
Published as a conference paper at ICLR 2019

META-LEARNING FOR STOCHASTIC GRADIENT MCMC

Wenbo Gong1∗, Yingzhen Li2∗†, José Miguel Hernández-Lobato12
1University of Cambridge 2Microsoft Research Cambridge
{wg242,jmh233}@cam.ac.uk, Yingzhen.Li@microsoft.com

ABSTRACT

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) has become increas-
ingly popular for simulating posterior samples in large-scale Bayesian modeling.
However, existing SG-MCMC schemes are not tailored to any specific probabilistic
model, even a simple modification of the underlying dynamical system requires
significant physical intuition. This paper presents the first meta-learning algo-
rithm that allows automated design for the underlying continuous dynamics of
an SG-MCMC sampler. The learned sampler generalizes Hamiltonian dynamics
with state-dependent drift and diffusion, enabling fast traversal and efficient ex-
ploration of energy landscapes. Experiments validate the proposed approach on
learning tasks with Bayesian fully connected neural networks, Bayesian convolu-
tional neural networks and Bayesian recurrent neural networks, showing that the
learned sampler out-performs generic, hand-designed SG-MCMC algorithms, and
generalizes to different datasets and larger architectures.

1 INTRODUCTION

There is a resurgence of research interests in Bayesian deep learning (Graves, 2011; Blundell et al.,
2015; Hernández-Lobato & Adams, 2015; Hernandez-Lobato et al., 2016; Gal & Ghahramani,
2016; Ritter et al., 2018), which applies Bayesian inference to neural networks for better uncertainty
estimation. It is crucial for e.g. better exploration in reinforcement learning (Deisenroth & Rasmussen,
2011; Depeweg et al., 2017), resisting adversarial attacks (Feinman et al., 2017; Li & Gal, 2017;
Louizos & Welling, 2017) and continual learning (Nguyen et al., 2018). A popular approach to
performing Bayesian inference on neural networks is stochastic gradient Markov chain Monte Carlo
(SG-MCMC), which adds properly scaled Gaussian noise to a stochastic gradient ascent procedure
(Welling & Teh, 2011). Recent advances in this area further introduced optimization techniques such
as pre-conditioning (Ahn et al., 2012; Patterson & Teh, 2013), annealing (Ding et al., 2014) and
adaptive learning rates (Li et al., 2016a; Chen et al., 2016). All these efforts have made SG-MCMC
highly scalable to many deep learning tasks, including shape and texture modeling in computer
vision (Li et al., 2016b) and language modeling with recurrent neural networks (Gan et al., 2017).
However, inventing novel dynamics for SG-MCMC requires significant mathematical work to ensure
the sampler’s stationary distribution is the target distribution, which is less friendly to practitioners.
Furthermore, many of these algorithms are designed as a generic sampling procedure, and the
associated physical mechanism might not be best suited for sampling neural network weights.

This paper aims to automate the SG-MCMC proposal design by introducing meta-learning techniques
(Schmidhuber, 1987; Bengio et al., 1992; Naik & Mammone, 1992; Thrun & Pratt, 1998). The
general idea is to train a learner on one or multiple tasks in order to acquire common knowledge
that generalizes to future tasks. Recent applications of meta-learning include learning to transfer
knowledge to unseen few-shot learning tasks (Santoro et al., 2016; Ravi & Larochelle, 2017; Finn
et al., 2017), and learning algorithms such as gradient descent (Andrychowicz et al., 2016; Li &
Malik, 2017; Wichrowska et al., 2017), Bayesian optimization (Chen et al., 2017) and reinforcement
learning (Duan et al., 2016; Wang et al., 2016). Unfortunately, these advances cannot be directly
transferred to the world of MCMC samplers, as a naive neural network parameterization of the
transition kernel does not guarantee the posterior distribution to be the stationary distribution of the
sampler.
∗Equal contribution
†Work done at the University of Cambridge

1

Published as a conference paper at ICLR 2019

We present to the best of our knowledge the first attempt towards meta-learning an SG-MCMC
algorithm. Concretely, our contribution includes:

• An SG-MCMC sampler that extends Hamiltonian dynamics with learnable diffusion and curl
matrices. Once trained, the sampler can generalize to different datasets and architectures.
• Extensive evaluation of the proposed sampler on Bayesian fully connected neural networks,

Bayesian convolutional neural networks and Bayesian recurrent neural networks, with
comparisons to popular SG-MCMC schemes based on e.g. Hamiltonian Monte Carlo (Chen
et al., 2014) and pre-conditioned Langevin dynamics (Li et al., 2016a).

2 BACKGROUND: A COMPLETE FRAMEWORK FOR SG-MCMC

Consider sampling from a target density π(θθθ) that is defined by an energy function: U(θθθ), θθθ ∈ RD,
π(θθθ) ∝ exp(−U(θθθ)). In this paper, we focus on this sampling task with a Bayesian modeling set-up,
i.e. given observed dataD = {ooon}Nn=1, we define a probabilistic model p(D, θθθ) =

∏N
n=1 p(ooon|θθθ)p(θθθ),

and we want samples from the target density defined as posterior distribution π(θθθ) = p(θθθ|D). We
use Bayesian neural networks as an illustrating example, in this case, ooon = (xxxn, yyyn), the prior p(θθθ) is
a Gaussian N (θθθ; 000, λ−1III), and the energy function is defined as

U(θθθ) = −
N∑
n=1

log p(yyyn|xxxn, θθθ)− log p(θθθ) =

N∑
n=1

`(yyyn,NNθθθ(xxxn)) + λ||θθθ||22, (1)

with `(yyy, ŷyy) usually defined as the `2 loss for regression or the cross-entropy loss for classification. A
typical MCMC sampler constructs a Markov chain with a transition kernel, and corrects the proposed
samples with Metropolis-Hastings (MH) rejection steps. Some of these methods, e.g. Hamiltonian
Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011), further augment the state space as zzz =
(θθθ,rrr) with auxiliary variables rrr, and sample from the augmented distribution π(zzz) ∝ exp (−H(zzz)),
with the Hamiltonian H(zzz) = U(θθθ) + g(rrr) such that

∫
exp(−g(rrr))drrr = C. Thus, marginalizing out

the auxiliary variable rrr will not affect the stationary distribution π(θθθ) ∝ exp(−U(θθθ)).

