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Abstract

Dimensionality reduction plays a central role in real world applications for Machine
Learning, among many fields. In particular, metric dimensionality reduction, where
data from a general metric is mapped into low dimensional space, is often used
as a first step before applying machine learning algorithms. In almost all these
applications the quality of the embedding is measured by various average case
criteria. Metric dimensionality reduction has also been studied in Math and TCS,
within the extremely fruitful and influential field of metric embedding. Yet, the
vast majority of theoretical research has been devoted to analyzing the worst case
behavior of embeddings, and therefore has little relevance to practical settings. The
goal of this paper is to bridge the gap between theory and practice view-points of
metric dimensionality reduction, laying the foundation for a theoretical study of
more practically oriented analysis.
This paper can be viewed as providing a comprehensive theoretical framework for
analyzing different distortion measurement criteria, with the lens of practical appli-
cability, and in particular for Machine Learning. The need for this line of research
was recently raised by Chennuru Vankadara and von Luxburg in (13)[NeurIPS’ 18],
who emphasized the importance of pursuing it from both theoretical and practical
perspectives.
We consider some important and vastly used average case criteria, some of which
originated within the well-known Multi-Dimensional Scaling framework. While
often studied in practice, no theoretical studies have thus far attempted at providing
rigorous analysis of these criteria. In this paper we provide the first analysis of these,
as well as the new distortion measure developed in (13) designed to posses Machine
Learning desired properties. Moreover, we show that all measures considered can
be adapted to posses similar qualities. The main consequences of our work are
nearly tight bounds on the absolute values of all distortion criteria, as well as first
approximation algorithms with provable guarantees.
All our theoretical results are backed by empirical experiments.

∗Author names are ordered alphabetically.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



1 Introduction

Metric Embedding plays an important role in a vast range of application areas such as machine
learning, computer vision, computational biology, networking, statistics, data mining, neuroscience
and mathematical psychology, to name a few. Perhaps the most significant is the application of metric
dimensionality reduction for large data sets, where the data is represented by points in a metric space.
It is desirable to efficiently embed the data into low dimensional space which would allow compact
representation, efficient use of resources, efficient access and interpretation, and enable operations to
be carried out significantly faster.

In machine learning, this task is often used as a preliminary step before applying various machine
learning algorithms, and sometimes refered to as unsupervised metric dimensionality reduction. Some
studies of dimensionality reduction within ML include (10; 11; 13; 42; 49). Moreover, there are
numerous practical studies of metric embedding and dimensioanlity reduction appearing in a plethora
of papers ranging in a wide scope of research areas including work on Internet coordinate systems,
feature extraction, similarity search, visual recognition, and computational biology applications; the
papers (25; 41; 24; 5; 21; 17; 45; 48; 51; 52; 44; 32; 12; 11; 47) are just a small sample.

In nearly all practical applications of metric embedding and dimensionality reduction methods, the
fundamental criterion for measuring the quality of the embedding is its average performance over all
pairs, where the measure of quality per pair is often the distortion, the square distortion and similar
related notions. Such experimental results often indicate that the quality of metric embeddings and
dimensionality reduction techniques behave very well in practice.

In contrast, the classic theory of metric embedding has mostly failed to address this phenomenon.
Developed over the past few decades by both mathematicians and theoretical computer scientists
(see (26; 34; 27) for surveys), it has been extremely fruitful in analyzing the worst case distortion of
embeddings. However, worst case analysis results often exhibit extremely high lower bounds. Indeed,
in most cases, the worst case bounds are growing, in terms of both distortion and dimension, as a
function of the size of the space. Such bounds are often irrelevant in practical terms.

These concerns were recently raised in the context of Machine Learning in (13) (NeurIPS’18),
stressing the desire for embeddings into constant dimension with constant distortion. The authors of
(13) state the necessity for a systematic study of different average distortion measures. Their main
motivation is to examine the relevance of these measures for machine learning applications. Here, the
first step is made to tackle this challenge.

The goal of this paper is to bridge between theory and practice outlook on metric embedding and
dimensionality reduction. In particular, providing the first comprehensive rigorous analysis of
the most basic practically oriented average case quality measurement criteria, using methods and
techniques developed within the classic theory of metric embedding, thereby providing new insights
for both theory and practice.

