority vote of the human assessors as the fi-
nal decision. The results of this experiment show
that in 44 documents the topics were excluded, in
four documents the topics were reduced and in two
documents the majority vote showed no major dif-
ference.

Table 3 shows an example summary produced
by CATS that was restricted not to include the
health-care topic, next to a summary produced by
CATS with no topic restriction as well as the cor-
responding reference summary. We observe that
the focus of the summary is altered such that it
focuses on the crime-related aspects rather than
health-care in order to avoid using words such as
”hospital”, ”patients” and ”medicine”.

4.4.4 Analysis of Repetition in Output
Summaries

In this experiment we analyze the quality of the
output summaries produced by our models and
those produced by PGN and PGN+coverage in
terms of repetition of text. A common issue with
attention-based encoder-decoder architectures is
the tendency to repeat an already generated se-
quence. In text summarization this results in sum-
maries containing repeated sentences or phrases.
As described in Section 2, the coverage mecha-
nism is used to reduce this undesirable effect.

Here we compare our two models, CATS and
CATS+coverage, to PGN and PGN+coverage in
terms of n-grams repetition with n ranging from
1 to 6. For this purpose we train all four models
with exact same parameters whenever applicable.
The upshot of this experiment is reported in Figure
2. The scores reported in the figure are normalized
average repetition scores over all output summary
documents in the test set of the CNN/Dailymail
dataset. We compute the scores by calculating the
average of per-document n-gram repetition score
Srep,doc over all test output documents, which is
defined as Srep,doc =

#duplicate n−grams
#all n−grams .

We observe that our models demonstrate lower
repetition of text in their output summaries com-
pared with both PGN and PGN+coverage, which
is confirmed by manual inspection of the output.
This trend is consistent on all the tested n-grams.

We believe that the reason behind this phe-
nomenon is that our model tends to focus not only
on the few words in the input sequence which are
assigned high attention weights, but also on other
words which are topically connected with these
words in a certain context. Firstly, this acts as an
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Table 3: Comparison of a CATS generated summary next to a summary with restricted topics and the human-
written reference summary2.

CATS restricted with health-care topic CATS Reference
victorino chua , 49 , denies murder-
ing tracey arden , 44 , arnold lancaster
, 71 and derek weaver , 83 , and de-
liberately poisoning 18 others between
2011 and 2012 . chua has pleaded not
guilty to 36 charges in all , includ-
ing three alleged murders , one count
of grievous bodily harm with intent ,
23 counts of attempted grievous bod-
ily harm with intent , eight counts of
attempting to cause a poison to be ad-
ministered and one count of adminis-
tering a poison .

victorino chua , 49 , has given evidence
for the first time and denied he tam-
pered with saline bags and ampoules
at stepping hill hospital in stockport . a
nurse today told a jury he did not mur-
der three hospital patients and poison
almost 20 more at stepping hill hospi-
tal in stockport in order to kill and in-
jure people he was caring for . chua
denies murdering patients tracey arden
, 44 , arnold lancaster , 71 and derek
weaver , 83 , and deliberately poison-
ing 18 others between 2011 and 2012
.

victorino chua , 49 , denies murdering
patients at stockport hospital in 2011 .
filipino nurse also accused of poison-
ing 18 more at stepping hill hospital .
denies injecting insulin and other poi-
sons into bags of medicine on ward .

0
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0.45
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Comparison   of  n-­‐grams  Repetition

PGN PGN+coverage CATS CATS+coverage

Figure 2: Experiment comparing the degree of n-grams
repetition in our models versus that of the PGN and
PGN+coverage baselines on the CNN/Dailymail test
set. Lower numbers show less repetition in the gen-
erated summaries.

attention diversification and redistribution mech-
anism (an effect similar to coverage). Secondly,
these topically connected words receive a higher
generation probability (through Equations 6 and
8) and the model is more inclined to paraphrase
the input.

The result of this experiment indicates that our
topical attention mechanism may be a viable solu-
tion to the repetition issue in sequence generation
based on encoder-decoder architectures.

5 Conclusions and Future Work

In this paper we present CATS, an abstractive sum-
marization model that makes use of latent topic
information in a source document, and is thereby
capable of controlling the topics appearing in an
output summary of a source document. This can
enable customization of generated texts based on
user profiles or explicitly given topics, in order
to present content tailored to a user’s information

needs.
Our experimental results show that our

CATS+coverage model achieves state-of-the-art
performance in terms of standard evaluation
metrics for summarization (i.e ROUGE) on an
important benchmark dataset, while enabling
customization in producing summaries.

CATS can serve as a foundation for future work
in the domain of automatic summarization. Based
on the results of this paper, we believe the fu-
ture work on summarization systems to be excit-
ing, in that a generated summary could be cus-
tomized to users’ needs. We envision three ways
of controlling the focus of output summaries us-
ing our models: First, as demonstrated in the ex-
periment in Section 4.4.3, certain topics could be
disabled in the output of the topic model and be
consequently discarded from output summaries.
Second, a reference document could be provided
to the topic model, its topics could be extracted
and subsequently direct the focus of generated
summaries. This is useful when a user wants to
see summaries/updates primarily or only regard-
ing issues discussed in an existing reference doc-
ument. Third, content extracted from user profiles
(e.g. history of web pages of interest) could be pro-
vided to the topic model, their salient themes ex-
tracted by the model and then taken into account
whenever presenting users with summaries. All
three directions are interesting future works of this
paper.
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