For deep learning tasks, the observed dataset D often contains thousands, if not millions, of instances,
making MH rejection steps computationally prohibitive. Fortunately this is mitigated by SG-MCMC,
whose transition kernel is implicitly defined by a stochastic differential equation (SDE) that leaves
the target density invariant (Welling & Teh, 2011; Ahn et al., 2012; Patterson & Teh, 2013; Chen
et al., 2014; Ding et al., 2014). Such a Markov process is called Itô diffusion governed by the
continuous-time SDEs:

dzzz = fff(zzz)dt+
√

2DDD(zzz)dWWW (t), (2)
with fff(zzz) the deterministic drift, WWW (t) the Wiener process, and DDD(zzz) the diffusion matrix. As a
simple example, Langevin dynamics considers zzz = θθθ, fff(θθθ) = −∇θθθU(θθθ) andDDD(θθθ) = I. Then using
forward Euler discretization with step-size η the update rule of the parameters is

θθθt+1 = θθθt − η∇θθθtU(θθθt) +
√

2ηεεεt, εεεt ∼ N (000, I). (3)
Stochastic gradient Langevin dynamics (SGLD, Welling & Teh, 2011) proposed an approximation to
(3), by replacing the exact gradient∇θθθU(θθθ) with an estimate using a mini-batch of datapoints:

∇θθθŨ(θθθ) = −N
M

M∑
m=1

∇θθθ log p(ooom|θθθ)−∇θθθ log p(θθθ), ooo1, ..., oooM ∼ D. (4)

Therefore SGLD can be viewed as a stochastic gradient descent (SGD) that adds in a properly
scaled Gaussian noise term. Similarly, SGHMC (Chen et al., 2014) is closely related to momentum
SGD (see appendix). Furthermore, MH rejection steps are usually dropped in SG-MCMC when a
carefully selected discretization step-size is in use. Therefore SG-MCMC has the same computational
complexity as many stochastic optimization algorithms, making it highly scalable for sampling
posterior distributions of neural network weights conditioned on big datasets.

Ma et al. (2015) derived a framework of SG-MCMC samplers using advanced statistical mechanics
(Yin & Ao, 2006; Shi et al., 2012), which explicitly parameterizes the drift fff(zzz) :

fff(zzz) = −[DDD(zzz) +QQQ(zzz)]∇zzzH(zzz) + ΓΓΓ(zzz), ΓΓΓi(zzz) =

d∑
j=1

∂

∂zzzj
(DDDij(zzz) +QQQij(zzz)), (5)

2

Published as a conference paper at ICLR 2019

withQQQ(zzz) the curl matrix,DDD(zzz) the diffusion matrix and ΓΓΓ(zzz) a correction term. Remarkably Ma
et al. (2015) showed the completeness of their framework:

1. π(zzz) ∝ exp(−H(zzz)) is a stationary distribution of the SDE (2)+(5) for any pair of positive
semi-definite matrixDDD(zzz) and skew-symmetric matrixQQQ(zzz);

2. for any Itô diffusion process that has the unique stationary distribution π(zzz), under mild
conditions there existDDD(zzz) andQQQ(zzz) matrices such that the process is governed by (2)+(5).

As a consequence, the construction of an SG-MCMC algorithm reduces to defining the state-space
zzz and the DDD(zzz), QQQ(zzz) matrices. Indeed Ma et al. (2015) also cast existing SG-MCMC samplers
within the framework, and proposed an improved version of SG-Riemannian-HMC. In general, an
appropriate design of these two matrices leads to significant improvements in mixing as well as
reduction of sample bias (Li et al., 2016a; Ma et al., 2015). However, this design has been historically
based on strong physical intuitions from statistical mechanics (Duane et al., 1987; Neal et al., 2011;
Ding et al., 2014). Therefore, it can still be difficult for practitioners to understand and engineer the
sampling method that is best suited to their machine learning tasks.

In the next section, we will describe our recipe on meta-learning an SG-MCMC sampler of the form
(2)+(5). Before the presentation, we emphasize that the completeness result of the framework is
beneficial for our meta-learning task. On the one hand, as meta-learning searches the best algorithm
for a given set of tasks, it is crucial that the search space is large enough to contain many useful
candidates. On the other hand, some form of “correctness” guarantee is often required to achieve
better generalization to test tasks that might not be very similar to the training tasks. Ma et al. (2015)’s
completeness result indicates that our proposed method searches SG-MCMC samplers in the biggest
subset of all Itô diffusion processes such that each instance is a valid posterior sampler. Therefore,
the proposed meta-learning algorithm has the best from both worlds, indeed our experiments show
that the learned sampler is superior to a number of other baseline SG-MCMC methods.

3 META-LEARNING FOR SG-MCMC

This section presents a meta-learning approach to learn an SG-MCMC proposal from data. Our aim
is to design an appropriate parameterization ofDDD(zzz) andQQQ(zzz), so that the sampler can be trained
on simple tasks with a meta-learning procedure, and generalize to more complicated densities. For
simplicity, we only augment the state-space by one extra variable ppp called momentum (Duane et al.,
1987; Neal et al., 2011), although generalization to e.g. thermostat variable (Ding et al., 2014) is
straightforward. Thus, the augmented state-space is zzz = (θθθ,ppp) (i.e. rrr = ppp), and the Hamiltonian is
defined as H(zzz) = U(θθθ) + 1

2ppp
Tppp with identity mass matrix.

3.1 EFFICIENT PARAMETERIZATION OF DIFFUSION AND CURL MATRICES

For neural networks, the dimensionality of θθθ can be at least tens of thousands. Thus, training and
applying full DDD(zzz) and QQQ(zzz) matrices can cause a huge computational burden, let alone gradient
computations required by ΓΓΓ(zzz). To address this, we define the preconditioning matrices as follows:

QQQ(zzz) =

[
000 −QQQf (zzz)

QQQf (zzz) 000

]
, DDD(zzz) =

[
000 000
000 DDDf (zzz)

]
,

QQQf (zzz) = diag[fffφQ(zzz)], DDDf (zzz) = diag[αfffφQ(zzz)� fffφQ(zzz) + fffφD (zzz) + c], α, c > 0.