We focus on some of the most basic and commonly used average distortion measurement criteria:

Moments analysis: moments of distortion and Relative Error. The most basic average case
performance criterion is the average distortion. More generally, one could study all q-moments of
the distortion for every 1 ≤ q ≤ ∞. This notion was first studied in (1). For a non-contractive
embedding f , whose distortion for a pair of points u, v is denoted distf (u, v):

Definition 1 (`q-distortion). Let (X, dX) and (Y, dY ) be any metric spaces, and f : X → Y be an
embedding. For any distribution Π over

(
X
2

)
and q ≥ 1, the `q-distortion of f with respect to Π is

defined by: `q-dist
(Π)(f) = (EΠ [(distf (u, v))

q
])

1
q , `∞-dist (Π)(f) = supΠ(u,v)6=0 {distf (u, v)}.

The most natural case is where Π is the uniform distribution (and will be omitted from the notation). In
order for this definition to extend to handle embeddings in their full generality and address important
applications such as dimensionality reduction, it turns out that one should remove the assumption
that the embedding is non-contractive.

We therefore naturally extend the above definition to deal with arbitrary embeddings by let-
ting distf (u, v) = max {expansf (u, v), contrf (u, v)}, where expansf (u, v) = dY (f(u),f(v))

dX(u,v) ,
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contrf (u, v) = dX(u,v)
dY (f(u),f(v)) . In the full version (in supplementary materials) we provide justifica-

tion of the necessity of this definition. Observe that this definition is not scale invariant2.

In many practical cases, where we may expect a near isometry for most pairs, the moments of
distortion may not be sensitive enough and more delicate measures of quality, which examine directly
the pairwise additive error, may be desired. The relative error measure (REM), commonly used
in network applications (45; 44; 15) is the most natural choice. It turns out that this measure can
be viewed as the moment of distortion about 1. This gives rise to the following generalization of
Definition 1:

Definition 2 (`q-distortion about c, REM). For c ≥ 0, the `q-distortion of f about c is given by:

`q-dist
(Π)
(c) (f) = (EΠ [|distf (u, v)− c|q])

1
q , REM (Π)

q (f) = `q-dist
(Π)
(1) (f).

Additive distortion measures: Stress and Energy. Multi Dimensional Scaling (see (16; 8)) is a
well-established methodology aiming at embedding a metric representing the relations between
objects into (usually Euclidean) low-dimensional space, to allow feature extraction often used for
indexing, clustering, nearest neighbor searching and visualization in many application areas, including
machine learning (42). Several average additive error criteria for the embedding’s quality have been
suggested in the context of MDS over the years. Perhaps the most popular is the stress measure going
back to (30). For duv = dX(u, v) and d̂uv = dY (f(u), f(v)), for normalized nonnegative weights
Π(u, v) (or distribution) we define the following natural generalizations, which include the classic
Kruskal stress Stress∗2(f) and normalized stress Stress2(f) measures, as well as other common

variants in the literature (e.g. (23; 46; 20; 9; 50; 11)): Stress(Π)
q (f) =

(
EΠ[|d̂uv−duv|q]
EΠ[(duv)q ]

)1/q

, and

Stress∗(Π)
q (f) =

(
EΠ[|d̂uv−duv|q ]

EΠ[(d̂uv)q ]

)1/q

. Another popular and widely used additive error measure is
energy and its special case, Sammon cost (see e.g. (43; 7; 14; 36; 37; 12)). We define the following
generalizations, which include some common variants (e.g. (41; 45; 44; 33)): Energy(Π)

q (f) =(
EΠ

[(
|d̂uv−duv|

duv

)q])1/q

, and REM (Π)
q (f) =

(
EΠ

[(
|d̂uv−duv|q

min{d̂uv,duv}

)q])1/q

.

It immediately follows from the definitions that: Energy(Π)
q (f) ≤ REM (Π)

q (f) ≤ `q-dist (Π)(f).
Also it’s not hard to observe that Stress(Π)

q and Energy(Π′)
q (f) are equivalent via a simple transfor-

mation of weights.

