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ABSTRACT

We introduce Deep Reasoning Networks (DRNets), an end-to-end framework that
combines deep learning with reasoning for solving pattern de-mixing problems,
typically in an unsupervised or weakly-supervised setting. DRNets exploit problem
structure and prior knowledge by tightly combining logic and constraint reason-
ing with stochastic-gradient-based neural network optimization. We illustrate
the power of DRNets on de-mixing overlapping hand-written Sudokus (Multi-
MNIST-Sudoku) and on a substantially more complex task in scientific discovery
that concerns inferring crystal structures of materials from X-ray diffraction data
(Crystal-Structure-Phase-Mapping). DRNets significantly outperform the state of
the art and experts’ capabilities on Crystal-Structure-Phase-Mapping, recovering
more precise and physically meaningful crystal structures. On Multi-MNIST-
Sudoku, DRNets perfectly recovered the mixed Sudokus’ digits, with 100% digit
accuracy, outperforming the supervised state-of-the-art MNIST de-mixing models.

1 INTRODUCTION

Deep learning has achieved tremendous success in areas such as vision, speech recognition, language
translation, and autonomous driving. Nevertheless, certain limitations of deep learning are generally
recognized, in particular, limitations due to the fact that deep learning approaches heavily depend
on the availability of large amounts of labeled data. In certain domains, such as scientific discovery,
it is often the case that scientists don’t have large amounts of labeled data and instead have to rely
on prior knowledge to make sense of the data. One grand challenge in scientific discovery is to
perform high-throughput unsupervised interpretation of scientific data, given its exponential growth in
generation rates, dramatically outpacing humans’ ability to analyze them. Herein we consider pattern
de-mixing problems, which involve decomposing a mixed signal into the collection of source patterns,
such as separating mixtures of X-ray diffraction (XRD) signals into the source XRD signals of the
corresponding crystal structures, a key challenge in materials discovery. More generally, pattern
de-mixing problems are pervasive in scientific areas as diverse as biology, astronomy, and materials
science, as well as in commercial applications for e.g., healthcare and music.

We propose Deep Reasoning Networks (DRNets), an end-to-end framework that combines deep
learning with logical and constraint reasoning for solving unsupervised or very-weakly-supervised
pattern de-mixing tasks. We illustrate the power of DRNets for disentangling two overlapping hand-
written Sudokus (Multi-MNIST-Sudoku) (see Fig.1) and for solving a substantially more complex
de-mixing task in scientific discovery that concerns inferring crystal structures of materials from X-ray
diffraction data, which we refer to as Crystal-Structure-Phase-Mapping. Both de-mixing tasks
require probabilistic reasoning to interpret noisy and uncertain data, while satisfying a set of rules:
Sudoku rules and thermodynamic rules, respectively. For example, de-mixing hand written digits is
challenging, but it becomes more feasible when we reason about the prior knowledge concerning the
two overlapping Sudokus. Crystal structure phase mapping is yet substantially more complex. In
fact, crystal structure phase mapping easily becomes too complex for experts to solve and is a major
bottleneck in high-throughput materials discovery. DRNets are inspired and motivated by problems
from scientific discovery, such as crystal structure phase mapping.

Our contributions: (1) We introduce Deep Reasoning Networks (DRNets), an end-to-end frame-
work that combines deep learning with logical and constraint reasoning for unsupervised or very-
weakly-supervised de-mixing tasks. Specifically, DRNets perform end-to-end deep reasoning by
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Figure 1: (a) Two 4x4 Sudokus: The cells in each row, column, and any of the four 2x2 boxes
involving the corner cells have non-repeating digits. (b) Two overlapping Sudokus, with a mixture
of two digits in each cell: one from 1 to 4 and the other from 5 to 8. In Multi-MNIST-Sudoku, the
digits of two overlapping hand written Sudokus (b) have to be de-mixed (as done by DRNets in (c)).
(d) The reconstructed overlapping hand written Sudokus from DRNets.

Figure 2: Deep Reasoning Networks (DRNets) perform end-to-end deep reasoning by encoding a
latent space of the input data that captures prior knowledge constraints and is used by a generative
decoder to generate the targeted output. (a) Prior knowledge includes prototypes of digits, which
are used to pre-train and build the decoder’s generative module, and Sudoku’s rules, which help
DRNet reason about the overlapping digits. (b) Reasoning modules batch data points involved in the
same constraints (cells in rows, columns, blocks of a Sudoku) together, enforce that the structure of
the latent space satisfies prior knowledge, and dynamically adjust the weights of constraints based
on their satisfiability. (c) The overall objective combines responses from the generative decoder
(thinking fast) and the reasoning modules (thinking slow).

encoding a latent space of the input data that captures the structure and prior knowledge constraints
within and among data points (Fig.2). The latent space is used by a generative decoder to generate
the targeted output, which should be consistent with the input data and prior knowledge. Subse-
quently, DRNets optimize an objective function capturing the overall problem objective as well
as prior knowledge in the form of weighted constraints. (2) To instantiate the logical constraints
in DRNets, we introduce a group of entropy-based continuous relaxations that use probabilistic
modeling to encode general discrete constraints including sparsity, cardinality and so-called All-
Different constraints.To optimize those constraints, we introduce a variant of standard SGD method
(Robbins & Monro, 1985) called constraint-aware stochastic gradient descent, which batches data
points involved in the same constraint component together and dynamically adjust the constraints’
weights as a function of their satisfiability. In the following sections, we show how to encode
Multi-MNIST-Sudoku and Crystal-Structure-Phase-Mapping as DRNets, by properly defining the
structure of the latent space, additional reasoning modules to model the problem constraints (prior
knowledge), and the components of the objective function. De facto, these examples illustrate how
to develop “gadgets” to encode a variety of constraints and prior knowledge in DRNets. (3) We
demonstrate the potential of DRNets on two de-mixing tasks with detailed experimental results.
We show how (3.1) DRNets significantly outperformed the state of the art and human experts on
Crystal-Structure-Phase-Mapping instances, recovering more precise, interpretable, and physi-
cally meaningful crystal structure pattern decompositions. In this task, DRNets solve a previously
unsolved chemical system, which subsequently led to the discovery of a new material that is important
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for solar fuels technology. (3.2) On Multi-MNIST-Sudoku instances, without direct supervision,
DRNets perfectly recovered the digits in the mixed Sudokus with 100% digit accuracy, outperforming
the supervised state-of-the-art MNIST de-mixing models, including CapsuleNet (Sabour et al., 2017)
and ResNet (He et al., 2016).

2 RELATED WORK

DRNets have been motivated by scientific tasks such as crystal phase mapping that involve identifying
or de-mixing patterns in data that satisfy prior scientific knowledge. In general, for such tasks there
are no labeled datasets. So our work focus on unsupervised or weakly supervised learning, using
prior knowledge.

