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Abstract

Event cameras such as dynamic vision sensors
(DVS) and dynamic and active-pixel vision sen-
sors (DAVIS) can supplement other autonomous
driving sensors by providing a concurrent stream
of standard active pixel sensor (APS) images and
DVS temporal contrast events. The APS stream
is a sequence of standard grayscale image sen-
sor frames. The DVS events represent brightness
changes. They have dynamic range of >120dB
and effective frame rates >1 kHz with data rates
comparable to 30 fps (frames/second) image sen-
sors. To overcome some of the limitations of cur-
rent image acquisition technology, we investigate
in this work the use of the combined DVS and
APS streams in end-to-end driving applications.
We provide DDD17, the first open dataset of an-
notated DAVIS driving recordings. DDD17 has
12h of a 346x260 pixel DAVIS sensor recording
highway and city driving in daytime, evening,
night, dry and wet weather conditions, along
with vehicle speed, GPS position, etc., and driver
steering, throttle, and brake captured from the
car’s on-board diagnostics interface. As an ex-
ample application, we performed a very prelimi-
nary end-to-end learning study of using a convo-
lutional neural network that is trained to predict
the instantaneous steering angle from DVS and
APS visual data. We provide networks that com-
pute the steering angle using a CNN and a net-
work that includes a small recurrent neural net-
work at the output of the CNN.

1. Introduction

The rapid improvement of machine learning and computer
vision systems has spurred the development of self driving
cars, which have already covered millions of kilometers in
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real world scenarios. It appears that the development of
processing technology and algorithms currently advances
at greater speed than the development of sensing hardware
for capturing the necessary information from the surround-
ings of the vehicle, such as obstacles, traffic, marks, and
signs. Automotive image sensors are being intensively de-
veloped to deal with the conflicting requirements for low
cost, high dynamic range, high sensitivity, and resistance
to artifacts from flickering light sources such as LED traf-
fic signs and car taillights. Operation under bad weather
or lighting conditions is a primary requirement for auto-
motive self driving or automatic driver assistance systems
(ADAS), but current ADAS sensors and systems still face
many problems compared to human driver performance un-
der challenging situations. Since event cameras have been
proposed as possible ADAS sensors (Posch et al., 2014),
we collected data to study the use of an event camera to
augment conventional imager technology.

Rather than providing frame-based video as output, the
event camera dynamic vision sensor (DVS) detects local
changes in the brightness of individual pixels and asyn-
chronously outputs those changes at the time of the changes
(Lichtsteiner et al., 2008; Posch et al., 2014). Thus, only
parts of the scene that change produce data, lowering the
output data rate, increasing the temporal resolution and re-
ducing the latency in comparison to frame-based systems,
since changes in pixel brightness are streamed out of the
camera as they occur. The local instantaneous gain control
increases usability under uncontrolled lighting conditions.
The higher temporal resolution and limited data rate makes
the DVS well suited for autonomous driving applications,
where both latency and power consumption are important.
A dynamic and active-pixel vision sensor (DAVIS) has pix-
els that concurrently output DVS events and standard im-
age sensor intensity frames (Brandli et al., 2014).

Recent studies have shown the utility of using DVS in data-
driven convolutional neural network (CNN) real time ap-
plications (Moeys et al., 2016; Lungu et al., 2017). In
these applications, DVS input frames consisted of a 2D
histogram image of a constant number of a few thousand
DVS events. Pixels of this histogram start out gray and are
drawn whiter or blacker as they accumulate ON and OFF
DVS events. Because the DVS event rate is proportional
to the rate of change of brightness (i.e. scene reflectance
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(Lichtsteiner et al., 2008), the CNN frame rate is variable,
ranging from about 1 fps up to 1 kfps. Moeys et al. (2016)
showed that combining the standard image sensor frames
from the sensor with the DVS frames resulted in higher ac-
curacy and lower average reaction time latency. Here we
extend this work to real world driving in the first published
end-to-end (E2E) dataset of DVS or DAVIS driving data.

2. Davis Driving Dataset 2017 (DDD17)

We collected data from Swiss and German road driv-
ing. The DDDI17 dataset will be hosted at sen-
sors.ini.uzh.ch/databases. For review, the dataset link is