ML motivated measure: σ-Distortion. Recently published paper (13) studies various existing
and commonly used quality criteria in terms of their relevance in machine learning applications.
Particularly, the authors suggest a new measure, σ- distortion, which is claimed to possess all the
necessary properties for machine learning applications. We consider a generalized version of σ-
distortion3. Let `r-expans(f) = (

(
n
2

)−1∑
u6=v(expansf (u, v))r)1/r. For a distribution Π over

(
X
2

)
,

let Φσ,q,r
(Π)(f) =

(
EΠ

[∣∣∣ expansf (u,v)

`r-expans(f)
− 1
∣∣∣q])1/q

(for q = 2, r = 1 this is the square root of
the measure defined by (13)). We show that the tools we develop in this paper can be applied to
σ-distortion to obtain theoretical bounds on its value.

We further show (Section7), generalizing (13), that all other average distortion measures considered
here can be easily adapted to satisfy similar ML motivated properties.

A basic contribution of our paper is showing deeper tight relations between these different objective
functions, and further developing properties and tools for analyzing embeddings for these measures.
While these measures have been extensively studied from a practical point of view, and many
heuristics are known in the literature, almost nothing is known in terms of rigorous analysis and
absolute bounds. Moreover, many real-world misconceptions exist about what dimension may be
necessary for good embeddings. In this paper we present the first theoretical analysis of all these

2We note that if one desires scale invariability it may always be achieved by defining the scale-invariant
measure to be the minimization of the measure over all possible scaling of the embedding. For simplicity we
focus on the non-scalable version

3It is easy to verify that the general version satisfies all the properties considered in (13).

3



measures providing absolute bounds that shed light on these questions. We exhibit approximation
algorithms for optimizing these measures, and further applications.

In this paper we focus only on analyzing objective measures that attempt to preserve metric structure.
As a result, some popular objective measures used in applied settings are beyond the scope of this
paper, this includes the widely used t-SNE heuristic (which aims at reflecting the cluster structure of
the data, and generally does not preserve metric structure), and various heuristics with local structure
objectives. When validating our theoretical findings experimentally (Section 6), we chose to compare
our results with the most common in practice heuristics PCA/classical-MDS and Isomap amongst the
various methods that appear in the literature.

Moment analysis of dimensionality reduction. The main theoretical question our paper studies is:
Problem 1 ((k,q)-Dimension Reduction). Given a dimension bound k and 1 ≤ q ≤ ∞, what is
the least α(k, q) such that every finite subset of Euclidean space embeds into k dimensions with
Measureq ≤ α(k, q) ?

This question can be phrased for each Measureq of practical importance. A stronger demand would
be to require a single embedding to simultaneously achieve best possible bounds for all values of q.

We answer Problem 1 by providing (almost tight for most of the values of k and q) upper and
lower bounds on α(k, q). In particular we prove that the Johnson-Lindenstrauss (JL) dimensionality
reduction achieves bounds in terms of q and k that dramatically outperform a widely used in practice
PCA algorithm. Moreover, our experiments show that the same holds for the Isomap and classical
MDS methods.

The bounds we obtain provide several interesting conclusions regarding the expected behavior of
dimensionality reduction methods. As expected, the bound for the JL method is improving as k
grows, confirming the intuition expressed in (13). Yet, countering their intuition, the bound does
not increase as a function of the original dimension d. A phase transition, exhibited in our bounds,
provides guidance on how to choose the target dimension k.

Another consequence arises by combining our result with the embedding of (1), by composing it with
the JL: we obtain an embedding of general spaces into a constant dimensional Euclidean space with
constant distortion, for all discussed measures (presented in the full version). Here, the dimension is
constant even if the original space is not doubling, improving on the result obtained in (13).

Approximation algorithms. The bounds achieved for the Euclidean (k, q)-dimension reduction are
then applied to provide the first approximation algorithms for embedding general metric spaces into
low dimensional Euclidean space, for all the various distortion criteria. This is based on composing
convex programming with the JL-transform. It should be stressed that such a composition may not
necessarily work in general, however, we are able to show that this yields efficient approximation
algorithms for all the criteria considered in this paper.

The results on the JL transform yield bounds on distance oracles. In the full version, we provide
additional applications, including metric hyper sketching, a generalization of standard sketching.

Empirical Experiments. We validate our theoretical findings experimentally on various randomly
generated Euclidean and non-Euclidean metric spaces, in Section 6. In particular, as predicted by our
lower bounds, the phase transition is clearly seen in the JL, PCA and Isomap embeddings for all the
measurement criteria. Moreover, in our simulations the JL based approximation algorithm (as well as
the JL itself, when applied on Euclidean metrics) has shown dramatically better performance than the
PCA and Isomap heuristics for all distortion measures, indicating that the JL-based approximation
algorithm is a preferable choice when the preservation of metric properties is desirable.