Most closely related work: Unsupervised or weakly supervised de-mixing approaches. Pattern
de-mixing approaches have been developed under the name of source separation in the signal
processing community. The unsupervised methods in this area mostly try to solve the de-mixing,
which is in general ill-posed, using different regularizations. Among existing methods, recent work
for weakly supervised audio source separation (Zhang et al., 2017) is most related to DRNets since
they also employed a generative adversarial network (GAN) in their model. However, their model
mainly employs the decoder of GAN to discriminate the reality of separated sources, while DRNets
only utilize the generator of GAN as the generative model of possible sources. Moreover, the weakly
supervised setting in their paper is actually too strong: they need the true labels of mixed sources,
which is almost the goal of our tasks, and therefore it is not applicable to our settings. We now
consider the state-of-the-art models for the tasks considered in this paper. For Crystal-structure-
phase-mapping, due to the lack of labeled datasets, existing models (Ermon et al., 2015; Xue
et al., 2017; Bai et al., 2017; 2018; Stanev et al., 2018) are mainly based on non-negative matrix
factorization (NMF), which is in general unsupervised. Stanev et al. (2018) proposed the NMF-k
algorithm, which applies a customized clustering process over the results of thousands of runs of pure
NMF algorithm (Long et al., 2009) to cluster the common phase patterns. However, NMF-k does
not enforce prior knowledge (namely thermodynamic rules) and therefore the solutions produced
are often not completly physically meaningful. To address this limitation several approaches have
been developed that use external mixed-integer programming modules to interact with the NMF
de-mixing module to enforce prior knowledge (Ermon et al., 2015; Bai et al., 2017; 2018). However,
the coordination barrier between the NMF de-mixing module and the reasoning module often results
in inferiror performance, where the solution satisfies constraints at the cost of huge reconstruction
loss. In contrast to existing models, DRNets seamlessly integrate the pattern de-mixing module
and the reasoning module, recovering almost exact ground truth decomposition. In our experiments
we thoroughly compare DRNets’ performance against the state of the art (IAFD and NMF-k) for
crystal-structure pattern de-mixing. MNIST de-mixing was first studied by Hinton et al. in 2000,
where the aim is to identify or de-mix overlapping digits coming from the MNIST datasets (LeCun
et al., 1998). More recently, it has been tackled with state-of-the-art neural network models such
as CapsuleNet (Sabour et al., 2017) and ResNet (He et al., 2016). Existing works concerning this
task are mainly in supervised settings, where we have labels of digits for each overlapping image.
However, in this paper, we aim to tackle this task in a weakly supervised setting, where we only have
access to the prototypes of single digits and the extra Sudoku rules. Due to the lack of existing models
with the same setting, we compared DRNets’s performance against the state-of-the-art supervised
models (CapsuleNet and ResNet). By utilizing the supervision from prior knowledge and reasoning,
we show that DRNets’ outperformed all supervised models with 100% digit accuracy.

Enhancing deep learning with symbolic prior knowledge. Exploiting problem structure and
reasoning about prior knowledge has been of increasing interest to facilitate deep learning (Garcez
et al., 2019). In computer vision, symmetry constraints, bone-length constraints and linear constraints
were introduced for human pose estimation (Zhou et al., 2017; 2016) and image segmentation (Pathak
et al., 2015) to regularize the output and enhance generalization. In natural language processing, Hu
et al. (2016a;b) introduced the posterior regularization (Ganchev et al., 2010) framework into deep
learning to incorporate rule-based grammatical knowledge using first order logic. Xu et al. (2017)
proposed a semantic loss function to enforce propositional logic constraints on the output of neural
networks for semi-supervised multi-class classification tasks. Wang et al. (2019) proposed SATNet,
which approximately encodes a MAXSAT solver into a neural network layer called SATNet layer, to
explicitly learn the logical structures (e.g., parity function and Sudoku) from the labeled training data.
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Previous works in this area primarily focus on supervised or semi-supervised settings for data-rich
domains, where direct supervision from labels reduce the importance of explicitly reasoning about
prior knowledge. In contrast, with an unsupervised setting, the supervision of DRNets comes from
reasoning about prior knowledge and self-reconstruction, which is strongly desired for problems in
scientific discovery due to the lack of labeled datasets, and strongly motivated by extensive prior
knowledge from sources ranging from fundamental principles to the intuitive experience of scientists.

Among existing works, SATNet is mostly related to DRNets in the sense of bridging logical reasoning
with deep learning. However, SATNet is essentially designed for learning logical structures (prior
knowledge) from labeled training examples while DRNets aim to facilitate unsupervised learning
with known logical constraints. In terms of the encoding of the reasoning module, the semantic
loss (Xu et al., 2017) is mostly related to ours. However, the semantic loss encodes constraints by
propositional logic, which requires enumerating all possible Boolean assignments that satisfy the
constraints. Consequently, the semantic loss has to enumerate a large number of assignments to
encode constraints such as k-sparsity constraints and All-Different constraints, which is not applicable
to tasks considered in this paper.

3 DEEP REASONING NETWORKS

Data-Driven Constrained
Optimization with discrete 
and continuous variables

Data-Driven Unconstrained
Optimization with discrete 
and continuous variables

Data-Driven Unconstrained
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Figure 3: The reduction flow of Deep Reasoning Networks.

DRNets (see Fig.2) are inspired by human thinking (Shivhare & Kumar, 2016): we abstract patterns
to higher-level descriptions and combine them with prior-knowledge to fill-in the gaps. Consider the
Multi-MNIST-Sudoku example (Fig.1): we first guess the digits in each cell based on the patterns; we
re-adjust our initial beliefs and re-image the overlapping patterns by reasoning about Sudoku rules
and comparing them to the original ones, potentially involving several iterations. Analogously, in a
reasoning system, an inference procedure derives what follows from an initial set of axioms and rules.
For example, in a standard 9x9 Sudoku, an inference procedure identifies the missing cell values of
the input Sudoku. A constraint solver is a particular type of reasoning system in which axioms and
rules are expressed as constraints and the inference procedure is a search method.
Formally, DRNets formulate unsupervised pattern de-mixing as a data-driven constrained op-
timization, incorporating abstractions and reasoning about structure and prior knowledge:

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi) s.t. φθ(xi) ∈ Ωlocal and (φθ(x1), ..., φθ(xN )) ∈ Ωglobal (1)

In this formulation, xi ∈ Rn is the i-th n-dimensional input data point, φθ(·) is the function of the
encoder in DRNets parameterized by θ,G(·) denotes the generative decoder,L(·, ·) is the loss function
(e.g., evaluating the reconstruction of patterns), Ωlocal and Ωglobal are the constrained spaces w.r.t. a
single input data point and several input data points, respectively. G(·) is in general a fixed pre-trained
or parametric model. For example, in Multi-MNIST-Sudoku, G(·) is a pre-trained conditional GAN
(Mirza & Osindero, 2014) using hand-written digits, and for Crystal-Structure-Phase-Mapping, G(·)
is a Gaussian Mixture model. Note that constraints can involve several (potentially all) data points:
e.g., in Sudoku, all digits should form a valid Sudoku and in crystal-structure-phase-mapping, all
data points in a composition graph should form a valid phase diagram. Thus, we specify local and
global constraints in DRNets – local constraints only involve a single input data point whereas global
constraints involve several input data points, and they are optimized using different strategies.

Solving the constrained optimization problem (1) directly is extremely challenging since the objective
function in general involves deep neural networks, which are highly non-linear and non-convex, and
prior knowledge often even involves combinatorial constraints (Fig.3). Therefore, we use Lagrangian
relaxation to approximate equation (1) with an unconstrained optimization problem, i.e.,

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi) + λlψl(φθ(xi)) +

Ng∑
j=1

λgjψ
g
j ({φθ(xk)|k ∈ Sj}) (2)

N is the number of input data points, Ng denotes the number of global constraints, Sj denotes the set
of indices w.r.t. the data points involved in the j-th global constraint, and ψl, ψgj denote the penalty
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functions for local constraints and global constraints, respectively, along with their corresponding
penalty weights λl and λgj . In the following, we propose two mechanisms to tackle the above
unconstrained optimization task (Fig.3).