provided ! . The link will be published on paper accep-
tance.
2.1. DAVIS data

Visual data was captured using a DAVIS346B prototype
camera, containing a DAVIS APS+DVS camera, such
that event-based and traditional frame-based data could be
recorded at the same time, through the same optics. The
camera resolution is 346 x 260 pixels. The camera archi-
tecture is similar to Brandli et al. (2014), but the sensor has
2.1X more pixels and includes on-chip column parallel ana-
log to digital converters (ADCs) for frame-based APS out-
put up to 50 fps. The DAVIS346B also has optimized pho-
todiodes with microlenses that increase fill factor and re-
duce dark current, thereby improving operation at low light
intensities. A fixed focal length lens (C-mount, 6mm) was
used for all recordings, providing a horizontal field of view
of 56°. The aperture was set manually, depending on light-
ing conditions. The APS frame rate was dependent through
exposure duration on lighting conditions to a value between
10 fps and 50 fps; in some recordings it varied depending
on the auto-exposure duration algorithm. The frames were
captured using the DAVIS global shutter mode to minimize
motion artifacts. The camera was mounted using a glass
suction tripod mount behind the windshield, just below the
rear mirror, and aligned to point to the center of the hood.
Markers on the car hood were used to align the camera
for each recording session. A polarization filter was used
in some of the recordings to reduce windshield and hood
glare. The camera was powered and connected to a laptop
computer by high speed USB 2.0. The raw data was read
out using inilabs cAER software® and streamed to the cus-
tom recording framework described in Sec. 2.3 for further
processing.
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2.2. Vehicle control and diagnostic data

Data was acquired using a rented Ford Mondeo MK 3 Eu-
ropean Model. We used the $130 OpenXC Ford Reference
vehicle interface, that plugs into the passenger compart-
ment OBDII port, to read out control and diagnostic data
from the car’s CAN bus. The vehicle interface connects to
a host USB port>.

The vehicle interface was programmed with the vendor-
provided firmware for the Ford Mondeo MK 3 car model
and read out using the OpenXC python library*. The raw
data was passed to the custom recording software described
in Sec. 2.3. The following quantities were read out at rates
of about 10Hz each. Possible targets for experiments in
E2E learning are in boldface.

steering wheel angle (degrees, up to 720°)
accelerator pedal position (% pressed),
brake pedal status (pressed/not pressed),
engine speed (rpm),

vehicle speed (km/h),

latitude,

longitude,

headlamp status (on/off),

high beam status (on/off),

windshield wiper status (on/off),
odometer (km),

torque at transmission,

transmission gear position (gear no.),

fuel consumed since restart,

fuel level (%),

ignition status,

parking brake status (on/off).

2.3. Recording and viewing software

A python software framework > for recording, viewing,
and exporting the data was created for the main purpose
of combining and synchronizing the data from the differ-
ent input devices and storing it in a standardized file for-
mat. In particular, since the APS frames and DVS data
are microsecond time-stamped on the camera using its own
clock, whereas the data provided by the vehicle interface is
not, both data streams were augmented with the millisec-
ond system time of the recording computer, which could
then be used for synchronization. The computer time was
synchronized to a standard time server before recordings.
Both streams were processed by individual processes to
ensure timely addition of the timestamps. With the vehi-
cle interface streaming data at rates of only around 10 Hz
per recorded variable, such off-device time-stamping is jus-

30penXC vehicle interface
*OpenXC getting started guide
>ddd17-utils
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tified. The data was stored in HDF5 format, for which
widely used libraries for various environments exist. Each
data type (e.g. DVS events, steering wheel angle, vehicle
speed...) was stored in a separate container, each contain-
ing one container for the system timestamp and one for the
data. In this way, the system timestamp can be used for
fast indexing and for synchronizing the data when read-
ing. With data being provided at irregular intervals by the
recording devices, each data type was stored in an event-
driven fashion, such that different containers contain dif-
ferent numbers of samples. The DAVIS data was stored in
its native CAER AER-DAT?3.1 format® in each HDF5 con-
tainer.

In addition to the recording framework, a python viewer
view.py visualizes the recorded DAVIS data together
with selected vehicle data such as the steering angle or
speed (Fig. 1). The script export .py exports the data
into frames for preparing data for further processing by ma-
chine learning algorithms.

Figure 1. Example scenario visualized by the recording file
viewer. The top panels show the DAVIS frames (left; overlaid
with some driving data) and events (right), the bottom panel
shows a progress bar as well as visualizations of different vehi-
cle data (headlamp status at the top, steering angle in the middle,
speed at the bottom).

3. Recorded data

In total, over 12h of data were recorded under various
weather, driving, road, and lighting conditions on six con-
secutive days, covering over 1000km of different types
of roads in Switzerland and Germany. Recordings were
started and stopped manually and typically have durations
of between a minute and an hour. The resulting recordings
are summarized in Table 1. Fig. 2 shows the distributions
of several recorded variables over the whole dataset. Steer-
ing angles are dominated by straight driving and small de-
viations of +10°. Speed is uniformly distributed over the
range 0-160km/h. The automatically controlled headlight
is on about half the time, indicating a substantial fraction

Sinilabs file formats

of the data was captured in low-light conditions.
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Figure 2. Statistical distribution of various recorded signals.