Related work. For Euclidean embedding, it was shown in (35) that using SDP one can obtain
arbitrarily good approximation of the distortion. However, such a result is impossible when restricting
the target dimension to k, as in (39) it was shown that unless P=NP, the approximation factor must be
nΩ(1/k). Of all the measures studied in this paper, only Stressq was previously studied. In (10), it
was shown that computing an embedding into R1 with optimal Stressq is NP-hard, for any given q.
The only approximation algorithms known for this problem are the following: a 2-approximation to
Stress∞ for embedding into R1 (22); an O(log1/q n)-approximation to Stressq for embedding into
R1 (19); an O(1)-approximation to Stress∞ for embedding into `21 (6).

All proofs are omitted from this version and appear in the full version (in supplemental material).
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2 On the limitations of classical MDS

Practitioners have developed various heuristics to cope with dimensionality reduction (see (49) for
a comprehensive overview). Most of the suggested methods are based on iterative improvement of
various objectives. All these strategies do not provide theoretical guarantees on convergence to the
global minimum and most of them even do not necessarily converge. Furthermore, classical MDS
or PCA, one of the widely used heuristics, is usually referred to as the method that computes the
optimal solution for minimizing Stress2. We show that this is in fact false: PCA can produce an
embedding with Stressq value being far from optimum, even for the space that can be efficiently
embedded into a line.4 Consider the following subset of Rd. For any α < 1/2, for all i ∈ [1, d], for
any q ≥ 1, let si = 1/(αi)q. Let Xi ⊂ `d2 be the (multi) set of size 2si that contains si copies of
the vector αi · ei, denoted by X+

i , and si copies of the antipodal vector −αi · ei, denoted by X−i ,
where ei is the standard basis vector of Rd. Define X as the union of all Xi. In the full version of the
paper, we show that X can be embedded into a line with Stressq/Energyq(f) = O(α/d1/q), for
any q ≥ 1. Yet, for the PCA algorithm applied on X , into k ≤ β · d dimensions (β < 1), it holds that
Stressq/Energyq(F ) = Ω(1), and `q-dist /REMq(F ) =∞.

Moreover, our empirical experiments show that the PCA and Isomap methods have significantly
worse performance than the JL on a variety of randomly generated families of metric spaces.

3 Euclidean dimension reduction: moment analysis of the JL transform

From a theoretical perspective, dimensionality reduction is known to be possible in Euclidean space
via the Johnson-Lindenstrauss Lemma (29), a cornerstone of Banach space analysis and metric
embedding theory, playing a central role in a plethora of applications. The lemma states that every n
point subset of Euclidean space can be embedded in O(ε−2 log n) dimensions with worst case 1 + ε
distortion. The dimension bound is shown to be tight in (31) (improving upon (4)). When applied in
a fixed dimension k, the worst case distortion becomes as bad as O(n2/k

√
log n). Moreover, in (40)

a lower bound of nΩ(1/k) on the worst case distortion of any embedding in k dimensions was proven.
However, as explained above, in many practical instances it is desirable to replace the demand for
worst case with average case guarantees. It should be noted yet that the JL transform does have good
properties, even when applied in k dimensions. The JL lemma in fact implies that in dimension k
for every pair there is some constant probability (≈ exp(−ε2k)) that a 1 + ε distortion is achieved.
While in itself an appealing property, it should be stressed that standard tail bounds arguments cannot
imply that the average (or higher moments) distortion is bounded. Indeed, we show that for certain
specialized implementations of the JL embedding, such as those of (2) (e.g., using Rademacher
entries matrix), (3) (fast JL), and (18) (sparse JL), the `q-dist and REMq are unbounded.

Observation 1. Let k ≥ 1, and d > k. Let Ed = {ei}1≤i≤d ⊆ `d2 be the set of standard basis
vectors. Assume that a linear map f : `d2 → `k2 is given by a transformation matrix Pk×d, such that
for all i, j, P [i, j] ∈ U for some finite set U ⊂ R. If |U | < d

1
k then for the set Ed, for all q ≥ 1,

`q-dist(f), REMq(f) =∞.