Continuous Relaxation: Prior knowledge often involves combinatorial constraints with discrete
variables that are difficult to optimize in an end-to-end manner using gradient-based methods.
Therefore, we need to design proper continuous relaxations for discrete constraints to make the
overall objective function differentiable. Existing works (Hu et al., 2016a; Xu et al., 2017) proposed
several relaxations for injecting first-order logic and propositional logic into deep learning. However,
limited by the expressive power of those logic formulas, we need a large number of logical terms
to express constraints such as k-sparsity constraints or All-Different constraints. Therefore, to
instantiate DRNets for our tasks, we propose a group of entropy-based continuous relaxations to
encode general discrete constraints such as sparsity, cardinality and All-Different constraints (see
Fig.4). We construct continuous relaxations based on probabilistic modelling of discrete variables,

Figure 4: Examples of continuous relaxations: ei,j , Pi, Qi, PM denote binary variables, the discrete
distribution over digits 1 to 4, the discrete distribution over digits 5 to 8, and the discrete distribution
over values 1 to M .

where we model a probability distribution over all possible values for each discrete variable. For
example, in Multi-MNIST-Sudoku, a way of encoding the possible two digits in the cell indicated by
data point xi (one from {1...4} and the other from {5...8}), is to use 8 binary variables ei,j ∈ {0, 1},
while requiring

∑4
j=1 ei,j = 1 and

∑8
j=5 ei,j = 1. In DRNets, we model probability distribution Pi

and Qi over digits 1 to 4 and 5 to 8 respectively: Pi,j ,j=1...4 and Qi,j ,j=1...4 denote the probability
of digit j and the probability of digit j + 4, respectively. We approximate the cardinality constraint of
ei,j by minimizing the entropy of Pi and Qi, which encourages Pi and Qi to collapse to one value.
Another combinatorial constraint in Multi-MNIST-Sudoku is the All-Different constraint, where all
the cells in a constrained set S, i.e., each row, column, and any of four 2x2 boxes involving the corner
cells, must be filled with non-repeating digits. For a probabilistic relaxation of the All-Different
constraint, we analogously define the entropy of the averaged digit distribution for all cells in a
constrained set S, i.e., H(P̄S) :

H(P̄S) = −
4∑
j=1

P̄S,j log P̄S,j = −
4∑
j=1

(
1

|S|
∑
i∈S

Pi,j

)
log

(
1

|S|
∑
i∈S

Pi,j

)
(3)

In this equation, a larger value implies that the digits in the cells of S distribute more uniformly. Thus,
we can analogously approximate All-Different constraints by maximizing H(P̄S) and H(Q̄S). One
can see, by minimizing all H(Pi) and H(Qi) to 0 as well as maximizing all H(P̄S) and H(Q̄S) to
log |S|, we find a valid solution for the two 4x4 Sudoku puzzles, where all Pi,j are either 0 or 1.

We also relax k-sparsity constraints, which for example in Crystal-Phase-Mapping state the maximum
number k of pure phases in an XRD-pattern, by minimizing the entropy of the phase distribution PM
below a threshold c < log k. We choose the threshold c < log k because the entropy of a discrete
distribution PM concentrated on at most k values cannot exceed log k. Note that other relaxations
can be adapted in DRNets, for these and other tasks. See also additional relaxations (e.g., for SAT
constraints), detailed relaxation derivations, and implementation details in supplementary materials.

Constraint-Aware Stochastic Gradient Descent: We introduce a variant of standard SGD method
called constraint-aware SGD, which is conceptually similar to the optimization process in GraphRNN
(You et al., 2018), to tackle the optimization of global penalty functions ψgj ({φθ(xk)|k ∈ Sj}),
which involve several (potentially all) data points. We define a constraint graph, an undirected
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Algorithm 1 Constraint-aware stochastic gradient descent optimization of deep reasoning networks.

Input: (i) Data points {xi}Ni=1. (ii) Constraint graph. (iii) Penalty functions ψl(·) and ψgj (·) for the
local and the global constraints. (iv) Pre-trained or parametric generative decoder G(·).

1: Initialize the penalty weights λl, λgj and thresholds for all constraints.
2: for number of optimization iterations do
3: Batch data points {x1, ...,xm} from the sampled (maximal) connected components.
4: Collect the global penalty functions {ψgj (·)}Mj=1 concerning those data points.
5: Compute the latent space {φθ(x1), ..., φθ(xm)} from the encoder.
6: Adjust the penalty weights λl, λ

g
j and thresholds accordingly.

7: minimize 1
m

(∑m
i=1 L(G(φθ(xi)),xi) + λlψ

l(φθ(xi))
)

+
∑M
j=1 λ

g
jψ

g
j ({φθ(xk)|k ∈ Sj})

using any standard gradient-based optimization method and update the parameters θ.
8: end for

graph in which each data point forms a vertex and two data points are linked if they are in the
same global constraint. Constraint-aware SGD batches data points from the randomly sampled
(maximal) connected components in the constraint graph, and optimizes the objective function w.r.t.
the subset of global constraints concerning those data points and the associated local constraints. For
example, in Multi-MNIST-Sudoku, each overlapping Sudoku forms a maximal connected component,
we batch the data points from several randomly sampled overlapping Sudokus and optimize the
All-Different constraints (global) as well as the cardinality constraints (local) within them. However,
in Crystal-Structure-Phase-Mapping, the maximal connected component becomes too large to batch
together, due to the constraints (phase field connectivity and Gibbs-alloying rule) concerning all data
points in the composition graph. Thus, we instead only batch a subset (still a connected component)
of the maximal connected component – e.g., a path in the composition graph, and optimize the
objective function that only concerns constraints within the subset (along the path). By iteratively
solving sampled local structures of the ”large” maximal component, we cost-efficiently approximate
the entire global constraint. Moreover, for optimizing the overall objective, constraint-aware SGD
dynamically adjusts the thresholds and the weights of constraints according to their satisfiability,
which can involve non-differentiable functions (See details in appendix). For efficiency and potential
capability of generalization, DRNets solve all instances together using constraint-aware SGD (see
Algorithm 2).