(6)

Here fffφD and fffφQ are neural network parameterized functions that will be detailed in section 3.2, and
c is a small positive constant. We chooseDDDf andQQQf to be diagonal for fast computation, although
future work can explore low-rank matrix solutions. From Ma et al. (2015), our design has the unique
stationary distribution π(θθθ) ∝ exp(−U(θθθ)) if fffφD is non-negative for all zzz.

We discuss the role of each precondition matrix for better intuition. The curl matrix QQQ(zzz) in (2)
mainly controls the deterministic drift forces introduced by the energy gradient ∇θθθU(θθθ) (as seen in
many HMC-like procedures and in eq. (5)). Usually, we only have access to the stochastic gradient
∇θθθŨ(θθθ) through data sub-sampling, and hereDDD(zzz) acts as the friction to counter for the associated
noise that mainly affects the momentum ppp. This explains the design of the diffusion matrix DDD(zzz)
that usesDDDf (zzz) to control the amount of friction and injected noise to the momentum. Furthermore,

3

Published as a conference paper at ICLR 2019

model +

+
(a) SGHMC

model

(b) the meta-learned sampler (NNSGHMC)
Figure 1: Comparing the computation graphs of SGHMC and the meta-learned sampler (with
modified forward Euler discretization). Here Fφ and Gφ transformations are defined by Eq. (7).

DDDf (zzz) should also account for the pre-conditioning effect introduced by QQQf (zzz), e.g, when the
magnitude ofQQQf (zzz) is large, we need higher friction correspondingly. This explains the squared term
fffφQ(zzz)�fffφQ(zzz) inDDDf (zzz) design. The positive scaling constant α is heuristically selected following
(Chen et al., 2014; Ma et al., 2015) (see appendix). Finally, the extra term ΓΓΓ(zzz) = [ΓΓΓθθθ(zzz),ΓΓΓppp(zzz)] is
responsible for compensating the changes introduced by preconditioning matricesQQQ(zzz) andDDD(zzz).

The discretized dynamics of the state zzz = (θθθ,ppp) with step-size η and stochastic gradient∇θθθŨ(θθθ) are

pppt+1 = (1− ηDDDf (zzzt))pppt − ηQQQf (zzzt)∇θθθtŨ(θθθt) + ηΓΓΓppp(zzzt) + εεε, εεε ∼ N (000, 2ηDDDf (zzzt)),

θθθt+1 = θθθt + ηQQQf (ẑzzt)pppt+1 + ηΓΓΓθθθ(ẑzzt), zzzt = [θθθt, pppt], ẑzzt = [θθθt, pppt+1].
(7)

We use a modified forward Euler discretization (Neal et al., 2011) here, and the computation graph
of eq. (7) is visualized in the right part of Figure 1 (see appendix for SGHMC discretized updates).
Again we see thatQQQf (zzz) is responsible for the acceleration of θθθ, and from the (1− ηDDDf (zzz)) term in
the update equation of ppp, we see thatDDDf (zzz) controls the friction introduced to the momentum. Note
that in the big-data setting, the noisy gradient is approximately Gaussian distributed with mean 000 and
variance VVV (θθθ). Observing this, Ma et al. (2015) further suggested a correction scheme to counter
for stochastic gradient noise, which samples the Gaussian noise εεε ∼ N (000, 2ηDDDf (zzz)− η2B̃(θθθ)) with
an empirical estimate of the variance B̃(θθθ) ≈ QQQf (zzz)VVV (θθθ)QQQTf (zzz) instead. These corrections can
be dropped when the discretization step-size η is small, therefore, we do not consider them in our
experiments.

3.2 CHOICES OF INPUTS TO THE NEURAL NETWORKS

We now present detailed functional forms for fffφQ and fffφD . When designing these, our goal was
to achieve a good balance between generalization power and computational efficiency. Recall that
the curl matrixQQQ(zzz) mainly controls the drift of the dynamics, and the desired behavior is the fast
traverse through low-density regions. One useful source of information to identify this is the energy
function U(θθθθθθθθθ).1 We also include the momentum pi to the inputs of fffφQ , allowing theQQQ(zzz) matrix
to observe the velocity information of the θθθi. We further add an offset β to QQQ(zzz) to prevent the
vanishing of this matrix. Putting all of them together, we define the ith element of fffφQ as

fffφQ,i(zzz) = β + fφQ(U(θθθ), pi). (8)

The corresponding ΓΓΓ(zzz) term requires both ∂θifφQ(U(θθθ), pi) and ∂pifφQ(U(θθθ), pi). The en-
ergy gradient ∂θiU(θθθ) also appears in (7), so it remains to compute ∂UfffφQ , which, along with
∂pifφQ(U(θθθ), pi), can be obtained by automatic differentiation (Abadi et al., 2015).

MatrixDDD(zzz) is responsible for the friction and the stochastic gradient noise, which are crucial for
better exploration around high-density regions. Therefore, we also add the energy gradient ∂θiU(θθθ)
to the inputs, meaning that the ith element of fffφD is

fffφD,i(zzz) = fφD (U(θθθ), pi, ∂θiU(θθθ)). (9)

By the construction of theDDD(zzz) matrix, the ΓΓΓ vector only requires ∇pppDDDf without computing any
higher order information.

1The energy gradient ∇θθθU(θθθ) is also informative here, however, it requires expensive computation of the
diagonal Hessian for ΓΓΓ(zzz). For similar reasons we do not consider other higher order derivatives as inputs.

4

Published as a conference paper at ICLR 2019

In practice, both U(θθθ) and ∂θiU(θθθ) are replaced by their stochastic estimates Ũ(θθθ) and ∂θiŨ(θθθ),
respectively. To keep the scale of the inputs roughly the same across tasks, we rescale all the inputs
using statistics computed by simulating the sampler with randomly initialized fffφD and fffφQ . When
the computational budget is limited, we replace the exact gradient computation required by ΓΓΓ(zzz) with
finite difference approximations. We refer the reader to the appendix for details.