The proof follows by volume argument: for matrix P the set f(Ed) = {Pei}1≤i≤d is exactly the
set of columns of P . Since the entries of P belong to U , there can be at most |U |k < d different
columns in the set f(Ed). Therefore, there is at least one pair of vectors in Ed that will be mapped
into the same image by f . This implies the observation as `q-distortion and REMq measures depend
on the inverse of the embedded distance.

Yet, focusing on the Gaussian entries implementation by (28) we show that it behaves dramatically
better. Let X ⊂ `d2 be an n-point set, and k ≥ 1 be an integer. The JL transform of dimension k,
f : X → `k2 is defined by generating a random matrix T of size k × d, with i.i.d. standard normal
entries, and setting f(x) = 1√

k
Tx, for all x ∈ X .

Theorem 1. Let X ⊂ `d2 be an n-point set, and let k ≥ 1. Given any distribution Π over
(
X
2

)
, the JL

transform f : X → `k2 is s.t. with probability at least 1/2, `q-dist
(Π)(f) is bounded by:

4We note that PCA is proven to minimize
∑

u6=v∈X(d2uv − d̂2uv) over all projections into k dimensions (38),
but not over embeddings (not even linear maps).
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1 ≤ q <
√
k
√
k ≤ q ≤ k

4
k
4 ≤ q / k q = k k / q ≤ ∞

1 +O
(

1√
k

)
1 +O

(
q

k−q

) (
k
k−q

)O(1/q)

(log n)
O(1/k)

nO( 1
k−

1
q )

The bounds are asymptotically tight for most values of k and q when the embedding is required to
maintain all bounds simultaneously. For fixed q tightness holds for most values of q ≥

√
k.

Note that for large q our theorem shows that a phase transition emerges around q = k. The necessity
of this phenomenon is implied by nearly tight lower bounds given in Section 4.1.

Additive distortion and σ-distortion measures analysis. The following theorem provides tight
upper bounds for all the additive distortion measures and for σ-distortion, for 1 ≤ q ≤ k − 1. This
follows from analyzing the REM (via similar approach to the raw moments analysis):
Theorem 2. Given a finite set X ⊂ `d2 and an integer k ≥ 2, let f : X → `k2 be the JL transform of
dimension k. For any distribution Π over

(
X
2

)
, with constant probability, for all 1 ≤ r ≤ q ≤ k − 1:

REM (Π)
q (f), Energy(Π)

q (f),Φσ,q,r
(Π)(f), Stress(Π)

q (f), Stress∗(Π)
q (f) = O

(√
q/k
)
.

The more challenging part of the analysis is figuring out how good are the JL performance bounds.
Therefore our main goal is the task of establishing lower bounds for Problem 1.

4 Partially tight lower bounds: q < k

In the full version we show that JL is essentially optimal when simultaneous guarantees are required.
If that requirement is removed, it is still the case for most of the ranges of q. Providing lower bounds
for each range requires a different technique. One of the most interesting cases, is the proof of the
lower bound of 1 + Ω(q/(k − q)) for the range 1 ≤ q ≤ k − 1. For q ≤

√
k, this turns out to be a

consequence of the tightness for the additive distortion measures and σ-distortion, shown to be tight
for q ≥ 2. The proof is based on a delicate application of the technique of (4). We show that the
analysis of the JL transform for the additive measures and σ-distortion, provides tight bounds for all
values of 2 ≤ q ≤ k. Due to tight relations between the additive measures, the lower bounds for all
measures follow from Energy measure. Let En denote an n-point equilateral metric space.

Claim 3. For all k ≥ 2, k ≥ q ≥ 2, and n ≥ 4
(

9 · kq
)q/2

, for any embedding f : En → `k2 it holds

that Energyq(f) = Ω(
√

q
k ).

Claim 4. For all k ≥ 1, 1 ≤ q < 2, and n ≥ 18k, for all f : En → `k2 , Energyq(f) = Ω
(

1
k1/q

)
.

A more involved argument shows that Claim 3 implies
Corollary 1. For any k ≥ 1 and any n ≥ 18k, for any embedding f : En → `k2 it holds that
`q-dist(f) = 1 + Ω

(
q
k

)
, for all 1 ≤ q ≤

√
k.

Based on (31), we also prove
Theorem 5. For all k ≥ 16, for all N large enough, there is a metric space Z ⊆ `2 on N points,
such that for any F : Z → `k2 it holds that `q-dist(F ) ≥ 1 + Ω

(
q

k−q

)
, for all q = Ω

(√
k log k

)
.

