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ABSTRACT

Black-box adversarial attacks require a large number of attempts before finding
successful adversarial examples that are visually indistinguishable from the orig-
inal input. Current approaches relying on substitute model training, gradient esti-
mation or genetic algorithms often require an excessive number of queries. There-
fore, they are not suitable for real-world systems where the maximum query num-
ber is limited due to cost. We propose a query-efficient black-box attack which
uses Bayesian optimisation in combination with Bayesian model selection to op-
timise over the adversarial perturbation and the optimal degree of search space
dimension reduction. We demonstrate empirically that our method 1 can achieve
comparable success rates with 2-5 times fewer queries compared to previous state-
of-the-art black-box attacks.

1 INTRODUCTION

Deep learning algorithms are widely deployed in many real-world systems and are increasingly be-
ing used for tasks, ranging from identity verification (Liu et al., 2018), to financial services (Heaton
et al., 2017) to autonomous driving (Bojarski et al., 2016). However, even the most accurate deep
learning models can be easily deceived by perturbations which are visually imperceptible to the hu-
man eye (Szegedy et al., 2013; Carlini et al., 2016). The growing costs and risks associated with the
potential model failures has led to the importance of studying adversarial attacks, both in assessing
their robustness and their ability to detect such attacks. In this paper we focus on highly practical
adversarial attacks that fulfill the following two criteria. First, the attack is designed for a black-box
setting because in real-world examples, the attacker would normally have no knowledge of the target
deep learning model and can only interact with the model by querying it. Second, query efficiency
is highly prioritised because in practical cases where the damage caused by the attack is high, the
query budget available to the attacker will be highly limited due to the risk of being detected by the
defence system or other high inherent costs (monetary or computational) of model evaluations.

Despite of the large array of adversarial attacks proposed in the literature, many of them are white-
box approaches that assume full access to the target model architecture and the ability of performing
back-propagation to get gradient information (Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016;
Gu & Rigazio, 2014; Goodfellow et al., 2014; Chen et al., 2018; Carlini & Wagner, 2017). On the
other hand, for black-box attacks, there are various techniques that have been used which do not
require access to the model architecture. One class of methods trains a white-box substitute model
and attacks the target model with adversarial examples that successfully fool the substitute (Papernot
et al., 2017). However, this type of method requires the availability of the original training data or
large query data to train the substitute network and the performance is often limited by the mismatch
between the substitute and the target models (Su et al., 2018). The second class of black-box attacks,
which show better empirical performance than the substitute model approaches, numerically esti-
mate the gradient of the target model by repeatedly querying it (Chen et al., 2017; Ilyas et al., 2018;
Tu et al., 2018) and attack with the estimated gradient. Although various techniques are employed to
increase the query efficiency for the gradient estimation, they need an excessively large query bud-
get to achieve a successful attack (Alzantot et al., 2018). Another line of work removes the need for
gradient estimation and uses decision-based techniques (Brendel et al., 2017) or genetic algorithms

1Our code is available at https://github.com/rubinxin/BayesOpt_Attack.git
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(Alzantot et al., 2018) to generate adversarial examples. One popular technique that is adopted by
many black-box attacks (Chen et al., 2017; Alzantot et al., 2018; Tu et al., 2018) to significantly
improve the query efficiency is to search for adversarial perturbations in a low-dimensional latent
space (search dimensionality reduction). However, learning the effective dimensionality of the latent
search space can be challenging by itself, and has not been investigated by the prior works to the
best of our knowledge.

In light of the above limitations, we propose a query efficient black-box attack that iteratively op-
timises over both the adversarial perturbation and the effective dimensionality of the latent search
space. Our main contributions are summarised as follows:

• We introduce a novel gradient-free black-box attack method, BayesOpt attack, which uses
Bayesian optimisation with Gaussian process surrogate models to find the effective adver-
sarial example and is capable of dealing with high-dimensional image inputs.

• We proposes a Bayesian technique which learns the optimal degree of search dimension-
ality reduction by harnessing our statistical surrogate and information from query data.
This technique can be incorporated naturally into our attack procedure, leading to efficient
optimisation over both adversarial perturbation and the latent search space dimension.

• We empirically demonstrate that under the L∞ constraint, our proposed attack method can
achieve comparable success rate with about 2 to 5 times fewer model queries in comparison
to current state-of-the-art query-efficient black box attack methods.

2 RELATED WORK ON BLACK-BOX ATTACKS

Most of the existing adversarial attacks (Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016; Gu &
Rigazio, 2014; Goodfellow et al., 2014; Chen et al., 2018; Carlini & Wagner, 2017) focus on white-
box settings, where the attacker can get full access to the target model and has complete knowledge
of the architecture, weights and gradients to generate successful adversarial examples. However,
real-world systems are usually attacked in a black-box setting, where one has no knowledge about
the model and can only observe the input-output correspondences by querying the model. Here we
give a brief overview of various existing black-box attacks.

Substitute model One class of black-box attacks uses data acquired from querying the target black-
box model to train a substitute model (Papernot et al., 2017), which mimics the classification be-
haviour of the target model. The adversary can then employ any white-box method to attack the
fully observable substitute model and apply the successful adversarial example to the target model.
Such approaches rely on the transferability assumption that adversarial examples which are effective
to the substitute model are also very likely to conceive the target model given their similar classifica-
tion performance on the same data (Szegedy et al., 2013). Moreover, to provide training data for the
substitute model, the adversary either requires information on the target model’s training set, which
is highly unrealistic in real-world applications, or needs to build a synthetic training set by querying
the target model (Papernot et al., 2017), which implies a large number of model evaluations and
becomes hardly feasible for large models or complex datasets (Brendel et al., 2017).