3.3 LOSS FUNCTION DESIGN FOR META-LEARNING

Another challenge is to design a meta-learning procedure for the sampler to encourage faster conver-
gence and low bias on test tasks. To achieve these goals we propose two loss functions that we named
as the cross-chain loss and the in-chain loss. From now on we consider the discretized dynamics and
define qt(θθθ|D) as the marginal distribution of the random variable θθθ at time t.

Cross-chain loss We introduce cross-chain loss that encourages the sampler to converge faster.
Since the sampler is guaranteed to have the unique stationary distribution π(θθθ) ∝ exp(−U(θθθ)), fast
convergence means that KL[qt||π] is close to zero when t is small. Therefore this KL-divergence
becomes a sensible objective to minimize, which is equivalent to maximizing the variational lower-
bound (or ELBO): LtVI(qt) = −Eqt [U(θθθ)] + H[qt] (Jordan et al., 1999; Beal, 2003). We further
make the objective doubly stochastic: (1) the energy term is further approximated by its stochastic
estimates Ũ(θθθ); (2) we use Monte Carlo variational inference (MCVI, Ranganath et al., 2014;
Blundell et al., 2015) which estimates the lower-bound with samples θθθkt ∼ qt(θθθt|D), k = 1, ...,K.
These samples {θθθkt }

K,T
k=1,t=1 are obtained by simulating K parallel Markov chains with the sampler,

and the cross-chain loss is defined by accumulating the lower-bounds through time:

Lcross-chain =
1

T

T∑
t=1

LtVI({θθθkt }Kk=1), LtVI({θθθkt }Kk=1) = − 1

K

K∑
k=1

[
Ũ(θθθkt) + log qt(θθθ

k
t |D)

]
. (10)

By minimizing this objective, we can improve the convergence of the sampler, especially at the early
times of the Markov chain. The objective also takes the sampler bias into account because the two
distributions will match when the KL-divergence is minimized.

In-chain loss For very big neural networks, simulating multiple Markov chains is prohibitively
expensive. The issue is mitigated by thinning that collects samples for every τ step (after burn-in),
which effectively draws samples from the averaged distribution q̄(θθθ|D) = 1

bT/τc
∑bT/τc
s=1 qsτ (θθθ). The

in-chain loss is, therefore, defined as the ELBO evaluated at the averaged distribution q̄, which is
then approximated by Monte Carlo with samples ΘΘΘk

T,τ = {θθθksτ}
bT/τc
s=1 obtained by thinning:

Lin-chain =
1

K

K∑
k=1

LkVI

(
ΘΘΘk
T,τ

)
, LkVI

(
ΘΘΘk
T,τ

)
= − 1

bT/τc

bT/τc∑
s=1

[
Ũ(θθθksτ) + log q̄(θθθksτ |D)

]
. (11)

Gradient approximation We leverage the recently proposed Stein gradient estimator (Li & Turner,
2018) to estimate the intractable gradients ∇φ log qt(θθθ) for cross-chain loss and ∇φ log q̄(θθθ) for
in-chain loss. Precisely, by the chain rule, we have ∇φ log qt(θθθ) = ∇φθθθ∇θθθ log qt(θθθ), so it remains
to estimate the gradients GGG = (∇θθθ1t log qt(θθθ

1
t), . . . ,∇θθθKt log qt(θθθ

K
t))T at the sampled locations

{θθθkt }Kk=1 ∼ qt. The recipe first constructs a kernel matrix KKK with KKKij = K(θθθit, θθθ
j
t), and then

estimates the gradients by GGG ≈ −(KKK + λIII)−1〈∇,KKK〉, where 〈∇,KKK〉ij =
∑K
k=1 ∂θθθkt (j)K(θθθkt , θθθ

i
t).

In our experiments, we use the RBF kernel, and the corresponding gradient estimator has a simple
analytic form that can be computed efficiently in O(K2D +K3) time (usually K � D).

4 RELATED WORK

Since the development of SGLD (Welling & Teh, 2011), SG-MCMC has been increasingly popular
for posterior sampling on big data. In detail, Chen et al. (2014) scaled up HMC with stochastic
gradients, Ding et al. (2014) further augmented the state space with an auxiliary temperature variable,
and Springenberg et al. (2016) improved robustness through scale adaptation. The SG-MCMC

5

Published as a conference paper at ICLR 2019

0 2000 4000 6000 8000 10000 12000
Iterations

10-2

10-1

100

101

KL
 D

ive
rg

en
ce

NNSGHMC
SGHMC

0 1 2 3 4 5 60

1

2

3

4

5

6
Start
End

0 1 2 3 4 5 60

1

2

3

4

5

6

Figure 2: (Left) Sampler’s bias measured by KL. (Middle) NNSGHMC trajectory plot on a 2D-
Gaussian with manually injected gradient noise. (Right) SGHMC plot for the same settings.

extensions to Riemannian Langevin dynamics and HMC (Girolami & Calderhead, 2011) have also
been proposed (Patterson & Teh, 2013; Ma et al., 2015). Our proposed sampler architecture further
generalizes SG-Riemannian-HMC as it decouples the design of DDD(zzz) and QQQ(zzz) matrices, and the
detailed functional form of these two matrices are also learned from data.

Our approach is closely related to the recent line of work on learning optimization algorithms.
Specifically, Andrychowicz et al. (2016) trained a recurrent neural network (RNN) based optimizer
that transfers to similar tasks with supervised learning. Later Chen et al. (2017) generalized this
approach to Bayesian optimization (Brochu et al., 2010; Snoek et al., 2012) which is gradient-free.
We do not use RNNs in our approach as it cannot be represented within the framework of Ma et al.
(2015). We leave the combination of learnable RNN proposals to future work. Also Li & Turner
(2018) presented an initial attempt to meta-learn an approximate inference algorithm, which simply
combined the stochastic gradient and the Gaussian noise with a neural network. Thus the stationary
distribution of that sampler (if it exists) is only an approximation to the exact posterior. On the other
hand, the proposed sampler (with η → 0) is guaranteed to be correct by the complete framework (Ma
et al., 2015). Very recently Wu et al. (2018) discussed that short-horizon meta-objectives for learning
optimizers can cause a serious issue for long-time generalization. We found this bias is less severe in
our approach, again due to the fact that the learned sampler is provably correct.