4.1 Phase transition: moment analysis lower bounds for q ≥ k

An important consequence of our analysis is that the q-moments of the distortion (including REMq),
exhibit an impressive phase transition phenomenon occurring around q = k. This follows from lower
bounds for q ≥ k. The case q = k (and ≈ k) is of special interest where we obtain a tight bound:

Theorem 6. Any embedding f : En → `k2 has `k-dist(f) = Ω((
√

log n)
1/k
/k1/4), for any k ≥ 1.

Hence, for any q, the theorem tells that only k ≥ 1.01q may be suitable for dimensionality reduction.
This new consequence may serve an important guide for practical considerations, that seems to be
missing prior to our work. We also prove the following claim for large values of q:
Claim 7. For any embedding f : En → `k2 , for all k ≥ 1, for all q > k, `q-dist(f) =

Ω(max{n( 1
2dk/2e−

2
q ), n

1
2k−

1
2q }).
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5 Approximate optimal embedding of general metrics

Perhaps the most basic goal in dimensionality reduction theory and essentially, the main problem
of MDS, is: Given an arbitrary metric space compute an embedding into k dimensional Euclidean
space which approximates the best possible embedding, in terms of minimizing a particular distortion
measure objective. Except for some very special cases no such approximation algorithms were
known prior to this work. Applying our moment analysis bounds for JL we are able to obtain the
first general approximation guarantees to all the discussed measures. The bounds are obtained via
convex programming combined with the JL-transform. While the basic idea is quite simple, it is not
obvious that it can actually go through. The main obstacle is that all q-moment measures are not
associative. In fact, this is not generally the case that combining two embeddings results in a good
final embedding. However, as we show, this is indeed true specifically for JL-type embeddings.

Let OBJ (Π)
q = {`q-dist (Π), REM (Π)

q , Energy(Π)
q ,Φ

(Π)
σ,q,2, Stress

(Π)
q , Stress∗(Π)

q } denote the set

of the objective measures. ForObj(Π)
q ∈ OBJ (Π)

q , denoteOPT (n) = inff :X→`n2

{
Obj

(Π)
q (f)

}
, and

OPT = infh:X→`k2

{
Obj

(Π)
q (h)

}
. Note that OPT (n) ≤ OPT . The first step of the approximation

algorithm is to compute OPT (n) for a given Obj(Π)
q , without constraining the target dimension.

Theorem 8. Let (X, dX) be an n-point metric space and Π be any distribution. Then for any
q ≥ 2 and for Obj(Π)

q 6= Stress∗
(Π)
q there exists a polynomial time algorithm that computes an

embedding f : X → `n2 such that Obj(Π)
q (f) approximates OPT (n) to within any level of precision.

For Obj(Π)
q = Stress∗(Π)

q there exists a polynomial time algorithm that computes an embedding
f : X → `n2 with Stress∗(Π)

q (f) = O
(
OPT (n)

)
.

The proof is based on formulating the appropriate convex optimization program, which can be solved
in polynomial time by interior-point methods.The exception is Stress∗q which is inherently non-
convex. We show that Stress∗q can be reduced to the case of Stressq, with an additional constant
factor loss, and that optimizing for Φσ,q,2 can be reduced to the case of Energyq . The second step in
the algorithm is applying the JL to reduce the dimension to the desired number of dimensions k.

Theorem 9. For any finite metric (X, dX), any distribution Π over
(
X
2

)
, for any k ≥ 3 and

2 ≤ q ≤ k−1, there is a randomized polynomial time algorithm that finds an embedding F : X → `k2 ,
such that with high probability: `q-dist

(Π)(F ) = (1 + O( 1√
k

+ q
k−q ))OPT ; and Obj(Π)

q (F ) =

O(OPT ) +O(
√
q/k), for Obj(Π)

q ∈ {REM (Π)
q , Energy

(Π)
q ,Φ

(Π)
σ,q,2, Stress

(Π)
q , Stress∗(Π)

q }.

6 Empirical experiments

In this section we provide experiments to demonstrate that the theoretical results are exhibited in
practical settings. We also compare in the experiments the bounds of the theoretical algorithms
(JL and the approximation algorithm based on it) to some of the most common heuristics. In all
the experiments, we use Normal distribution (with random variance) for sampling Euclidean input
spaces.5 Tests were made for a large range of parameters, averaging over at least 10 independent
tests. The results are consistent for all settings and measures.