4 EXPERIMENTS

We illustrate the power of DRNets mainly on two pattern de-mixing tasks – disentangling two over-
lapping hand-written Sudokus (Multi-MNIST-Sudoku) and inferring crystal structures of materials
from X-ray diffraction data (Crystal-Structure-Phase-Mapping). Limited by the space, we put the
details of the experiments and the experimental results of DRNets on other tasks in supplementary
material. Note that, since DRNets are an unsupervised framework, we can apply the restart (Gomes
et al., 1998) mechanism, i.e., we can re-run DRNets for unsolved instances.
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Method
Accuracy (%)

Time
Digit Sudoku

DRNets (Optimizationw/
Restart) 100.0 100.0 50min

DRNets (Optimization) 99.9 98.6 28min
DRNets (Optimizationw/o

Reasoning) 88.8 15.0 110min

DRNets (Generalization) 98.0 75.7 13min+4hrs
CapsuleNet 97.9 50.9 1min+30min

CapsuleNet + local search 97.9 57.8 3hrs+30mins
ResNet-18 97.7 68.5 3min+10hrs

ResNet-18 + local search 97.7 88.3 3hrs+10hrs

Figure 5: Left: The latent space of DRNets for Multi-MNIST-Sudoku. Right: Accuracy comparison.
We show ”test time + training time” for supervised baselines and the generalization mode of DRNet,
and ”solving time” for the optimization mode of DRNets. (See also supplementary materials.)
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Multi-MNIST-Sudoku: We generated 160,000 input data points for each training set, validation
set and test set, where each data point corresponds to a 32x32 image of overlapping digits coming
from MNIST (LeCun et al., 1998) and every 16 data points form a 4-by-4 overlapping Sudokus.
For Multi-MNIST-Sudoku, DRNets batch every 16 data points together to enforce the All-Different
constraints among the cells of each Sudoku. The encoder of DRNets is composed of two ResNet-18
He et al. (2016) and we use a conditional GAN (Mirza & Osindero, 2014) as our generative decoder
(denoted as G(·)), which is trained using the digits in the training set of MNIST. For each cell
xi, the encoder encodes a latent space, which consists of two parts: The first part includes two
distribution Pi and Qi (see Fig.5) concerning the possible digits in the cell, and the second part is
the latent encodings zi,1, ..., zi,8 of each possible digit conditioned on the overlapping digits, which
is used by the generative decoder to generate the corresponding digits G(zi,j). We estimate the
two digits in the cell by computing the expected digits over Pi and Qi, i.e.,

∑4
j=1 Pi,jG(zi,j) and∑4

j=1Qi,jG(zi,j+4), and reconstruct the original input mixture (see Fig.5). As described above, we
impose the continuous relaxation of the cardinality and All-Different constraints to reason about
the the Sudoku structure among cells of the overlapping Sudokus. To demonstrate the power of
reasoning, we compared our unsupervised DRNets with supervised start-of-the-art MNIST de-mixing
models – CapsuleNet (Sabour et al., 2017) and ResNet (He et al., 2016), and a variant of DRNets
that removes the reasoning modules (”DRNets w/o Reasoning”). To saturate the performance of
baseline models, we also applied a post-process local search for them to incorporate the Sudoku
Rules. Specifically, we did a local search for the top-2 (top-3 would take too long to search) most
likely choice of digits for each Sudoku of the two overlapping Sudokus and try to satisfy Sudoku rules
with minimal modification compared with the original prediction. We evaluate both the percentage of
digits that are correctly de-mixed (digit accuracy) and the percentage of overlapping Sudokus that
have all digits correctly de-mixed (Sudoku accuracy). Empowered by reasoning, DRNets significantly
outperformed CapsuleNet, ResNet, and DRNets without reasoning, perfectly recovered all digits
with the restart mechanism (see Fig.5), and additionally reconstructed the mixture with high-quality
(see Fig.1). Moreover, because DRNets solve all instances together (see Algorithm 2), not only can
DRNets solve instances directly on the test set from random initialization, DRNets can also generalize
from the training set to test set, given enough training examples. DRNets learn to generalize its
de-mixing performance on the test set by solving the training set instances self-supervised (Jing &
Tian, 2019) by Sudoku rules, instead of labels, and even outperform CapsuleNet and ResNet (Fig.5).
Note that, for unseen instances in the test set, we further optimize the instances for 25 steps to achieve
the reported performance (Additional details in the supplementary material).

Figure 6: The latent space of DRNets for Crystal-Structure-Phase-Mapping. M denotes the number
of possible phases. (For Al-Li-Fe, M = 159; For Bi-Cu-V, M = 100.)

Crystal-Structure-Phase-Mapping concerns inferring crystal structures from a set of X-ray diffrac-
tion measurements (XRDs) of a given chemical system, satisfying thermodynamic constraints. Crystal
structure phase mapping is a very challenging task, a major bottleneck in high-throughput materials
discovery: Each X-ray measurement may involve several mixed crystal structures; each chemical
system includes hundreds of possible crystal structures; for each crystal structure pattern, we only
have a theoretical (idealized) model of pure crystal phases; the thermodynamic rules are also complex;
and the crystal patterns are difficult for human experts to interpret. Herein, we illustrate DRNet
for crystal structure phase mapping for two chemical systems: (1) a ternary Al-Li-Fe oxide system
(Le Bras et al., 2014), which is theoretically based, synthetically generated, with ground truth solu-
tions, and (2) a ternary Bi-Cu-V oxide system, which is a more challenging real experiment-based
system, more noisy and uncertain. For each system, each input data point is the XRD of a mixture
of crystal structures. Additionally, the input includes the composition graph specifying elemental
compositions and the constraint graph of the data points. We also collected a library of possible
crystal structures from the International Centre for Diffraction Data (ICDD) database. Each crystal
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structure (also named phase) is given as a list of diffraction peak location-amplitude pairs, (referred
to as stick pattern), representing the ideal phase patterns measured in a perfect condition (see Fig.6).
To model more realistic conditions, DRNets simulate the real phase patterns from stick patterns using
Gaussian mixture models, where the relative peak locations and mixture coefficients are given by the
stick locations and amplitudes. Moreover, the peak width, peak location shift, and peak amplitude
variance are parameterized by the latent encoding zi,j and used by the generative decoder to generate
the corresponding possible phase patterns in the reconstructed XRD measurement.

Chemical
Systems: Reconstruction

Losses
Phase

Fidelity Loss

Thermodynamic Rules Satisfaction
(Percentage of data points / phase 
field that satisfy each constraint)

Al-Li-Fe L1 Loss L2 
Loss

JS distance
×10$%

Gibbs Gibbs-
Alloy

Phase Field 
Connectivity

DRNets 0.039 <0.001 <0.001 100% 100% 100%
IAFD 5.994 0.535 11.30 100% 100% 100%

NMF-k 7.267 0.438 56.10 94% 87% 71%
Bi-Cu-V L1 Loss L2 

Loss
JS distance
×10$%

Gibbs Gibbs-
Alloy

Phase Field 
Connectivity

DRNets 3.993 0.196 8.370 100% 100% 100%
IAFD 7.425 0.545 93.36 100% 99% 95%

NMF-k 8.033 0.675 92.63 51% 35% 83%
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Figure 7: Left: Comparison of phase concentration and reconstruction loss for different methods
in Al-Li-Fe oxide system. Note that, 6 pure phases (out of 159 possible candidates) appear in the
system and result in 15 different mixtures. Each dot represents an XRD measurement whose size
is proportional to the estimated phase concentration. DRNet’s phase concentration closely match
the ground truth in contrast to IAFD’s and NMF-k’s. The heatmap on the right shows that DRNets
reconstruct the XRD measurements much better than other methods with respect to the L1 loss.
Right: DRNets outperform both IAFD and NMF-k with better reconstruction error and perfect rule
satisfaction on both systems. (additional details for Bi-Cu-V in the supplementary material).