Recent research also considered improving HMC with a trainable transition kernel. Salimans et al.
(2015) improved upon vanilla HMC by introducing a trainable re-sampling distribution for the
momentum. Song et al. (2017) parameterized the HMC transition kernel with a trainable invertible
transformation called non-linear independent components estimation (NICE, Dinh et al., 2014), and
train it with Wasserstein adversarial training (Arjovsky et al., 2017). Levy et al. (2018) generalized
HMC by augmenting the state space with a binary direction variable, and they parameterized the
transition kernel with a non-volume preserving invertible transformation that is inspired by the
real-valued non-volume preserving (RealNVP) flows (Dinh et al., 2017). The sampler is trained
with the expected squared jump distance (Pasarica & Gelman, 2010). We note that adversarial
training is less reliable for high dimensional data, thus it is not considered in this paper. Also, the
jump distance does not explicitly take the sampling bias and convergence speed into account. More
importantly, the purpose of these approaches is to directly improve the HMC-like sampler on the
target distribution, and with NICE/RealNVP parametrization it is difficult to generalize the sampler
to densities of different dimensions. In contrast, our goal is to learn an SG-MCMC sampler that can
later be transferred to sample from different Bayesian neural network posterior distributions, which
will typically have different dimensionality and include tens of thousands of random variables.

5 EXPERIMENTS

We evaluate the meta-learned SG-MCMC sampler, which is referred to as NNSGHMC or the meta
sampler in the following. Detailed test set-ups are reported in the appendix. The code is available at
https://github.com/WenboGong/MetaSGMCMC.

6

https://github.com/WenboGong/MetaSGMCMC

Published as a conference paper at ICLR 2019

0.016

0.018

0.020

0.022

0.024

Er
ro

r

Network Generalization

SGHMC
NNSGHMC
SGLD
PSGLD

0.022

0.024

0.026

0.028

NT + Sigmoid Generalization

0.014

0.016

0.018

0.020 NT + Dataset Generalization

0 20 40 60 80 100
Epoch

600

700

800

900

Ne
g.

LL

0 20 40 60 80 100
Epoch

900

1000

1100

1200

1300

0 20 40 60 80 100
Epoch

220

240

260

280

300

Figure 3: Learning curves on test error (top) and negative test LL (bottom).

Table 1: The final performance for the samplers on MNIST, averaged over 10 independent runs.
Sampler NT Err. NT+AF Err NT+Data Err NT NLL NT+AF NLL NT+Data NLL

NNSGHMC 98.36±0.020.020.02% 97.72±0.020.020.02% 98.62±0.020.020.02% 640±6.25 875±3.193.193.19 230±3.23
SGHMC 98.21±0.01% 97.72±0.010.010.01% 98.52±0.03% 705±3.44 929±2.95 246±5.43
SGLD 98.27±0.02% 97.62±0.02% 98.54±0.01% 631±3.15 905±2.36 232±1.93

PSGLD 98.31±0.02% 97.67±0.02% 98.60±0.02% 610±2.932.932.93 975±4.41 224±1.971.971.97

5.1 SYNTHETIC EXAMPLE: SAMPLING GAUSSIAN VARIABLES WITH NOISY GRADIENTS

We first consider sampling Gaussian variables to demonstrate fast convergence and low bias of the
meta sampler. To mimic stochastic gradient settings, we manually inject Gaussian noise with unit
variance to the gradient as suggested by (Chen et al., 2014). The training density is a 10D Gaussian
with randomly generated diagonal covariance matrix, and the test density is a 20D Gaussian. For
evaluation, we simulate K = 50 parallel chains for T = 12, 000 steps. Then we follow Ma et al.
(2015) to evaluate the sampler’s bias measured by the KL divergence from the empirical estimate to
the ground truth. Results are visualized on the left panel of Figure 2, showing that the meta sampler
both converges much faster and achieves lower bias compared to SGHMC. The effective sample size2

for SGHMC and NNSGHMC are 22 and 59, again indicating better efficiency of the meta sampler.
For illustration purposes, we also plot in the other two panels the trajectory of samples by simulating
NNSGHMC (middle) and SGHMC (right) on a 2D Gaussian for a fixed amount of time ηT . This
confirms that the meta sampler explores more efficiently and is less affected by the injected noise.

5.2 BAYESIAN FEEDFORWARD NEURAL NETWORKS

Next, we consider Bayesian neural network classification on MNIST data with three generalization
tests: network architecture generalization (NT), activation function generalization (AF) and dataset
generalization (Data). In all tests, the sampler is trained with a 1-hidden layer multi-layer perceptron
(MLP) (20 units, ReLU activation) as the underlying model for the target distribution π(θθθ). We also
report long-time horizon generalization results, meaning that the simulation time steps in test time are
much longer than that of training (cf. Andrychowicz et al., 2016). Algorithms in comparison include
SGLD (Welling & Teh, 2011), SGHMC (Chen et al., 2014) and preconditioned SGLD (PSGLD,
Li et al., 2016a). Note that PSGLD uses RMSprop-like preconditioning techniques (Tieleman &
Hinton, 2012) that require moving average estimates of the gradient’s second moments. Therefore the
underlying dynamics of PSGLD cannot be represented within our framework (6). Thus we mainly
focus on comparisons with SGLD and SGHMC, and leave the PSGLD results as reference. The
discretization step-sizes for the samplers are tuned on the validation dataset for each task.

Architecture generalization (NT) In this test we use the trained sampler to draw samples from the
posterior distribution of a 2-hidden layer MLP with 40 units and ReLU activations. Figure 3 shows
the learning curves of test error and negative test log-likelihood (NLL) for 100 epochs, where the final
performance is reported in Table 1. Overall NNSGHMC achieves the fastest convergence even when
compared with PSGLD. It has the lowest test error compared to SGLD and SGHMC. NNSGHMC’s
final test LL is on par with SGLD and slightly worse than PSGLD, but it is still better than SGHMC.

2Implementation follows the ESS function in the BEAST package http://beast.community.