Gradient estimation An alternative to training a substitute model is to estimate the gradient via
finite differences and use the estimated gradient information to produce attacks. However, the naive
coordinate-wise gradient estimation requires excessive queries to the target model (2 queries per co-
ordinate per descent/attack step) and thus is not feasible for attacking models with high dimensional
inputs (e.g. classifiers on ImageNet). Chen et al. (2017) overcome this limitation by using stochastic
coordinate gradient descent and selecting the batch of coordinates via importance sampling, intro-
ducing the state-of-the-art zeroth-order attack, ZOO, which achieves comparable attack success rate
and perturbation costs as many white-box attacks. Although ZOO makes it computationally tractable
to perform black-box attack on high-dimensional image data, it still requires millions of queries to
generate a successful adversarial example, making it impracticable for attacking real-world systems
where model query can be expensive and the budget limited. Improving on ZOO, AutoZOOM (Tu
et al., 2018) significantly enhances the query efficiency by using random vectors to estimate the full
gradient and adjusting the estimation parameter adaptively to trade off query efficiency vs. input per-
turbation cost. More importantly, AutoZOOM shows the benefits of employing dimension reduction
techniques in accelerating attacks (i.e. searching for adversarial perturbation in a low-dimensional
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latent space and decoding it back to the high-dimensional input space). Parallel work by Ilyas et al.
(2018) estimate the gradient through a modified version of natural evolution strategy which can be
viewed as a finite-difference method over a random Gaussian basis. The estimated gradient is then
used with projected gradient descent, a white-box attack method, to generate adversarial examples.

Gradient-free optimisation As discussed, gradient-estimation approaches in general need an ex-
cessive number of queries to achieve successful attack. Moreover, their dependence on the gradient
information makes them less robust to defences which manipulate the gradients (Athalye et al., 2018;
Brendel et al., 2017; Guo et al., 2017). Thus, truly gradient-free methods are more likely to bypass
such defences. One recent example, which has demonstrated state-of-the-art query efficiency, is
GenAttack (Alzantot et al., 2018). GenAttack uses genetic algorithms to iteratively evolve a popu-
lation of candidate adversarial examples. Besides having an annealing scheme for mutation rate and
range, GenAttack also adopts dimensional reduction techniques, similar to AutoZOOM, to improve
the query efficiency. In parallel to GenAttack, Brendel et al. (2017) introduce a decision-based at-
tack, Boundary Attack, which only requires access to the final model decision. Boundary Attack
starts from a huge adversarial perturbation and then iteratively reduces the perturbation through a
random walk along the decision boundary. However, Boundary Attack takes about 72 times more
queries than GenAttack to fool an undefended ImageNet model (Alzantot et al., 2018). Another
recent approach introduced in Moon et al. (2019) reduces the search space to a discrete domain and
subsequently uses combinatorial optimisation to find successful attacks, mostly focusing on the less
challenging setting of untargeted attacks. Finally, the prior works that use Bayesian optimisation for
adversarial attacks (Suya et al., 2017; Zhao et al., 2019) only investigate the use of simple Gaussian
process as the surrogate model and are limited in their performance. The method proposed in (Suya
et al., 2017) deals with the untargetted attack setting and only demonstrates the effectiveness of
Bayesian optimisation in comparison to random search on a low-dimensional (d = 57) email attack
task. BO-ADMM proposed in (Zhao et al., 2019) works on image data but it applies Bayesian op-
timisation directly on the search space of image dimension to minimise the joint objective of attack
loss and distortion loss. Despite its query efficiency, BO-ADMM leads to poor-quality adversarial
examples of large distortion loss.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

We focus on the black-box attack setting, where the adversary has no knowledge about the network
architecture, weights, gradient or training data of the target model f , and can only query the target
model with an input x to observe its prediction scores on all C classes (i.e. f : Rd −→ [0, 1]C)
(Tu et al., 2018; Alzantot et al., 2018). Moreover, we aim to perform targeted attacks, which is
more challenging than untargeted attacks, subject to a constraint on the maximum change to any of
the coordinates (i.e., a L∞ constraint) (Warde-Farley & Goodfellow, 2016; Alzantot et al., 2018).
Specifically, targeted attacks refer to the case where given a valid input xorigin of class torigin (i.e.
argmaxi∈{1,...,C} f(xorigin)i = torigin) and a target t 6= torigin, we aim to find an adversarial in-
put x, which is close to xorigin according to the L∞−norm, such that argmaxi∈{1,...,C} f(x)i = t.
Untargeted adversarial attacks refer to the case that instead of classifying xorigin as torigin, we try
to find an input x so that argmaxi∈{1,...,C} f(x)i 6= torigin.

In our approach, we follow the convention to optimise over the perturbation δ instead of the adver-
sarial example x directly (Chen et al., 2017; Alzantot et al., 2018; Tu et al., 2018). Therefore, our
problem can be formulated as:

argmax
i∈{1,...,C}

f(xorigin + δ)i = t s.t. ‖δ‖∞ ≤ δmax (1)

3.2 BAYESIAN OPTIMISATION

Bayesian optimisation (BayesOpt) is a query-efficient approach to tackle global optimisation prob-
lems (Brochu et al., 2010). It is particularly useful when the objective function is a black-box and
is costly to evaluate. There are 2 key components in BO: a statistical surrogate, such as a Gaussian
process (GP) or a Bayesian neural network (BNN) which models the unknown objective, and an
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acquisition function α(·) which is maximised to recommend the next query location by trading off
exploitation and exploration (see Algorithm 3 in Appendix A for standard BayesOpt).

4 BAYESOPT ATTACK

4.1 BAYESOPT ATTACK OBJECTIVE

It has been shown that reducing the dimensionality of the search space in Equation (1) increases
query efficiency significantly (Chen et al., 2017; Tu et al., 2018; Alzantot et al., 2018). Due to our
focus on the small query regime where our surrogate model needs to be trained with a very small
number of observation data, we adopt the previously suggested dimensionality reduction technique,
bilinear resizing, to reduce the challenging problem of optimising over high-dimensional input space
of x ∈ Rd to one over a relatively low-dimensional input space, setting x = xorigin + g(δ) where
δ ∈ Rdr

with dr < d and g : Rdr −→ Rd being the bilinear resizing decoder2.