We compared DRNets with IAFD (Bai et al., 2017) and NMF-k (Stanev et al., 2018), which are
both state-of-the-art non-negative matrix factorization (NMF) based unsupervised de-mixing models.
NMF-k improves the pure NMF algorithm (Long et al., 2009) by clustering common phase patterns
from thousands of runs. However, NMF-k does not directly enforce thermodynamic rules and
therefore the solutions produced are often not completely physically meaningful. IAFD uses external
mixed-integer programming modules to enforce thermodynamic rules during the de-mixing. However,
due to the gap between the external optimizer and NMF module, the solution of IAFD is still far
from the ground truth. Our evaluation criteria include reconstruction losses, phase fidelity loss and
the satisfaction of thermodynamic rules. Note that, the phase fidelity loss measures the JS distance
between the de-mixed phases and the closest ideal phases by fitting the de-mixed phases with the
ICDD stick patterns using the physical model (Le Bras et al., 2014). As shown in Fig.7, for the
Al-Li-Fe oxide system, the phase concentration (the distribution of de-mixed pure phases over all
data points of that chemical system) of either IAFD or NMF-k is far from the ground truth. In
contrast, DRNet almost exactly recovered the ground truth solution by seamlessly integrating pattern
recognition, reasoning and prior knowledge. Moreover, by explicitly incorporating the ICDD stick
pattern information into DRNets, the phases de-mixed by DRNets are much more real than those
from IAFD and NMF-k (see phase fidelity loss). For Bi-Cu-V oxide system, DRNets solved this
previously unsolved real system, producing valid crystal structures and significantly outperforming
IAFD and NMF-k w.r.t. reconstruction errors and phase fidelity loss. In addition, materials science
experts thoroughly checked DRNet’s solution of Bi-Cu-V oxide system, approved it, and subsequently
discovered a new material that is important for solar fuels technology.

5 CONCLUSIONS AND FUTURE WORK

We propose DRNets, a powerful end-to-end framework that combines deep learning with logical and
constraint reasoning for solving unsupervised pattern de-mixing tasks. DRNets outperform the state
of the art for de-mixing MNIST Sudokus and crystal-structure phase mapping, solving previously
unsolved chemical systems substantially beyond the reach of other methods and materials science
experts’ capabilities. While we illustrate the potential of DRNets with unsupervised settings, it is
straightforward to impose supervision into DRNets. Future research includes exploring DRNets
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for incorporating other types of constraints, prior knowledge, and objective functions, for other
applications.
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A SUPPLEMENTARY MATERIALS

Herein, we provide additional details about DRNets and our experimental settings for a better
understanding of DRNets and reproducibility of our results. Code and datasets to reproduce the
experiments will be provided with the final version of the paper.

A.1 CONTINUOUS RELAXATION

In this section, we provide more relxations for other constraints such as SAT constraints and provide
an intuitive high-level informal proof that all the relaxations converge to a valid solution of the
discrete version when it achieves its minimal value. Fig.8 summarizes the relaxations.

Figure 8: Examples of continuous relaxations: ei,j , Pi, Qi, PM , Nc, Nl,Kj , λh, Bi denote binary
variables, the discrete distribution over digits 1 to 4, the discrete distribution over digits 5 to 8, the
discrete distribution over values 1 to M , the number of clauses, the number of literals, the number
of literals in the j-th clause, the weights of entropy terms, and the Bernoulli distribution for the i-th
literal. ”leaky relu” is the leaky ReLU.

For cardinality constraints, when the entropy of distribution Pi and Qi reaches 0, all the probability
mass collapses to only one variable. Therefore, all Pi,j and Qi,j are either 0 or 1, which is a valid
solution of the original discrete constraints.

For All-Different constraints, we maximize the entropy of the averaged digit distribution for all cells
in a constrained set S, i.e., H(P̄S). Note that, the All-Different constraints are imposed together with
the cardinality constraints. Therefore, when the entropy of the digit distribution in each cell is zero,
we know that the digit distribution of each cell converges to one digit. Hence, if H(P̄S) reaches its
maximum, i.e., log |S|, we have 1

|S|
∑
i∈S Pi,j = 1

|S| for all digit j. Crossed with the fact that Pi,j
are either 0 or 1 when the cardinality constraints are satisfied, we know that only one Pi,j is equal to
1 for all cell i in the set S and others are 0, which directly states the All-Different constraints.

We derive the k-Sparsity constraints in a similar way as the cardinality constraints except that we
now want to force the distribution to concentrate on at most k digits. By normalizing the values of
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discrete variables ei,j (j = 1...M ) to a discrete distribution PM , we can minimize the entropy of
distribution PM to at most log k, which is the maximal entropy when the distribution concentrates on
only k values. Though, H(PM ) < log k is not a sufficient condition for k-sparsity, we can initialize
the threshold c of k-sparsity constraints to log k and dynamically adjust the value of c based on the
satisfaction of the k-sparsity constraints. In practice, it works well with the supervision from other
modules, such as the self-reconstruction.

For SAT constraint relaxations, the key idea is to minimize the entropy of the Bernoulli distribution
over each literal to force it converge to either 1 or 0. Then, we maximize the sum of the value of
literals in each clause (or their negation) to encourage one of the literals to be 1. However, maximizing
the sum of the value of literals does not necessarily give you a valid assignment because there could
exist an assignment that the sum of literals in some clauses are 0 and the sum of literals in other
clauses are very large. Therefore, we use leaky rule (Xu et al., 2015) function to discount the loss
when the sum is larger than 1. As shown in Fig.8, we formulate the relaxation loss function in a form
to be minimized. For k-SAT problems with Nc clauses, we can set the leaky ratio to be 1

Nck
, so that

any invalid assignment cannot have a loss that is less or equal to 0. On the other hand, for any valid
assignment, the sum of literals in each clause is at least 1. Thus, we can obtain a valid assignment of
k-SAT constraints by minimizing the loss function to 0.

We describe other task specific constraints (e.g., phase field connectivity constraints) in the following
experimental sections.

A.2 CONSTRAINT-AWARE STOCHASTIC GRADIENT DESCENT:

Algorithm 2 Constraint-aware stochastic gradient descent optimization of deep reasoning networks.

Input: (i) Data points {xi}Ni=1. (ii) Constraint graph. (iii) Penalty functions ψl(·) and ψgj (·) for the
local and the global constraints. (iv) Pre-trained or parametric generative decoder G(·).

1: Initialize the penalty weights λl, λgj and thresholds for all constraints.
2: for number of optimization iterations do
3: Batch data points {x1, ...,xm} from the sampled (maximal) connected components.
4: Collect the global penalty functions {ψgj (·)}Mj=1 concerning those data points.
5: Compute the latent space {φθ(x1), ..., φθ(xm)} from the encoder.
6: Adjust the penalty weights λl, λ

g
j and thresholds accordingly.

7: minimize 1
m

(∑m
i=1 L(G(φθ(xi)),xi) + λlψ

l(φθ(xi))
)

+
∑M
j=1 λ

g
jψ

g
j ({φθ(xk)|k ∈ Sj})

using any standard gradient-based optimization method and update the parameters θ.
8: end for

We introduce a variant of standard SGD method called constraint-aware SGD, which is conceptually
similar to the optimization process in GraphRNN (You et al., 2018), to tackle the optimization of
global penalty functions ψgj ({φθ(xk)|k ∈ Sj}), which involve several (potentially all) data points.
We define a constraint graph, an undirected graph in which each data point forms a vertex and
two data points are linked if they are in the same global constraint. Constraint-aware SGD batches
data points from the randomly sampled (maximal) connected components in the constraint graph,
and optimizes the objective function w.r.t. the subset of global constraints concerning those data
points and the associated local constraints. For example, in Multi-MNIST-Sudoku, each overlapping
Sudoku forms a maximal connected component, we batch the data points from several randomly
sampled overlapping Sudokus and optimize the All-Different constraints (global) as well as the
cardinality constraints (local) within them. However, in Crystal-Structure-Phase-Mapping, the
maximal connected component becomes too large to batch together, due to the constraints (phase field
connectivity and Gibbs-alloying rule) concerning all data points in the composition graph. Thus, we
instead only batch a subset (still a connected component) of the maximal connected component – e.g.,
a path in the composition graph, and optimize the objective function that only concerns constraints
within the subset (along the path). By iteratively solving sampled local structures of the ”large”
maximal component, we cost-efficiently approximate the entire global constraint.