7

http://beast.community

Published as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5
Energy

2

1

0

1

2

Mo
me

ntu
m

f Q Contour

0.0 0.5 1.0 1.5 2.0 2.5
Energy

2

1

0

1

2

Mo
me

ntu
m

f D Contour with Gradient -0.12

2 1 0 1 2
Momentum

2

1

0

1

2

En
erg

y G
rad

ien
t

f D Contour with Energy 0.4

0.55

0.80

1.05

1.30

1.55

1.80

2.05

2.30

2.55

2.80

0.0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

60.0

15

45

75

105

135

165

195

225

255

Figure 4: (Left) The contour plot of function fffφQ (Middle) The contour plot for fffφD for dimension 1
and 2 with fixed −∇θθθU(θθθ) (Right) The same plot for fffφD for dimension 2 and 3 with fixed energy.

Architecture + Activation function generalization (NT+AF) Next we replace NT’s test net-
work’s activation function with sigmoid and re-run the same test as before. Again results in Figure 3
and Table 1 show that NNSGHMC converges faster than others for both test error and NLL. It also
achieves the best NLL results among all samplers, and the same test error as SGHMC.

Architecture + Dataset generalization (NT+Data) In this test we split MNIST into training task
(classifying digits 0-4) and test task (digits 5-9). The meta sampler is trained with the smaller MLP,
and it is evaluated on the task with the larger MLP with NT’s architecture. Thus, the meta sampler is
trained without any knowledge of the test task’s training and test data. From Figure 3, we see that
NNSGHMC, although a bit slower at the start, catches up quickly and proceeds to lower error. The
difference between these samplers NLL results is marginal, and NNSGHMC is on par with PSGLD.

Learned strategies For better intuition, we visualize in Figure 4 the contours of fffφD and fffφQ .
From the left panel, fffφQ has learned a nearly linear strategy w.r.t. the energy and small variations
w.r.t. the momentum. This enables the sampler for fast traversal through low density (high energy)
regions and better exploration at high density (low energy) area.

The strategy learned for the diffusion matrix DDD(zzz) is rather interesting. Recall that DDD(zzz) is
parametrized by both fffφD and fffφQ � fffφQ (eq. (6)). Since Figure 4 (left) indicates that fffφQ is
large in high energy regions, the amount of friction is adequate, so fffφD tends to reduce its output
to maintain momentum (see the middle plot). By contrast, at low energy regions, fffφD increases to
add friction in order to prevent divergence. The right panel visualizes the interactions between the
momentum and the mean gradient − 1

N∇θθθU(θθθ) at a fixed energy level. This indicates that the meta
sampler has learned a strategy to prevent overshoot by producing large friction, indeed fffφD returns
large values when the signs of the momentum and the gradient differ.

5.3 BAYESIAN CONVOLUTIONAL NEURAL NETWORKS

Following the setup of BNN MNIST experiments, we also test our algorithm on convolutional neural
networks (CNNs) for CIFAR-10 (Krizhevsky, 2009) classification, again with three generalization
tasks (NT, AF and Data). The meta sampler is trained using a smaller CNN with two convolutional
layers (3× 3× 3× 8 and 3× 3× 8× 8) and one fully connected (fc) layer (50 hidden units). ReLU
activations, and max-pooling operators of size 2 are applied after each convolutional layer. The meta
sampler is trained using 100 “meta-epochs”, where each “meta-epoch” has 5 data epochs. At the
beginning of each “meta-epoch”, a “replay” technique inspired by experience replay (Lin, 1993) is
utilized (see appendix). The discretization step-sizes are tuned on a validation dataset for each task.

Architecture generalization (NT) The test CNN has two convolutional layers (3× 3× 3× 16 and
3× 3× 16× 16) and one fc layer (100 hidden units), resulting in roughly 4× dimenality of θθθ. Figure
5 shows that the meta sampler achieves the fastest learning at the first 10 epochs, and continues to
have better performance in both test accuracy and NLL. Interestingly, PSGLD slows down quickly
after 3 epochs, and it converges to a worse answer. The best performance over 200 epochs is shown
in Table 2, where the meta sampler is a clear winner in both accuracy and NLL. This demonstrates
that our sampler indeed converges faster and has found a better posterior mode.

8

Published as a conference paper at ICLR 2019

0.30

0.40

0.50

0.60

Er
ro

r

Network Generalization

0.30

0.40

0.50

0.60

NT + Sigmoid Generalization

0.20

0.30

0.40

0.50
NT + Dataset Generalization

NNSGHMC
SGHMC
SGLD

PSGLD
Adam
SGD-M

0 10 20 30 40 50
Epoch

80

100

120

140

160

Ne
g.

 LL

0 10 20 30 40 50
Epoch

75

100

125

150

175

0 5 10 15 20 25
Epoch

20

30

40

Figure 5: Learning curves on test error (top) and negative test LL/100 (bottom).

Table 2: The best performance on CIFAR-10 over 200 epoch , averaged over 5 independent runs. All
the samplers achieved the best performance after around 190 epochs.

Methods NT Err. NT+AF Err NT+Data Err NT NLL/100 NT+AF NLL/100 NT+Data NLL/100
NNSGHMC 78.12±0.0350.0350.035% 74.41±0.110.110.11% 89.97±0.040.040.04% 68.88±0.150.150.15 79.55±0.0570.0570.057 15.66±0.28

SGHMC 77.63±0.068% 73.68±0.17% 90.11±0.150.150.15% 70.39±0.27 82.08±0.48 15.26±0.07
SGLD 76.38±0.085% 73.83±0.013% 89.34±0.06% 73.39±0.26 80.30±0.14 16.36±0.07

PSGLD 77.46±0.05% 73.16±0.1% 89.78±0.08% 69.89±0.2 83.70±0.21 15.72±0.04
Adam 70.94±0.10% 69.73±0.11% 85.44±0.14% 86.77±1.01 87.60±0.44 22.35±0.47

SGD-M 68.06±0.27% 68.76±0.17% 84.86±0.48% 99.12±1.06 90.35±0.29 23.64±0.73

Architecture + Activation function generalization (NT+AF) We use the same CNN architecture
as in NT but replace the ReLU activations with sigmoid. Figure 5 and Table 2 show that the meta
sampler again has better convergence speed and the best final performance.

Architecture + Dataset generalization (NT+Data) We split CIFAR-10 according to labels 0-4 as
the training task and 5-9 as the test task. We also used the same CNN architecture as in NT. From
Figure 5 and Table 2, the meta sampler consistently achieves the fastest convergence speed. It also
achieves similar accuracy as SGHMC, but it has slightly worse test NLL compared to SGHMC.