Furthermore, we follow the approach of smoothing the discontinuous objective function in Equation
(1), which has been found to be beneficial in previous work (Chen et al., 2017; Tu et al., 2018;
Alzantot et al., 2018). Together with the dimensionality reduction, this leads to the following black-
box objective problem for our Bayesian optimisation:

δ∗ = argmax
δ

y(δ) s.t. δ ∈ [−δmax, δmax]
dr

(2)

where y(δ) =

log f(xorigin + g(δ))t − log

C∑
j 6=t

f(xorigin + g(δ))j


4.2 GP-BASED BAYESOPT ATTACK

We first use BayesOpt with a standard GP as the surrogate to solve for the black-box attack objective
in the reduced input dimension in Equation (2). The GP encodes our prior belief on the objective y :

y ∼ GP(µ(δ), k(δ, δ′)) (3)

which is specified by a mean function µ and a kernel/covariance function k (we use the Matern-5/2
kernel in our work). In our work, we normalise the objective function value and thus use a zero-
mean prior µ(·) = 0. The predictive posterior distribution for yt at a test point δt conditioned on the
observation data Dt−1 = {δi, yi}t−1i=1 = {δ1:t−1,y1:t−1} then has the form:

p(yt|δt,Dt−1) = GP(y;µy(·), ky(·, ·)) (4)

where

µy(δt) = k(δt, δ1:t−1)K
−1
1:t−1y1:t−1, (5)

ky(δt, δ
′
t) = k(δt, δ

′
t)− k(δt, δ1:t−1)K−11:t−1k(δ1:t−1, δ

′
t). (6)

where K1:t−1 = K(δ1:t−1, δ1:t−1) is the t− 1× t− 1 matrix with pairwise covariances k(δl, δ′m),
l,m ≤ t− 1 as entries. The optimal GP hyper-parameters θ∗ such as the length scales and variance
of the kernel function k can be learnt by maximising the marginal likelihood p(Dt−1|θ) which has
analytic form as presented in Appendix F. Please refer to (Rasmussen, 2003) for GPs.

Based on the predictive posterior distribution, we construct the acquisition function α(δ|Dt−1) to
help select the next query point δt. The acquisition function can be considered as a utility measure
which balances the exploration and exploitation by giving higher utility to input regions where the
functional value is high (high µy) and where the model is very uncertain (high ky). The approach of
using BayesOpt with a GP surrogate to attack the target model is described in Algorithm 1.

2Note that our method is not dependent on a particular choice of decoder, i.e. it could also be used together
with an autoencoder- or PCA-based dimensionality reduction technique.
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Algorithm 1 BayesOpt Attack

1: Input: A black-box function y, observation data D0, iteration budget T , a decoder g(·)
2: Output: The best recommended adversarial example x∗ = xorigin + g(δ∗)
3: for t = 1, . . . , T do
4: Select δt = argmaxαt(δ|Dt−1)
5: yt = y(δt) and Dt ← Dt−1 ∪ (δt, yt)
6: Update the surrogate model with Dt

7: end for

4.3 ADDITIVE GP-BASED BAYESOPT ATTACK

Although techniques such as bilinear resizing are able to reduce the input dimension from the orig-
inal image size (e.g. d = 3072 for CIFAR10 image) to a much lower dimension (e.g. d′ = 192),
the reduced search space for the adversarial attack is still considered very high dimensional for
GP-based BayesOpt (which is usually applied on problems with d′ ≤ 20).

There are two challenges in using BayesOpt for high dimensional problems. The first is the
curse of dimensionality in modelling the objective function. When the unknown function is high-
dimensional, estimating it with non-parametric regression becomes very difficult because it is im-
possible to densely fill the input space with finite number of sample points, even if the sample size is
very large (Györfi et al., 2006). The second challenge is the computational difficulty in optimising
the acquisition function. The computation cost needed for optimising the acquisition function to
within a desired accuracy grows exponentially with dimension (Kandasamy et al., 2015).

We adopt the additive-GP model (Duvenaud et al., 2011; Kandasamy et al., 2015) to deal with
the above-mentioned challenges associated with searching for adversarial perturbation in the high
dimensional space. The key assumption we make is that the objective can be decomposed into a
sum of low-dimensional composite functions:

y(δ) =

M∑
j=1

y(j)(δ(Aj)) (7)

where δ(Aj) denotes disjoint low-dimensional subspaces, δ = ∪Mj=1δ
(Aj) and δ(Aj) ∩ δ(Ai) = ∅ for

all j 6= i. If we impose a GP prior for each y(j), the prior for the overall objective y is also a GP: y ∼
GP(µ(δ), k(δ, δ′)) where µ(δ) =

∑M
j=1 µ

(j)
(
δ(Aj)

)
and k(δ, δ′) =

∑M
j=1 k

(j)
(
δ(Aj), δ′(Aj)

)
.

The predictive posterior distribution for each subspace p(y(j)1:t−1|δ
(Aj)
t ,Dt) is:

µ(j)
y (δ

(Aj)
t ) = k(j)(δ

(Aj)
t , δ

(Aj)
1:t−1)K

−1
1:t−1y1:t−1,

k(j)y (δ
(Aj)
t , δ

′(Aj)
t ) = k(j)(δ

(Aj)
t , δ

′(Aj)
t )− k(j)(δ(Aj)

t , δ
(Aj)
1:t−1)K

−1
1:t−1k

(j)(δ
(Aj)
1:t−1, δ

′(Aj)
t ).