Moreover, for optimizing the overall objective, constraint-aware SGD dynamically adjusts the
thresholds and the weights of constraints according to their satisfiability, which can involve non-
differentiable functions. Specifically, we initialize penalty weights of constraints and thresholds for
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penalty functions using hyper-parameters. During training, we check the satisfiability of constraints
(this step could involve non-differentiable functions) after several epochs and increase the penalty for
violated constraints. For example, the threshold c of k-sparsity is initialized as log k, which is the
entropy of the case that the probability mass is evenly distributed among k entities. Thus, it could
be the case that there are more than k entities, but their probability mass is not evenly distributed.
Hence, we check the satisfiability of k-sparsity constraint: if the entropy is already below the current
threshold (log k) and there are still more than k entities with probability mass more than ε (0.01), we
decrease the threshold c to keep enforcing the model to minimize the entropy to reach the k-sparsity.

Finally, to better exploit parallelization, DRNets solve all instances together using constraint-aware
SGD (see Algorithm 2).

A.3 RESTART MECHANISM FOR DRNETS:

Note that, since DRNets are an unsupervised framework, we can apply the restart (Gomes et al.,
1998) mechanism, i.e., we can re-run DRNets for unsolved instances. Specifically, since DRNets
directly incorporate logical constraints, we can check whether those constraints are satisfied at the end
of a run. If not, for instances with violated constraints, we re-run the algorithm again on them. We
only applied restart mechanism on Multi-MNIST-Sudoku and other NP-C problems (in the appendix)
such as 3-SAT problems and standard Sudoku problems. For crystal-structure phase mapping, the
results generated from one run of DRNets is already good enough.

A.4 EXPERIMENTAL CONFIGURATION

All the experiments are performed on one NVIDIA Tesla V100 GPU with 16GB memory. For the
training process of our DRNets, we select a learning rate in {0.0001, 0.0005, 0.001} with Adam
optimizer (Kingma & Ba, 2014), for all the experiments.

For baseline models, we followed their original configurations and further fine-tuned their hyper-
parameters to saturate their performance on our tasks.

A.4.1 MULTI-MNIST-SUDOKU

For Multi-MNIST-Sudoku, we compared DRNets with CapsuleNet (Sabour et al., 2017) and ResNet
(He et al., 2016). Because Sabour et al. (2017) did not provide a source code for CapsuleNet, we
adopted the implementation of Laodar (2017), with minor modifications. For ResNet, we adopted a
18-layer ResNet architecture (Khanrc, 2017) to saturate its performance.

In Multi-MNIST-Sudoku, a data point corresponds to a 32× 32 image of overlapping digits. For the
optimization mode of DRNets, we generated 160, 000 input data points that all come from the test
set of MNIST (LeCun et al., 1998) and every 16 data points form a 4-by-4 overlapping Sudokus.
Thus, these 160, 000 data points form 10, 000 Sudokus. These 10, 000 Sudokus are used as the test
set and shared across DRNets and baselines. For the generalization mode of DRNets, we split the
training set of MNIST into three parts: 160, 000 data points for DRNets learning, 25, 000 original
MNIST images for training conditional GAN and another 160, 000 data points for validation. Note
that these three datasets are disjoint. Baselines share the same training set as the generalization mode
of DRNets. By using the constraint-aware SGD, DRNet batches every 16 data points together, which
forms an overlapping Sudoku as well as a maximal connected component in the constraint graph, to
enforce the All-Different constraints among the cells of each Sudoku.

DRNet for Multi-MNIST-Sudoku: the encoder is made of two ResNet-18 models adapted from
the PyTorch source code. The output layer for the first network has 8 dimensions, which models
the two distributions Pi and Qi for the two overlapping digits. Another network outputs eight
100-dimensional (800 dimensions in total) latent encoding zi,j to encode the shape of the possible
eight digits conditioned on the input mixture, and is used by the generative decoder to generate the
reconstructed digits. We use a conditional GAN (Mirza & Osindero, 2014) as our generative decoder,
which is pre-trained using the digits in the partial training set (see the paragraph above) of MNIST.
Note that this is the only supervision we have in this task, which is even weaker than the general
concept of the weakly-supervised setting (Zhang et al., 2017). We adopted the implementation of
Linder-Noren (2019) for our conditional GAN. On the other hand, the 10,000 overlapping Sudokus
in the test set were all generated using the digits in the test set of MNIST, which had never been
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Method
Accuracy (%)

Time
Digit Sudoku

DRNets (Optimizationw/
Restart) 100.0 100.0 50min

DRNets (Optimization) 99.9 98.6 28min
DRNets (Optimizationw/o

Reasoning) 88.8 15.0 110min

DRNets (Generalization) 98.0 75.7 13min+4hrs
CapsuleNet 97.9 50.9 1min+30min

CapsuleNet + local search 97.9 57.8 3hrs+30mins
ResNet-18 97.7 68.5 3min+10hrs

ResNet-18 + local search 97.7 88.3 3hrs+10hrs

Figure 9: Accuracy comparison. We show ”test time + training time” for supervised baselines and
the generalization mode of DRNet, and ”solving time” for the optimization mode of DRNets.

seen, even by the conditional GAN. Moreover, we overlap the images of two digits pixel-wisely,
maximizing the whiteness of the two images. For robustness concern, we used L1 loss as the
reconstruction loss between the reconstructed mixture and the original input. For the initial weights,
we set 0.01 for the cardinality constraints, 1.0 for the All-Different constraints, and 0.001 for the L1
loss. Finally, we trained DRNets for 100 epochs with a batch size of 100, and it took 50 minutes to
finish the optimization and achieve the reported performance for the 10,000 overlapping Sudokus.

For the generalization mode of DRNets, we first ”train” DRNets on the training set and validate its
generalization performance on the validation set to apply the early stop mechanism. Finally, we start
from the ”trained” DRNets and further optimize it for 25 steps on the test set to achieve the reported
performance. Note that, to generalize well on the test set, we ”trained” DRNets for a longer time
than the optimization mode. Essentially, the procedure of the generalization mode of DRNets is
similar to standard supervised learning process except that we do not need labels to supervise DRNets.
In contrast, DRNets are really ”self-supervised” (Jing & Tian, 2019) by the Sudoku rules and the
self-reconstruction, instead of the standard supervision by labeled data. Note that, during the test,
instead of predicting the overlapping digits directly as other networks, we further optimize DRNets
on the test set for 25 epochs to achieve a better result.