We first recall the main theoretical results to be verified. In Theorem 1 and Theorem 2 we showed
that for q < k the `q-distortion is bounded by 1 +O(1/

√
k) +O(q/k), and all the rest measures are

bounded by O(
√
q/k). Particularly, the bounds are independent of the size n and dimension d of the

input data set. In addition, our lower bounds in Section 4.1 show that for `q-distortion and REMq

measures a phase transition must occur at q ∼ k for any dimensionality reduction method, where the
bounds dramatically increase from being bounded by a constant to grow with n as poly(n) for q < k.
Finally, in Section 5 we exhibited an approximation algorithm for all distortion measures.

The graphs in Fig.1 and Fig.2a describe the following setting: A random Euclidean space X of a
fixed size n and dimension d = n = 800 was embedded into k ∈ [4, 30] dimensions with q = 5,

5We note that (13) used similar settings with Normal/Gamma distributions. Most of our experimental results
hold also for the Gamma distribution.
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by the JL/PCA/Isomap methods. We stress that we run many more experiments for a wide range
of parameter values of n ∈ [100, 3000], k ∈ [2, 100], q ∈ [1, 10], and obtained essentially identical
qualitative behavior. In Fig. 1a, the `q-distortion as a function of k of the JL embedding is shown for
q = 8, 10, 12. The phase transitions are seen at around k ∼ q as predicted. In Fig. 1b the bounds
and the phase transitions of the PCA and Isomap methods are presented for the same setting, as
predicted. In Fig. 1c, `q-distortion bounds are shown for increasing values of k > q. Note that the
`q-distortion of the JL is a small constant close to 1, as predicted, compared to values significantly
> 2 for the compared heuristics. Overall, Fig. 1 clearly shows the superiority of JL to the other
methods for all the range of values of k. The same conclusions as above hold for σ-distortion as well,

(a) Phase transition: JL. (b) Phase transition: PCA, Isomap. (c) Comparing `q-dists for k > q.

Figure 1: Validating `q-distortion behavior.

as shown in Fig. 2a. In the experiment shown in Fig. 2b, we tested the behavior of the σ-distortion
as a function of d-the dimension of the input data set, similarly to that of (13)(Fig. 2), and tests are
shown for embedding dimension k = 20 and q = 2. According to our theorems, the σ-distortion of
the JL transform is bounded above by a constant independent of d, for q < k. Our experiment shows
that the σ-distortion is growing as d increases for both PCA/Isomap, whereas it is a constant for JL.
Moreover, JL obtains significantly smaller value of σ-distortion.

(a) σ-distortion. (b) σ-distortion as a function of d.

Figure 2: Validating σ-dist. behavior.

Figure 3: Non-Euclidean in-
put metric: `q-distortion be-
havior.

In the last experiment, Fig.3, we tested the quality of our approximation algorithm on non-Euclidean
input spaces versus the classical MDS and Isomap methods (adapted for non-Euclidean input spaces).
The construction of the space is as follows: first, a sampled Euclidean space X , of size and dimension
n = d = 100, is generated as above; second, the interpoint distances of X are distorted with a
noise factor 1 + ε, with Normally distributed ε < 1. We ensure that the resulting space is a valid
non-Euclidean metric. We then embed the final space into k ∈ [10, 30] dimensions with q = 5. Since
the non-Euclidean space is 1 + ε far from being Euclidean, we expect a similar behavior to that shown
in Fig. 1c. The result clearly demonstrates the superiority of the JL-based approximation algorithm.

7 On relevance of distortion measures for ML

In (13) the authors developed a set of properties a distortion measure has to satisfy in order to be useful
for machine learning. Here we show that these properties can be generalized and that appropriate
modifications of all the measurement criteria discussed in this paper satisfy all of them.