In our case, the exact decomposition (i.e. which input dimension belongs to which low-dimensional
subspace) is unknown but we can learn it together with other GP hyperparameters by maximising
marginal likelihood (Kandasamy et al., 2015). We demonstrate the effectiveness of our decompo-
sition learning in Appendix E. Note that in this case, the acquisition function is formulated based
on p(y(j)t |δ

(Aj)
t ,Dt) for each subspace and is also optimised in the low-dimensional subspace, thus

leading to much more efficient optimisation task. The optimal perturbations in all the subspaces
{δ(Aj)∗}Mj=1 are then combined to give the next query point δt.

4.4 LEARNING THE OPTIMAL dr

Generating the successful adversarial example x ∈ Rd by searching perturbation in a reduced di-
mension δ ∈ Rdr

has become a popular practice that leads to significant improvement in query
efficiency (Chen et al., 2017; Tu et al., 2018; Alzantot et al., 2018). However, what the optimal dr
is and how to decide it efficiently have not been investigated in previous work (Chen et al., 2017;
Tu et al., 2018; Alzantot et al., 2018). As we shown empirically in Section 5.1, setting dr arbitrarily
can lead to suboptimal attack performance in terms of query efficiency, attack success rate as well
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Algorithm 2 Bayesian selection of dr

1: Input: A decoder g(·), observation data Dd
t−1 = {g(δi), yi}t−1i=1 where g(δi) ∈ Rd and a set of

possible dr : {drj}Nj=1
2: Output: The optimal reduced dimension dr∗ and the corresponding GP model
3: for j = 1, . . . , N do
4: Ddr

j

t−1 = {g−1 (g(δi)) , yi}t−1i=1 where g−1 (g(δi)) ∈ Rdr
j

5: Fit a GP model to Ddr
j

t−1 and computes its maximum marginal likelihood p(Dd
t−1|θ∗, drj)

6: end for
7: Select dr∗ = argmaxdr

j∈{dr
j}Nj=1

p(Dd
t−1|θ∗, drj) and its correspond GP model

as perturbation costs while finding a good dr by trial and error or progressive increasing is compu-
tationally expensive and highly inefficient because the optimal dr varies with different attack input
xorigin. An effective way of learning dr is thus very important for adversarial attacks. In this sec-
tion, we propose a rigorous method, which is neatly compatible with our attack technique, to learn
the optimal dr from the query information.

The optimal dr should be the one that both takes into consideration our prior knowledge on the
discrete dr choices and at the same time best explain the observed query data. Given that our
BayesOpt attack uses a statistical surrogate (i.e. GP in our case) to model the unknown relation
between the attack objective score y and the adversarial perturbation δ, this naturally translates to
the criterion of maximising the posterior for dr:

p(dri |Dt−1) =
p(Dt−1|dri )p(dri )

p(Dt−1)
(8)

where p(Dt−1|drj) is the marginal likelihood (evidence) of adopting a specific drj , p(drj) is our prior
over the possible dr values and p(Dt−1) =

∑
i p(Dt−1|drj)p(drj) is a normalising constant. If we

match different drj to different model choice, the problem of choosing dr then becomes the classic
Bayesian model selection task (Rasmussen, 2003). In most cases, our prior assumption is that we do
not prefer one dr over another (i.e. flat prior p(drj) = p(dri ) for j 6= i) and thus we can select dr by
comparing their evidence(MacKay & Mac Kay, 2003):

p(drj |Dt−1)

p(drj |Dt−1)
=
p(Dt−1|drj)p(drj)
p(Dt−1|drj)p(drj)

=
p(Dt−1|drj)
p(Dt−1|drj)

. (9)

The exact computation of the evidence term requires marginalisation over model hyper-parameters,
which is intractable. We approximate the integral with point estimates (i.e. marginal likeli-
hood of our GP model): p(Dt−1|drj) =

∫
p(Dt−1|θ, drj)p(θ|drj)dθ ≈ p(Dt−1|θ∗, drj) where

θ∗ = argmaxθ p(Dt−1|θ, drj). For query efficiency, we project the same perturbation query data in
the original image dimension Dd

t−1 = {g(δi), yi}t−1i=1 to different latent spaces to get corresponding
low-dimensional training data sets for separate GP models. The GP model that corresponds to drj
is trained on Ddr

j

t−1 = {g−1 (g(δi)) , yi}t−1i=1 where g−1 (g(δi)) ∈ Rdr
j . Then we select the optimal

dr by comparing the marginal likelihood p(Ddr
j

t−1|θ∗, drj) of each GP surrogate. The overall proce-
dure for dr selection is described in Algorithm 2. We would like to highlight that the use of the
statistical surrogate in our BayesOpt attack approach enables us to naturally use the Bayesian model
selection technique to learn the optimal dr that automatically enjoy the trade-off between data-fit
quality and model complexity. And we also show empirically in Section 5.3 that by automating and
incorporating the learning of dr into our BayesOpt attack, we can gain higher success rate and query
efficiency. Other adversarial attacks methods can also use our proposed approach to decide dr but it
would require the additional efforts of constructing statistical models to provide p(Dt−1|drj).

5 EXPERIMENTS

We empirically compare the performance of our BayesOpt attacks against the state-of-the-art black-
box methods such as ZOO (Chen et al., 2017), AutoZOOM(Tu et al., 2018) and GenAttack (Alzantot
et al., 2018). We denote the BayesOpt attack with standard GP surrogate as GP-BO, its variant that
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Figure 1: Performance of BayesOpt attack with GP surrogate in different reduced dimension dr.
Each color represents a particular dr. The left subplot shows the attack success rates(ASR) for
attacking all the other 9 classes on each of the 5 original images. The dr that leads to the highest
ASR varies with the original images. The middle subplot shows the number of queries needed to
attack the same attack instances (i.e. the same original image and the same attack target) by using
different dr. For the same 4 attack instances, the right subplot show the effect of the choice of dr
on the L2 distances between the resultant adversarial examples and the original image.

learns the dr automatically is GP-BO-auto-dr as well as the attack with additive GP surrogate as
ADDGP-BO. For all the BayesOpt methods, we use GP-UCB as the acquisition function 3 and
update the GP hyperperameters every 5 BayesOpt iterations. We relearn the optimal dr for GP-BO-
auto-dr and the search space decomposition for ADDGP-BO every 40 iterations. For ADDGP-BO,
we decompose the search spaces into M = 12 sub-spaces of equal dimensions for MNIST and
CIFAR10 and into M = 27 sub-spaces for ImageNet.