A.4.2 CRYSTAL-STRUCTURE-PHASE-MAPPING

We illustrate DRNets for crystal structure phase mapping for two chemical systems: (1) a ternary
Al-Li-Fe oxide system (Le Bras et al., 2014), which is theoretically-based, synthetically generated,
with ground-truth solutions, and (2) a ternary Bi-Cu-V oxide system, which is a more challenging real
system obtained from chemical experiments and is more noisy and uncertain. For each system, the
input data points are mixtures of XRDs, associated with a composition graph identifying elemental
compositions and the constraint graph of data points. Specifically, each XRD data point is associated
with a 3-dimensional composition vector, which is the proportion of the three different metal elements
at that data point (e.g., [80% of Al, 5% of Fe, 15% of Li]) and could help identify possible phases.
Then, we can locate each data point into a triangular system. Note that, since the vector is a probability
distribution, there are only 2 degrees of freedom and we can plot it in a 2-D triangle (See Fig.11).
After locating each data point into the 2-D triangle as vertices, we did a Delaunay triangulation over
those points to build edges among vertices. Therefore, we can use Breadth-First Search on this graph
to sample paths in the composition graph and infer thermodynamic rules accordingly.

The XRD pattern of each data point is aD-dimensional vector representing the intensity of the mixture
of XRDs at different diffraction angles (referred asQ values). For Al-Li-Fe oxide system, we have 231
data points (mixtures of XRDs) in the composition graph, 159 stick patterns for the possible phases,
and each data point has 650 different Q values Qi ∈ [15◦, 80◦] and the corresponding intensities
Ii ∈ [0, 1]. For Bi-Cu-V oxide system, we have 353 data points in the composition graph, 100 stick
patterns for the possible phases, and each data point has 4096 different Q values Qi ∈ [5◦, 45◦] and
the corresponding intensities Ii ∈ [0, 1]. To better utilize the memory, we down-sampled the raw data
of Bi-Cu-V oxide system to 512 different Q values. Note that, though we have hundreds of possible
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Figure 10: Deep reasoning networks (DRNets) for crystal-structure-phase-mapping. (a) Prior
knowledge includes the ICDD stick patterns of possible pure phases, which are used to build the GMM
generative module in the decoder, and the thermodynamic rules that help DRNets reason about the
mixture of XRD patterns. (b) reasoning modules batch data points involved in a connected component
of the constraint graph (a path in the composition graph) together, enforce that the structure of the
latent space satisfies prior knowledge, and dynamically adjust the weights of constraints based on
their satisfiability. (c) The overall objective combines responses from the generative decoder and the
reasoning modules.

Al

Fe Li

(80%Al, 5% Fe, 15% Li)

Figure 11: The composition graph of the Al-Fe-Li oxide system. The red path is a sampled path in
the composition graph.

pure phases for each system, only a few phases would appear. For example, in Al-Fe-Li oxide system,
only 6 of them appear and there are 15 different mixtures of those 6 pure phases exist in this system.
For the Bi-Cu-V-O system, there are 13 pure phases and 19 different mixtures. Note that, each XRD
data point is like a cell in the Multi-MNIST-Sudoku (with mixed pure phases) and each pure phase is
like a digit. For Multi-MNIST-Sudoku, we know a priori that there are exact 2 digits in each cell but
the number of mixed pure phases in each XRD is undetermined (1 to 3). Moreover, the number of
possible candidate phases is way more than possible digits (e.g., 159 vs 8), which is the reason why
this task is so challenging.

We also collected a library of possible crystal structures from the International Centre for Diffraction
Data (ICDD) database. Each crystal structure (also named phase) is given as a list of diffraction
peak location-amplitude pairs, (referred to as stick pattern), representing the ideal phase patterns
measured in a perfect condition (see Fig.12). To model more realistic conditions, DRNets simulate
the real phase patterns from stick patterns using Gaussian mixture models, where the relative peak
locations and mixture coefficients are given by the stick locations and amplitudes. Moreover, the
peak width, multiplicative location shift, and possible amplitude variance are parameterized by the
latent encoding zi,j and used by the generative decoder to generate the corresponding possible phase
patterns in the reconstructed XRD measurement.

Imposing thermodynamic rules is challenging, especially when constraints, such as phase field
connectivity and Gibbs-alloying rule, potentially concern all data points in the composition graph.
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Figure 12: Some examples of stick patterns and their corresponding Gaussian Mixture Models. The
horizontal axis denotes the Q values, and the vertical axis denotes the diffraction intensity.

In Multi-MNIST-Sudoku, where each overlapping Sudoku naturally forms the maximal connected
components in the constraint graph, we can easily batch every 16 data points together to reason about
the All-Different constraints among them. However, in Crystal-Structure-Phase-Mapping, since the
maximal connected component involves all data points in the composition graph, neither batching all
data points into the memory nor reasoning about the whole graph is tractable. Therefore, we devised
a strategy of sampling the large connected component through many local structures (still connected
components) and iteratively solve each of them. Specifically, for each oxide system, we sampled
100,000 paths in the composition graph via Breadth First Search to construct a path pool. Then, for
every iteration, DRNets randomly sample a path from the pool and batches the data points along that
path (see 10). Finally, we only reason about the thermodynamic rules along the path. By iteratively
solving sampled local structures (paths) of the ”large” maximal component, we can cost-efficiently
approximate all global constraints.

We summarize the thermodynamic rules we imposed in DRNets:

Gibbs Phase Rule: This rule states the maximum number of co-existing phases, which is imposed
via our relaxation of the k-sparsity constraints.

Gibbs-Alloying Rule: This rule states that if ”alloying” happens, then the maximum number of
possible co-existing phases should decrease by one. ”Alloying” is a phenomenon that the stick
locations of a phase (crystal structure) shift (change) along with adjacent data points. DRNet
explicitly models the shifting ratio in the generative decoder and penalize the difference between
adjacent data points along our sampled path. The reasoning module keeps track of the difference of
shifting ratio between adjacent data points, and when it is larger than a threshold (0.001), we confirm
the existence of ”alloying” and reduce the maximum number of possible co-existing phases by one
via adjusting the threshold c in the k-Sparsity Constraints.

Phase Field Connectivity: This states that the distribution (also referred as activation) of a phase
field should form a connected component in the composition graph, and the variation of the activation
of each phase should also be smooth (see Fig.13). (Herein, the phase field refers to the co-existence of
a combination of phases, including the existence of a pure phase.) We impose this rule by penalizing
the difference of the phase distribution Pi between adjacent data points along our sampled path.

Multiplicative Shifting: This states how a cubic crystal structure shifts when ”alloying” happens,
and this can also be used to approximate the shifting of other crystal structures. We explicitly modeled
the multiplicative shifting in our generative decoder.

Noise Threshold: To remove negligible activations that are mainly caused by noise we applied
simple post-processing that cuts-off all the activations that are lower than 1.0%.

Here, we visualized the DRNets’ solution of Bi-Cu-V oxide system (see Fig.13 and the comparison
among different methods Fig.14).