4. Experiments: Steering prediction network

EZ2E learning of a control model is an initial approach for
self-driving applications, since it eliminates the need for
tedious hand-labeling of the data or features — a task which
is prohibitive in the face of the enormous amounts of data
acquired by today’s vehicles (Bojarski et al., 2016). E2E
has clear limitations, since it cannot predict user intentions
and the dataset tends to be very unbalanced. Nevertheless,
under some conditions such as highway driving or driving
along roads without turns onto other roads or unpredictable
user actions, it can be used to study the quality of recorded
data.

We trained simple steering prediction networks. These
networks take input APS and/or DVS data and attempt
to predict the instantaneous steering wheel angle. They
are inspired by LeCun’s early work (LeCun et al., 2005),
the seminal open dataset from comma.ai (Santana & Hotz,
2016), and by recent Nvidia (Bojarski et al., 2016) and un-
published VW studies.

Our results compared the steering prediction accuracy of
using pure APS, pure DVS, and combined APS and DVS
data. Our study should be regarded as a preliminary study
mainly done to validate the usability of the data and asso-
ciated scripts. We only had time to train on two recordings
(1487858093 and 1487433587 in Table 1). Work is ongo-


https://inilabs.com/support/software/fileformat/

DAVIS Driving Dataset 2017 - DDD17

File(.hdf5) Scene Cond. Dur. (s) | GB
1487339175 | cty wet 347 2.8
1487349453 | campus dark 192 1.7
1487350455 | fwy ngt, rain | 1404 11.2
1487354030 | cty ngt, wet | 377 3
1487354811 | cty ngt, wet | 190 1.4
1487355025 | cty ngt, wet | 57 0.4
1487355090 | cty, hwy | ngt, wet | 984 59
1487356509 | fwy ngt, wet | 2233 12.4
1487417411 | fwy day 2096 18.2
1487419513 | fwy day 1976 18.3
1487424147 | m. fwy day 3040 30.3
1487427200 | fwy day 1947 17.6
1487430438 | fwy day 3135 26.2
1487433587 | fwy+cty | ngt 2355 18.5
1487593224 | hwy day 586 53
1487594667 | fwy day 2985 29.7
1487597945 | cty evening | 50 0.5
1487598202 | fwy day 1882 15.1
1487600962 | fwy day 2143 15.1
1487608147 | fwy evening | 1208 9
1487609463 | fwy evening | 1458 6.3
1487778564 | campus day 101 1.1
1487779465 | cty+hwy | day 1170 11.2
1487781509 | campus evening | 127 0.6
1487782014 | cty+hwy | evening | 1118 7.3
1487839456 | cty day, sun | 406 5.7
1487842276 | cty day, sun | 625 9.5
1487844247 | cty day, sun | 523 7.5
1487846842 | twn+hwy | day, sun | 1799 20.6
1487849151 | twn day, sun | 429 5.5
1487849663 | twn+hwy | day, sun | 2863 34.7
1487856408 | twn day, sun | 817 13.2
1487857941 | twn day, sun | 99 1.4
1487858093 | cty day, sun | 2421 34.7
1487860613 | cty day, sun | 1065 17.4
1487864316 | cty+fwy | evening | 1087 12.9

Table 1. Summary of the acquired data. Keys: hwy=highway,
fwy=freeway, cty=city, twn=town, ngt=night. GB=size of record-
ing in gigabytes. Dur.=duration of recording in seconds.

ing to train more architectures using more of the data.

Fig. 3 shows our very first results, obtained from a CNN
with 4 convolutional layers, each with 8 feature maps and
using 3x3 kernels and trained on a single 1.5h recording.
Each layer is followed by 2x2 max pooling. The final fea-
ture map layer is mapped to a 64-unit fully connected (FC)
layer. The FC layer is mapped to an output steering angle
in the range +180°. The DVS and APS inputs were sub-
sampled to 80x60 images. Input frame normalization was
done as in Moeys et al. (2016).

Our quantitative accuracy results are too inconclusive to re-
port but we have verified the usability of the dataset and
tools. Further analysis is necessary and this work is ongo-
ing.
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Figure 3. Steering prediction initial result. Compares our first
APS and DVS steering prediction result. A: DVS frame and CNN
output. B: APS frame and CNN output. C: segment of time his-
tory.

5. Conclusion

The main result of this paper is to introduce the DDD17
first open dataset of DAVIS driving data with end-to-end
labeling, along with necessary software tools. A prelimi-
nary study on an end-to-end CNN and CNN/RNN networks
show usability of the data. We are working to present ap-
plications of this data at the workshop.
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