The target models that we attack follow the same architectures as that used in AutoZOOM and
GenAttack; These are image classifiers for MNIST (a CNN with 99.5% test accuracy) and CIFAR10
(a CNN with 80% test accuracy). Following the experiment design in (Tu et al., 2018), we randomly
select 50 correctly classified images from CIFAR10 test data and MNIST test data. We then perform
targeted attacks on these images. Each selected image is attacked 9 times, targeting at all but its true
class and this gives a total of 450 attack instances for both CIFAR10 and MNIST. For ImageNet, we
also select 50 correctly classified images from the test set but perform one random targeted attack for
each image. We set δmax = 0.3 for attacking MNIST and δmax = 0.05 for CIFAR10 and ImageNet,
which are used in (Alzantot et al., 2018). We use the recommended parameter setting and their open
sourced implementations for performing all competing attack methods (Chen et al., 2017; Tu et al.,
2018; Alzantot et al., 2018).

5.1 EFFECT OF dr

We first empirically investigate the effect of the reduced dimensionality dr of the latent space in
which we search for the adversarial perturbation. We experiment with the GP-based BayesOpt
attacks for the CIFAR10 classifier using reduced dimension of dr = {6 × 6 × 3, 8 × 8 × 3, 10 ×
10× 3, 12× 12× 3, 14× 14× 3, 16× 16× 3, 18× 18× 3} and perform targeted attacks on 5 target
images with each image being attacked 9 times, leading to 45 attack instances. We first investigate
the attack success rate (ASR) achieved at different dr for all the 5 images. The results on ASR out of
the 9 targeted attacks for each of the 5 images, which are indicated by Image ID 1 to 5, are shown in
the left subplot of Figure 1. It’s evident that the dr which leads to highest attack success rate varies
for different original images xorigin.

We then examines how the dr affects the query efficiency and attack quality (average L2 distance
of the adversarial image from the original image) for the attack instances (e.g. make the classifier
to mis-classify a airplane image as a cat) that GP-based BayesOpt can attack successfully at all dr.
We present the results on 4 attack instances of a airplane image in the middle and right subplots of
Figure 1. We can see that even for the same original image and attack instances, varying dr can

3The parameter that trades off exploration and exploitation is set to 2.
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Table 1: Attack results on 50 random MNIST images by using dr = 14 × 14 × 1. Q denotes the
query count. ASR denotes attack success rate. The standard errors are in parentheses.

Attack method ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

ADDGP-BO 97% 829, 46, 95(±6) 6.81× 10−3(±3.12× 10−5)
GP-BO-auto-dr 98% 833, 75, 121(±6) 6.89× 10−3(±5.55× 10−5)
GP-BO 82% 899, 42, 77(±5) 7.15× 10−3(±4.17× 10−5)
GenAttack 92% 986, 146, 217(±9) 6.66× 10−3(±2.81× 10−5)
AutoZOOM 99% 998, 229, 265(±9) 5.05× 10−3(±7.71× 10−5)
ZOO 1% 256, 128, 128(±64) 2.78× 10−3(±3.53× 10−5)

Table 2: Attack results on 50 randomly selected CIFAR10 images with dr = 14×14×3. Q denotes
the query count. ASR denotes attack success rate.The standard errors are in parentheses.

Attack method ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

ADDGP-BO 87% 885, 154, 222(±10) 5.87× 10−4(±3.22× 10−6)
GP-BO-auto-dr 87% 891, 159, 234(±10) 5.96× 10−4(±5.00× 10−6)
GP-BO 72% 899, 141, 190(±8) 5.78× 10−4(±4.67× 10−6)
GenAttack 68% 991, 246, 329(±14) 7.38× 10−4(±4.14× 10−6)
AutoZOOM 38% 896, 102, 154(±11) 9.97× 10−4(±1.53× 10−5)
ZOO 4% 768, 256, 369(±57) 1.77× 10−4(±1.16× 10−5)

impact query efficiency and L2 norm of the successful adversarial perturbation significantly. For
example, dr = 8 × 8 × 3 is most query efficient for attack instance 1 and 4 but is outperformed by
other dimensions in attack instance 2 and 3. Therefore, the importance of dr and the difficulty of
finding the optimal dr for a specific target/image motivates us to derive our method for learning it
automatically from the data. As shown in the following sections, our dr learner does lead to more
superior attack performance.

5.2 PERFORMANCE UNDER A FIXED QUERY BUDGET

In this experiment, we limit the total query number to be 1000, which is slightly above the median
query counts needed for GenAttack to make a successful attack on MNIST and CIFAR10 (Alzantot
et al., 2018) and 2000 for ImageNet. We adopt the reduced search dimension recommended by
AutoZOOM, dr = 14× 14× 3 for CIFAR10 and dr = 14× 14× 1 for MNIST and allow GP-BO-
auto-dr to automatically learn the reduced dimension dr in a range between 6×6×1 and 28×28×1
for MNIST, and between 6× 6× 3 and 32× 32× 3 for CIFAR10.

For ImageNet, due to the high dimensionality of its images, we adopt a hierarchical decoding pro-
cess: 1) first performance BayesOpt attacks(ADDGP-BO and GP-BO) on a reduced dimension of
dr1 = 48×48×3 and then 2) decode the adversarial perturbation found in dr1 to dr2 = 96×96×3 via
bilinear upsampling. 3) This is followed by another bilinear decoder projecting the adversarial per-
turbation in dr2 back to image dimension of d = 299×299×3. As for the GP-BO-auto-dr, we allow
the algorithm to automatically learn the reduced dimension dr1 in the phase 1) in the range between
6 × 6 × 3 to 60 × 60 × 3. GenAttack is performed with the same upsampling as our methods. As
for AutoZOOM and ZOO, we uses the optimal dr settings recommended in (Tu et al., 2018; Chen
et al., 2017) for ImageNet.