5.4 BAYESIAN RECURRENT NEURAL NETWORKS

Lastly, we consider a more challenging setup: sequence modeling with Bayesian RNNs. Here a
single datum is a sequence ooon = {xxx1n, ...,xxxTn} and the log-likelihood is defined as log p(ooon|θθθ) =∑T
t=1 log p(xxxnt |xxxn1 , . . . ,xxxnt−1, θθθ), with each of the conditional densities produced by a gated recurrent

unit (GRU) network (Cho et al., 2014). We consider four polyphonic music datasets for this task:
Piano-midi (Piano) as training data, and Nottingham (Nott), MuseData (Muse) and JSB chorales
(JSB) for evaluation. The meta sampler is trained on a small GRU with 100 hidden states. At test
time, we follow Chen et al. (2016) and set the step-size to η = 0.001. We found SGLD significantly
under-performs, so instead, we report the performances of two optimizers, Adam (Kingma & Ba,
2014) and Santa (Chen et al., 2016), taken from Chen et al. (2016). Again, these two optimizers use
moving average schemes which are out of the scope of our framework, so we mainly compare the
meta sampler with SGHMC and leave the others as references.

The meta sampler is tested on the four datasets using 200 unit GRU. So for Piano this corresponds
to architecture generalization only. From Figure 6 we see that the meta sampler achieves faster
convergence compared to SGHMC, at the same time it achieves similar speed as Santa at early
stages. All the samplers achieve best results close to Santa on Piano. The meta sampler successfully
generalizes to the other three datasets, demonstrating faster convergence than SGHMC consistently,
and better final performance on Muse. Interestingly, the meta sampler’s final results on Nott and
JSB are slightly worse than other samplers. Presumably, these two datasets are very different from
Muse and Piano, therefore, the energy landscape is less similar to the training density (see appendix).
Specifically, JSB is a dataset with much shorter sequences. And in this case, SGHMC also exhibits
over-fitting but to a smaller degree. Therefore, we further test the meta sampler on JSB without the
offset β in fffφQ to reduce the acceleration (denoted as NNSGHMC-s). Surprisingly, NNSGHMC-s

9

Published as a conference paper at ICLR 2019

0 10 20 30 40 50 60 70 80
Epoch

8

9

10

11

12

Te
st

 N
LL

Piano. Dataset test NLL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
8

9

10

11

12
Adam
Santa
NNSGHMC
SGHMC
PSGLD

0 10 20 30 40 50 60 70 80
Epoch

7

8

9

10

11

12 Muse Dataset test NLL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.07

8

9

10

11

0 10 20 30 40 50 60 70 80
Epoch

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0 Nott. Dataset test NLL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

3.5

4.0

4.5

5.0

5.5

6.0

0 10 20 30 40 50 60 70 80
Epoch

8

9

10

11

12

13

Te
st

 N
LL

JSB. Dataset test NLL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
8.5

9.0

9.5

10.0

10.5

11.0
NNSGHMC-s

Method Piano Muse Nott JSB
NNSGHMC 7.66 7.27 3.37 8.49

SGHMC 7.65 7.33 3.35 8.40
PSGLD 7.67 7.48 3.28 8.42
Santa 7.6 7.2 3.39 8.46
Adam 8 7.56 3.7 8.51

Figure 6: Test NLL learning curve (with zoom-in for sampling methods) and the best performance.
Santa and Adam results are from Chen et al. (2016)

convergences in similar speeds as the original one, but with less amount of over-fitting and better
final test NLL 8.40.

6 CONCLUSIONS AND FUTURE WORK

We have presented a meta-learning algorithm that can learn an SG-MCMC sampler on simpler tasks
and generalizes to more complicated densities in high dimensions. Experiments on Bayesian MLPs,
Bayesian CNNs and Bayesian RNNs confirmed the strong generalization of the trained sampler to
the long-time horizon as well as across datasets and network architectures. Future work will focus on
better designs for both the sampler and the meta-learning procedure. For the former, temperature
variable augmentation as well as moving average estimation will be explored. For the latter, better
loss functions will be proposed for faster training, e.g. by reducing the unrolling steps of the sampler
during training. Finally, the automated design of generic MCMC algorithms that might not be derived
from continuous Markov processes remains an open challenge.

ACKNOWLEDGMENTS

We thank Shixiang Gu, Mark Rowland and Cheng Zhang for comments on the manuscript. We also
appreciate Changyou Chen for providing the experiment results of Bayesian RNN (Chen et al., 2016).
Wenbo Gong is supported by the CSC-Cambridge Trust Scholarship.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via stochastic
gradient fisher scoring. arXiv preprint arXiv:1206.6380, 2012.

10

https://www.tensorflow.org/

Published as a conference paper at ICLR 2019

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981–3989, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223, 2017.

Matthew James Beal. Variational algorithms for approximate Bayesian inference. PhD thesis,
University College London, 2003.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
learning rule. In Conference on Optimality in Biological and Artificial Networks, 1992.

Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learning, pp. 1613–1622, 2015.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, and Lawrence Carin. Bridging the gap
between stochastic gradient MCMC and stochastic optimization. In Artificial Intelligence and
Statistics, pp. 1051–1060, 2016.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In
International Conference on Machine Learning, pp. 1683–1691, 2014.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient descent.
In International Conference on Machine Learning, pp. 748–756, 2017.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. In
International Conference on Machine Learning, 2016.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In International Conference on machine learning, pp. 465–472, 2011.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. In International
Conference on Learning Representations, 2017.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut Neven.
Bayesian sampling using stochastic gradient thermostats. In Advances in Neural Information
Processing Systems, pp. 3203–3211, 2014.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

11

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx

Published as a conference paper at ICLR 2019

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059,
2016.

Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu, Qinliang Su, and Lawrence Carin. Scalable
Bayesian learning of Recurrent neural networks for language modeling. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pp. 321–331, 2017.

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):
123–214, 2011.

Jackson Gorham and Lester Mackey. Measuring sample quality with Stein’s method. In Advances in
Neural Information Processing Systems, pp. 226–234, 2015.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pp. 2348–2356, 2011.