For an embedding f : X → Y , let ρf (u, v) be an error function of a pair u 6= v ∈ X , which is a func-
tion of the embedded distance and original distance between u and v. Let ρ(f) = (ρf (u, v))u6=v∈X

denote the vector of ρf (u, v) for all pairs u 6= v ∈ X . LetM (Π)
q : ρ(f)→ R+ be a measure function,

for any distribution Π over
(
X
2

)
. For instance, for `q-distortion measure and REMq, ρf (u, v) :=

distf (u, v) and ρf (u, v) := distf (u, v) − 1, respectively; for Energyq, and Stressq measures,
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ρf (u, v) := |expansf (u, v) − 1|; for Φσ,q,r, ρf (u, v) := |expansf (u, v)/ `r-expans(f) − 1|. All
the measures are then defined by M (Π)

q (ρ(f)) := (EΠ[‖ρ(f)‖qq])1/q. In what follows we will omit
Π from the notation. We propose the generalizations of the ML motivated properties defined in (13):

Scalability. Although a measurement criterion may not necessarily be scalable, it can be naturally
modified to a scalable version as follows. For every Mq , define M̂q(ρ(f)) = minα>0Mq(ρ(α · f)).
Note that the upper and lower bounds that hold for Mq also hold for its scalable version M̂q .

Monotonicity. We generalize this property as follows. Let f, g : X → Y be any embeddings.
For a given measure Mq, let f̂ and ĝ be embeddings minimizing Mq(ρ(α · f)) and Mq(ρ(α · g)),
respectively (over all scaling factors α > 0). If f̂ and ĝ are such that for every pair u 6= v ∈ X it
holds that ρf̂ (u, v) ≥ ρĝ(u, v), then the measure M̂q is monotone iff Mq(ρ(f̂)) ≥Mq(ρ(ĝ)).

Robustness to outliers in data/in distances. The measure M̂q is said to be robust to outliers if for any
embedding fn of an n-point space, any modification f̃n where a constant number of changes occurs
in either points or distances, it holds that limn→∞Mq(ρ(fn)) = limn→∞Mq(ρ(f̃n)).

Incorporation of the probability distribution. Let h : X → Y be an embedding and let u 6= v ∈ X
and x 6= y ∈ X , such that Π(u, v) > Π(x, y) and ρh(u, v) = ρh(x, y). Assume that f : X → Y is
identical to h, except over (u, v), and assume that g is identical to h, except over (x, y), and assume
that ρf (u, v) = ρg(x, y). Now let f̂ and ĥ be defined as above and assume ρf̂ (u, v) ≥ ρĥ(u, v). Then,

the measure M̂ (Π)
q is said to incorporate the probability distribution Π if M (Π)

q (ρ(f̂)) > M
(Π)
q (ρ(ĝ)).

Robustness to noise was not formally defined in (13). Assuming the model of noise that affects the
error ρ by at most a factor of 1 + ε (alternatively an additive error of ε) for each pair, the requirement
is that the measure M̂q will be changed by at most factor of 1 +O(ε) (or additive O(ε)).

It is easy to see that all distortion criteria (adapted to be scalable as in the first property) discussed in
this paper obey all the above properties, implying their relevance to the ML applications.

8 Discussion

This work provides a new framework for theoretical analysis of embeddings in terms of performance
measures that are of practical relevance, initiating a theoretical study of a wide range of average case
quality measurement criteria, and providing the first rigorous analysis of these criteria.

We use this framework to analyze the new distortion measure developed in (13) designed to posses
machine learning desired properties and show that all considered distortion measures can be adapted
to posses similar qualities.

We show nearly tight bounds on the absolute values of all distortion criteria, essentially showing that
the JL transform is near optimal for dimensionality reduction for most parameter regimes. When
considering other methods, the JL bound can serve as guidance and it would make sense to treat a
method useful only when it beats the JL bound. A phase transition exhibited in our bounds provides a
direction on how to choose the target dimension k, i.e. k should be greater than q by a factor > 1.
This means that the amount of outlier pairs is diminishing as k grows.

A major contribution of our paper is providing the first approximation algorithms for embedding any
finite metric (possibly non-Euclidean) into k-dimensional Euclidean space with provable approxima-
tion guarantees. Since these approximation algorithms achieve near optimal distortion bounds they are
expected to beat most common heuristics in terms of the relevant distortion measures. Evidence exists
that there is correlation between lower distortion measures and quality of machine learning algorithms
applied on the resulting space, such as in (13), where such correlation is experimentally shown
between σ-distortion and error bounds in classification. This evidence suggests that the improvement
in distortion bounds should be reflected in better bounds for machine learning applications.

Our experiments show that the conclusions above hold in practical settings as well.
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