For BayesOpt attack, each iteration requires 1 query to the objective function so we limit its iteration
to 1000 and early terminate the BayesOpt attack algorithm when successful adversarial example is
found. AutoZOOM comprises 2 stages in their attack algorithm. The first exploration stage aims to
find the successful adversarial example. Once a successful attack is found, it switches to the fine-
tuning stage to reduce the perturbation cost (e.g. L2 norm) of the successful attack. We report its
performance on the attack success rate and L2 norm of adversarial perturbations after a budget of
1000 queries, which allows it to fine-tune the successful adversarial perturbations found. Moreover,
AutoZOOM uses L2 norm to measure the perturbation costs but our method and GenAttack limit
the search space via L∞ norm. We observe that the successful attacks found by AutoZOOM incur
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Table 3: Attack results on 50 randomly ImageNet images with random target label under a query
budget of 2000. Q denotes the query count. ASR denotes attack success rate. The standard errors
are in parentheses. ZOO fails to make any successful attack within this budget.

Attack method ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

ADDGP-BO 60% 1985, 1247, 1206(±90) 1.74× 10−4(±1.89× 10−6)
GP-BO-auto-dr 32% 1999, 922, 938(±128) 1.96× 10−4(±8.07× 10−6)
GP-BO 16% 1947, 1113, 1232(±162) 1.62× 10−4(±7.94× 10−6)
GenAttack 12% 1971, 1354, 1266(±259) 2.03× 10−4(±9.81× 10−6)
AutoZOOM 2% 1451, 1451, 1451(±0.00) 1.21× 10−5(±0.00)

much higher perturbation costs in terms of L∞ norm than GenAttack and our method. Therefore,
we only consider the final adversarial examples whose L∞ distances from the original images lie
within [−δmax, δmax] as the successful attacks 4.

The results on MNIST in Table 1 show that all our BayesOpt attacks can achieve a comparable
success rate but at a much lower query count in comparison to GenAttack (Alzantot et al., 2018) and
AutoZOOM (Tu et al., 2018). Specifically, the median query count of ADDGP-BO is 68% less than
GenAttack and 80% less than AutoZOOM while that of GP-BO-auto-dr is 49% less than GenAttack
and 67% less than AutoZOOM.

As for results on attacking on CIFAR10, Table 2 shows that all our BayesOpt attack can achieve
significantly higher success rate but again at a remarkably lower query counts than the existing
black-box approaches. For example, our ADDGP-BO can achieve 18% higher success rate while
using 37.4% less queries in terms of the median as compared to GenAttack. In addition, our ap-
proaches also lead to better quality adversarial examples (Figure 3 in Appendix B ) which are closer
to the original image than the benchmark methods as reflected by the lower average L2 perturbation
(20.5% less). More importantly, this set of experiments also demonstrate the effectiveness of our
Bayesian method for learning dr as GP-BO-auto-dr leads to 15% increase in attack success rate
compared to GP-BO while maintaining the competitiveness in query efficiency and L2 distance.

Similarly, the results on ImageNet in Table 3 shows that all our BayesOpt attacks can achieve higher
attack success rate than the competing methods given a query budget of 2000. ADDGP-BO is the
clearly best performing method in this very high-dimensional setting, achieving 5 times higher suc-
cess rate than the best competing method, GenAttack, while again obtaining successful adversarial
perturbations with lower average L2 perturbation (14 % less) than GenAttack. This confirms our
hypothesis that the additive-GP surrogate together with decomposition learning is very effective for
high-dimensional optimisation.

5.3 QUERY EFFICIENCY COMPARISON

We finish by comparing the query efficiency, measuring the change in the attack success rate over
query counts for all the methods. We limit the query budget of our BayesOpt attacks to 1000 but
let the competing methods to continue running until they achieve the same best attack success rate
as our best BayesOpt attacks or exceeds a much higher limit (2000 queries for MNIST and 5000
queries for CIFAR10 and 14000 queries for ImageNet).

As shown in Figure 2, BayesOpt attacks converge much faster to the high attack success rates than
the other methods. Specifically, GP-BO-auto-dr take less than 833 queries to achieve the success
rate of 98% for MNIST, which is 24% of that by GenAttack (2500). As for CIFAR10, both ADDGP-
BO and GP-BO-auto-dr takes around 890 queries to achieve a success rate of 87% which is 23% of
the query count by AutoZOOM and 17% of that by GenAttack. One point to note is that AutoZOOM
appears to be slightly more query efficient than GenAttack in this set of experiments. However, we
need to bear in mind that although we limit the mean Linf norm of the adversarial perturbation found
by AutoZOOM to δmax, AutoZOOM still have the advantage of exploring beyond the δmax for many
dimensions. In the case of ImageNet, all our BayesOpt attacks again enjoy faster convergence, with

4This still gives an advantage to ZOO and AutoZOOM because it allows them to inject perturbation whose
magnitude is larger than δmax at certain pixels but our BayesOpt methods and GenAttack limit perturbation at
all the pixels to be less than δmax.
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(c) Attacks on ImageNet

Figure 2: Query efficiency of BayesOpt Attacks. The plots show the attack success rate (ASR)
of different methods up to certain query counts. The best BayesOpt attacks (i.e. GP-BO-auto-dr
(red) and ADDGP-BO (blue)) can achieve an ASR of 98% on MNIST(a) and 87% on CIFAR10
(b) within a budget of 1000 queries. To achieve the same success rates, GenAttack (purple) takes
3500 for MNIST and 5141 for CIFAR10, and AutoZOOM (green) takes 800 for MNIST and 3880
for CIFAR10. For ImageNet (c), the best BayesOpt attack is ADDGP-BO (blue), which achieves
an ASR of 60% with 1985 queries. To achieve the same success rates, GenAttack (purple) takes a
budget of 4711 queries and AutoZOOM (green) takes 19451 queries. ZOO fails to make any attack
on ImageNet within the given budget.