In our comparison, we evaluated the percentage of data points or phase field that satisfy each
thermodynamic rule. Though IAFD enforced the thermodynamic rule using an external mixed-integer
programming module, it may compromise some rules to achieve a better reconstruction error, which
explains IAFD’s result for Bi-Cu-V oxide system. The phase fidelity loss we mentioned in our
comparison is the JS distance between the de-mixed pure phase and the closest ideal phase generated
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Figure 13: DRNets’ solution for the Bi-Cu-V oxide system. a. The de-mixed crystal phases for the 353
XRD measurements of the Bi-Cu-V oxide system (each plot includes the signal for the recognized phase and
the corresponding ICDD stick pattern). b. DRNets’ phase concentration maps for the corresponding phases
on the left of the map. Dot sizes are proportional to their estimated phase concentrations and heatmap denotes
estimated shifting (alloying). c. DRNets’ crystal phase map for the Bi-Cu-V-O system in the composition graph;
the phase fields are labeled with corresponding crystal phases.
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Figure 14: Comparison of the activation map and the heatmap of L1 reconstruction loss for
different methods for the Bi-Cu-V oxide system: Each row denotes the activation of the different
phases for the the different methods; Though we do not have ground truth for the Bi-Cu-V oxide sys-
tem, the solution generated by DRNets satisfies all thermodynamic rules with excellent reconstruction
performance; The heatmap on the right shows that DRNets reconstruct the XRD measurements much
better than other methods with respect to the (log scale) L1 reconstruction under physical constraints
of decomposed phases; In addition, materials science experts thoroughly checked DRNets’ solution
of Bi-Cu-V oxide system, approved it, and subsequently discovered a new material that is important
for solar fuels technology.

using the ICDD stick patterns and the physical model proposed in Le Bras et al. (2014). The reason
of using JS distance to measure the fidelity is that the location of peaks are the most important
characteristics of a phase pattern. Therefore, by normalizing the XRD patterns of pure phases into
probability distributions, we can use the JS distance to measure the mismatch of ”peaks” between
them.

In terms of the optimization process, DRNets took about 30 minutes to achieve the reported per-
formance for both systems. IAFD and NMF-k have a similar time performance but a much worse
performance w.r.t. the solution quality. In fact, for the Bi-Cu-V oxide system, both NMF-k’s solution
and IAFD’s solution are not physically meaningful.

In summary, by combining reasoning and deep learning, DRNets significantly outperformed the
state of the art and human experts on the crystal-Structure-Phase-Mapping instances, recovering
more precise, interpretable, and physically meaningful crystal structure pattern decompositions,
and even solving phase diagrams of chemical systems that had not been solved before, such as the
Bi-Cu-V-O system, but also other systems not reported here.

A.4.3 OTHER EXPERIMENTS FOR COMBINATORIAL PROBLEMS

As a proof of concept of how DRNets can encode general combinatorial constraints using our entropy-
based continuous relaxation, we solved 9-by-9 Sudoku puzzles and Boolean satisfiability problems
(SAT) using DRNets. For those two tasks, we use a 3-layer-fully-connected network as our encoder
and the reasoning modules.

Figure 15: A standard 9-by-9 Sudoku puzzle: a partially filled Soduku has to be completed as a
valid Sudoku.
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For 9-by-9 Sudoku puzzles, we generated 10,000 instances using the dataset gathered by Gordon
Royle (2014), where each Sudoku instance has 24 to 32 (uniformly distributed) known cells and is
guaranteed to have one unique solution (e.g., see Fig.15). Because a standard 9x9 Sudoku puzzle
requires reasoning about the unknown structure based on given clues, we need to treat each entire
Sudoku as a single input data point. Therefore, in this task, even the All-Different constraints are
conceptually the local constraints since each of them only concerns a single data point. We used a
one-hot encoding for digits 1 to 9 and the empty cell (denoted as 0), and the entire Sudoku is an
810-dimensional input data. We used a 3-layer-fully-connected network with batch normalization
(Ioffe & Szegedy, 2015) as the encoder, where every hidden layer has 2048 units and the output is an
81-by-9 matrix, which represents the digit distributions (1 to 9) for 81 cells. Moreover, we enforced
the distribution of every known cell to collapse to the digit in that cell. For the initial weights, we set
0.0001 for the cardinality constraints and 1.0 for the All-Different constraints. Finally, we trained
DRNets for 800,000 iterations with a batch size of 500, and it took 1 hour to solve the 10,000 9x9
Sudokus with the accuracy reported in this paper.

In our experiments, DRNets achieved the same level of performance as the Recurrent Relational
Networks (RRNets) (Palm et al., 2017), which is the state-of-the-art supervised deep learning 9x9
Sudoku solver (see Table 1).

Instances (10,000) DRNets DRNets + Restart NeuralSAT PDP RRNets
3-SAT n=30 m=129 81.0% (4min) 99.0% (33min) 45.5% (2min+1hr) 78.9% (5min+2hr) NA
3-SAT n=50 m=215 63.3% (7min) 94.0% (47min) 26.1% (3min+1hr) 62.2% (8min+2hr) NA
3-SAT n=100 m=430 34.7% (17min) 77.9% (2hr) 4.7% (5min+1hr) 31.4% (2hr+2hr) NA
3-SAT n=30, m=90 97.9% (5min) 99.9% (6min) 78.5% (2min + 1hr) 99.1% (4min + 2hr) NA

3-SAT n=50, m=150 98.2% (7min) 99.4% (8min) 70.1% (3min + 1hr) 99.2% (7min + 2hr) NA
3-SAT n=100, m=300 98.1% (20min) 99.7% (22min) 52.9% (5min + 1hr) 99.1% (2hr + 2hr) NA

9x9 Sudoku 99.5% (1hr) 99.8% (1hr) NA NA 99.6% (1min+1day)

Table 1: Percentage of instances solved for 3-SAT (m/n = 4.3 and m/n = 3.0) and standard 9x9
Sudoku (24 to 32 known cells). We show the ”test time + training time” for supervised baselines and
the ”solving time” for our unsupervised DRNets. The units min, hr, day denote minute(s), hour(s)
and day(s). m,n denote the number of literals and clauses, respectively. NA, not applicable. DRNets,
without supervision, outperform the supervised state of the art.

For SAT problems, we generated 10,000 satisfiable random 3-SAT instances of different difficulties
based on the number of literals n and the number of clauses m, and our goal is to find a valid
assignment for each literal. We challenged our DRNet with the hardest random 3-SAT instances,
where #clauses/#literals=4.3 (Mitchell et al., 1992), i.e., n = 30,m = 129, n = 50,m = 215 and
n = 100,m = 430. For easier instances (e.g. #clauses/#literals = 3.0), DRNets can almost solve all
instances (see Table 1).

We use a 3-layer-fully-connected network as the encoder, where the number of hidden units in the
network is 2048, 2048, 2048. We used the standard CNF representation of 3-SAT as the input data,
so that each data point is an m-by-3 matrix and the three values in the j-th row represent the three
literals in the j-th clauses. For the initial weights, we select a value from {0.05, 0.03, 0.025, 0.02,
0.01} to be the weight of the entropy loss as we described in the Fig.4 of the main paper. For the
three settings of different difficulty, we consistently trained DRNets with a batch size of 100 and the
running time for solving 10,000 instances varies from several minutes to a couple of hours.

We compared DRNets with NeuroSAT Selsam et al. (2018) and PDP (Amizadeh et al., 2019). Both
NeuroSAT and PDP are the state-of-the-art deep learning SAT solvers with one-bit supervision. In
addition, PDP needs extra optimizing process to solve SAT instances during the test phase, where
it also applied the restart mechanism in their framework. For fair comparison, we saturated the
performance of all our baseline models. For all instances, DRNets took less than 2 hours to achieve
the reported performance with the restart mechanism. Without supervision, DRNets outperformed
both supervised baseline models.

Interestingly, though DRNets are best suited for problems that combine deep learning and reasoning,
such as de-mixing Multi-MNIST-Sudokus or crystal structure phase mapping, it still achieved such a
promising result in pure combinatorial problems. These results further demonstrate that DRNets can
encode a broad range of combinatorial constraints and prior knowledge and effectively combine deep
learning with reasoning.
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