ADDGP-BO taking only 1985 queries to achieve 60% ASR. Meanwhile, GenAttack, takes a budget
of 4711 queries, 2.4 times that of ADDGP-BO, to achieve the same ASR and AutoZOOM costs
19451 queries which is 9.8 times that of ADDGP-BO.

6 CONCLUSION

We introduce a new black-box adversarial attack which leverages Bayesian optimisation to find suc-
cessful adversarial perturbations with high query efficiency. We also improve our attack by adopting
an additive surrogate structure to ease the optimisation challenge over the typically high-dimensional
task. Moreover, we take full advantage of our statistical surrogate model and the available query data
to learn the optimal degree of dimension reduction for the search space via Bayesian model selec-
tion. In comparison to several existing black-box attack methods, our BayesOpt attacks can achieve
high success rates with 2-5 times fewer queries while still producing adversarial examples that are
closer to the original image (in terms of average L2 distance). We believe our BayesOpt attacks can
be a competitive alternative for accessing the model robustness.

One limitation of our attack methods is that due to the poor scalability of GPs, the attack algorithms
are computationally more expensive than most existing alternatives especially as the query number
increases. Thus, our BayesOpt attacks are optimal for the setting where the cost of evaluating the
target model, being it the monetary costs, computational costs or the risk of being detected, is much
higher than the computational cost of the attack algorithm itself and thus query efficiency is highly
prioritised. On the other hand, replacing the GP surrogates with more scalable models such as sparse
GPs or Bayesian neural networks can be an interesting future research direction.
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A BAYESIAN OPTIMISATION

Here we present a generic algorithm for Bayesian optimisation.

Algorithm 3 BayesOpt Algorithm

1: Input: A black-box function y, observation data D0, iteration budget T
2: Output: The best recommendation δ∗
3: for t = 1, . . . , T do
4: Select δt = argmaxαt(δ|Dt−1)
5: yt = y(δt) and Dt ← Dt−1 ∪ (δt, yt)
6: Update the surrogate model with Dt

7: end for

B ADVERSARIAL EXAMPLES FOR CIFAR10
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Figure 3: CIFAR10 adversarial examples generated by our BayesOpt attack. True labels and target
labels correspond to the rows and columns.

C ADDITIONAL EXPERIMENTS ON MNIST AND CIFAR10

D OBJECTIVE VALUE OVER BAYESOPT ITERATIONS

We illustrate this via the case of attacking a CIFAR10 image of label 9(class truck) on the other
9 target labels with original label 9We plot the value of objective function (Equation 2), which is
equal to the negative of attack loss, against the BayesOpt iterations/query counts. We can see that
our additive GP surrogate (ADDGP-BO) as well as the Bayesian learning of optimal dr (GP-BO-
auto-dr) lead to faster convergence and thus higher attack success rate for this instance.

E EFFECTIVENESS OF DECOMPOSITION LEARNING

To learn the decomposition for the additive-GP surrogate in ADDGP-BO attack, we follow the
approach proposed in (Kandasamy et al., 2015) to treat the decomposition as an additional hy-
perparameter and learn the optimal decomposition by maximising marginal likelihood. However,
exhaustive search over all M !d!/(ds!

M )5 possible decompositions is expensive. We adopt a com-
putationally cheap alternative by randomly selecting 20 decompositions and choosing the one with

5M is the number of subspaces and ds = |Aj | is the dimension of each subspaces
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Table 4: Summary of attack results on 7 MNIST images. Q denotes the query count. ASR denotes
attack success rate. The standard errors are in parentheses.

Attack method dr ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

GP-BO 14× 14× 1 92% 899, 53, 119(±28) 7.01× 10−3(±1.13× 10−4)
ADDGP-BO 14× 14× 1 98% 584, 34, 67(±13) 6.50× 10−3(±8.39× 10−5)
AutoZOOM 14× 14× 1 97% 892, 186, 247(±27) 5.10× 10−3(±1.92× 10−4)
GenAttack 14× 14× 1 97% 976, 184, 239(±22) 5.56× 10−3(±9.25× 10−5)

GP-BO 16× 16× 1 97% 400, 50, 80(±12) 7.08× 10−3(±1.09× 10−4)
ADDGP-BO 16× 16× 1 100% 540, 42, 72(±12) 6.49× 10−3(±9.41× 10−5)
AutoZOOM 16× 16× 1 98% 812, 251, 295(±28) 5.98× 10−3(±2.03× 10−4)
GenAttack 16× 16× 1 97% 928, 202, 237(±19) 5.61× 10−3(±8.58× 10−5)

GP-BO 28× 28× 1 98% 430, 201, 225(±11) 8.71× 10−3(±1.94× 10−4)
ADDGP-BO 28× 28× 1 100% 666, 57, 100(±15) 9.71× 10−3(±1.12× 10−4)
AutoZOOM 28× 28× 1 98% 860, 185, 244(±27) 1.01× 10−2(±1.63× 10−4)
GenAttack 28× 28× 1 83% 976, 365, 399(±33) 6.26× 10−3(±6.69× 10−5)

Table 5: Summary of attack results on 27 CIFAR10 images. Q denotes the query count. ASR denotes
attack success rate. The standard errors are in parentheses.

Attack method dr ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

GP-BO 8× 8× 3 52% 314, 48, 70(±13) 5.78× 10−4(±1.44× 10−5)
ADDGP-BO 8× 8× 3 75% 899, 140, 234(±33) 5.55× 10−4(±8.46× 10−6)
AutoZOOM 8× 8× 3 56% 382, 126, 139(±17) 9.58× 10−4(±2.66× 10−5)
GenAttack 8× 8× 3 67% 671, 236, 286(±32) 7.40× 10−4(±1.30× 10−5)

GP-BO 14× 14× 3 81% 899, 142, 192(±11) 5.74× 10−4(±6.96× 10−6)
ADDGP-BO 14× 14× 3 90% 885, 141, 213(±15) 5.79× 10−4(±5.16× 10−6)
AutoZOOM 14× 14× 3 42% 376, 95, 133(±12) 9.82× 10−4(±1.95× 10−5)
GenAttack 14× 14× 3 75% 971, 251, 321(±21) 7.35× 10−4(±6.92× 10−6)

GP-BO 16× 16× 3 83% 785, 280, 292(±22) 5.34× 10−4(±1.43× 10−5)
ADDGP-BO 16× 16× 3 87% 878, 168, 229(±29) 5.76× 10−4(±8.93× 10−6)
AutoZOOM 16× 16× 3 3% 298, 170, 170(±90) 7.50× 10−4(±1.35× 10−5)
GenAttack 16× 16× 3 79% 986, 281, 339(±36) 7.36× 10−4(±1.55× 10−5)

the largest marginal likelihood. The method decomposition learning procedure is repeated every 40
BO iterations and we use M = 12 for CIFAR10. We denote the method as ADDGP-BO-LD in this
section but as ADDGP-BO in the rest of the paper.

We also experiment with another alternative way to learn the decomposition (ADDGP-BO-FD),
which is similar to importance sampling in ZOO. We group the pixels/dimensions together if the
magnitude of average change in their pixel values over the past 5 BO iterations are closer (i.e. pixels
that are subject to the most large adversarial perturbations are grouped together). Again, we divide
the dimensions into disjoint 12 groups as above to ensure fair comparison.

Table 6: Summary of attack results on CIFAR10 for different decomposition learning method. dr =
14× 14× 3 which is further decomposed into 12 subspaces of ds = 49. Q denotes the query count.
ASR denotes attack success rate. The standard errors are in parentheses.

Attack method ASR Q (Max, Median, Mean) Average L2 perturbation (per pixel)

ADDGP-BO-LD 94% 885, 134, 212(±16) 5.78× 10−4(±5.32× 10−6)
ADDGP-BO-FD 87% 899, 143, 196(±14) 5.05× 10−4(±4.52× 10−6)
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Figure 4: Attack objective value against BayesOpt iterations(query count) for using various
BayesOpt methods to attack one CIFAR10 image of class label 9 (denoted by i). Curves of dif-
ferent colours correspond to the 9 different target labels (denoted by t). Convergence to 0 objective
value indicates successful attack. ADDGP-BO and GP-BO-auto-dr enjoy faster convergence and
thus higher attack success rates than simple GP-BO.

We compare the both types of decomposition learning methods using 20 randomly selected CI-
FAR10 images, each of which is attacked on 9 other classes except its original class and a query
budget of 1000. The results are shown in Table 6. It is evident that learning decomposition by max-
imising marginal likelihood (ADDGP-BO-LD) can achieve higher attack success rate than pixel-
value-change-based decomposition learning (ADDGP-BO-FD) given the query budget.

F GAUSSIAN PROCESSES

Gaussian processes (GPs) are popular models for inference in regression problems, especially when
a quantification of the uncertainty around predictions is of relevance and little prior information
is available to the inference problem. These qualities, together with their analytical tractability,
make them the most commonly used surrogate model in Bayesian optimisation. A comprehensive
overview on GPs can be found in Rasmussen & Williams (2006). Below we highlight the concepts
of marginal likelihood and how to use it for hyperparameter optimisation and model selection based
on the notation introduced in Section 4.2.

Hyperparameter tuning. The key to finding the right hyperparameters θ∗ in light of Dt−1 in a
principled way is given by the marginal likelihood in Equation (10).

p(Dt−1|θ) = (2π)−
t−1
2 |K1:t−1(θ)|−

1
2 exp

(
−1

2
yT
1:t−1K

−1
1:t−1(θ)y1:t−1

)
, (10)

where we have introduced a slightly augmented notation of K1:t−1 ≡ K1:t−1(θ) to highlight the
dependence on the kernel hyperparamaters θ. In a truly Bayesian approach, one could shy away
from fixing one set of hyperparameters and use Equation (10) to derive a posterior distribution of θ
based on one’s prior beliefs about θ expressed through some distribution p0(θ). However, as such
an approach generally requires sampling using methods like Markov chain Monte Carlo (MCMC)
due to intractability of integrals, in practice it is often easier and computationally cheaper to replace
the fully Bayesian approach by a maximum likelihood approach and simply maximise the likelihood
p(Dt−1|θ) w.r.t. θ. We follow this approach and perform a mix of grid- and gradient based search
to maximise the logarithm of the r.h.s. of Equation (10). After evaluating a grid of 5′000 points,
we start gradient ascent on each of the 5 most promising points using the following equation for
the gradient (Rasmussen & Williams, 2006) to find the hyperparameters θ∗ which maximise the
marginal likelihood:
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∂

∂θj
log p(Dt−1|θ) =

1

2
yT
1:t−1K

−1
1:t−1

∂K1:t−1

∂θj
K−11:t−1y1:t−1 −

1

2
tr

(
K−11:t−1

∂K1:t−1

∂θj

)
(11)

=
1

2
tr

(
(K−11:t−1y1:t−1y

T
1:t−1K

−1
1:t−1 −K−11:t−1)

∂K1:t−1

∂θj

)
(12)

Model selection. Once the optimal hyperparameters θ∗ are found as described above, they can be
plugged back into Equation (10) to choose amongst different models. In Section 4.4 this is described
for the case of choosing between different values of the reduced dimensionality dr.
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