Jose Hernandez-Lobato, Yingzhen Li, Mark Rowland, Thang Bui, Daniel Hernandez-Lobato, and
Richard Turner. Black-box Alpha divergence minimization. In International Conference on
Machine Learning, pp. 1511–1520, 2016.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
of Bayesian neural networks. In International Conference on Machine Learning, pp. 1861–1869,
2015.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Daniel Levy, Matt D. Hoffman, and Jascha Sohl-Dickstein. Generalizing Hamiltonian Monte Carlo
with neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1n8LexRZ.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, pp. 2203–2213, 2017.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient Langevin dynamics for deep neural networks. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pp. 1788–1794. AAAI Press, 2016a.

Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, and Lawrence Carin. Learn-
ing weight uncertainty with stochastic gradient MCMC for shape classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5666–5675, 2016b.

Ke Li and Jitendra Malik. Learning to optimize. In International Conference on Learning Represen-
tations, 2017.

Yingzhen Li and Yarin Gal. Dropout inference in Bayesian neural networks with Alpha-divergences.
In International Conference on Machine Learning, pp. 2052–2061, 2017.

12

https://openreview.net/forum?id=B1n8LexRZ

Published as a conference paper at ICLR 2019

Yingzhen Li and Richard E. Turner. Gradient estimators for implicit models. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=SJi9WOeRb.

Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In Advances In Neural Information Processing Systems, pp. 2378–2386, 2016.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized Stein discrepancy for goodness-of-fit tests.
In International Conference on Machine Learning, pp. 276–284, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural
networks. In International Conference on Machine Learning, pp. 2218–2227, 2017.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient MCMC. In
Advances in Neural Information Processing Systems, pp. 2917–2925, 2015.

Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In Neural Networks,
1992. IJCNN., International Joint Conference on, volume 1, pp. 437–442. IEEE, 1992.

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11), 2011.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BkQqq0gRb.

Cristian Pasarica and Andrew Gelman. Adaptively scaling the Metropolis algorithm using expected
squared jumped distance. Statistica Sinica, pp. 343–364, 2010.

Sam Patterson and Yee Whye Teh. Stochastic gradient Riemannian Langevin dynamics on the
probability simplex. In Advances in Neural Information Processing Systems, pp. 3102–3110, 2013.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
Intelligence and Statistics, pp. 814–822, 2014.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation for neural
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Skdvd2xAZ.

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning, pp. 1218–1226,
2015.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, pp. 1842–1850, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jianghong Shi, Tianqi Chen, Ruoshi Yuan, Bo Yuan, and Ping Ao. Relation of a new interpretation
of stochastic differential equations to ito process. Journal of Statistical Physics, 148(3):579–590,
2012.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959, 2012.

Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-NICE-MC: Adversarial training for MCMC. In
Advances in Neural Information Processing Systems, pp. 5146–5156, 2017.

13

https://openreview.net/forum?id=SJi9WOeRb
https://openreview.net/forum?id=SJi9WOeRb
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=Skdvd2xAZ
https://openreview.net/forum?id=Skdvd2xAZ

Published as a conference paper at ICLR 2019

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization
with robust Bayesian neural networks. In Advances in Neural Information Processing Systems
(NIPS), pp. 4134–4142, 2016.

Charles M Stein. A bound for the error in the normal approximation to the distribution of a sum of
dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 2: Probability Theory, pp. 583–602, 1972.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, pp. 1135–1151, 1981.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 1998.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning, pp. 681–688, 2011.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International Conference on Machine Learning, pp. 3751–3760, 2017.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial Intelligence and Statistics, pp. 370–378, 2016.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=H1MczcgR-.

Lan Yin and Ping Ao. Existence and construction of dynamical potential in nonequilibrium processes
without detailed balance. Journal of Physics A: Mathematical and General, 39(27):8593, 2006.

14

https://openreview.net/forum?id=H1MczcgR-

Published as a conference paper at ICLR 2019

A COMPARING MOMENTUM SGD AND SGHMC

Similar to the relationship between SGLD and SGD, SGHMC is closely related SGD with momentum
(SGD-M). First in HMC, the state space is augmented with an additional momentum variable denoted
as ppp ∈ RD. We assume an identity mass matrix associated with that momentum term. Then the
corresponding drift fff(θθθ,ppp) and diffusion matrixDDD are:

fff(θθθ,ppp) =

[
000 III
−I−I−I −CCC

] [
∇U(θθθ)
ppp

]
, DDD =

[
000 000
000 CCC

]
, (12)

where CCC is a positive definite matrix called friction coefficient. Thus, HMC’s continuous-time
dynamics is governed by the following SDE:

dθθθ = pppdt,

dppp = −∇U(θθθ)dt−CpCpCpdt+
√

2CCCdWWW (t).
(13)

The discretized update rule (with simple Euler discretization) of HMC with step-size η is

θθθt+1 = θθθt + ηpppt,

pppt+1 = (1− ηCCC)pppt − η∇U(θθθt) + εεεt,

εεεt ∼ N (000, 2ηCCC).

(14)

If stochastic gradient ∇Ũ(θθθ) is used, we need to replace the covariance matrix of εεε with 2η(CCC − B̂BB)

where B̂BB is the variance estimation of the gradients.

On the other hand, the update equations of SGD with momentum (SGD-M) are the following:

θθθt+1 = θθθt + vvvt,

vvvt+1 = kvvvt − l∇U(θθθt).
(15)

where k and l are called momentum discount factor and learning rate, respectively. Also we can
rewrite the SGHMC update equations by setting ηpppt = vvvt, l = η2,k = (1− ηCCC),

θθθt+1 = θθθt + vvvt,

vvvt+1 = kvvvt − l∇U(θθθt) + ε̂t̂εt̂εt,

ε̂t̂εt̂εt ∼ N (000, 2l(1− k)).

(16)

Thus, the discretized SGHMC updates can be viewed as the SGD-M update injected with carefully
controlled Gaussian noise. Therefore, the hyperparameter of SGHMC can be heuristically chosen
based on the experience of SGD-M and vice versa.

Neal et al. (2011) showed that in practice, simple Euler discretization for HMC simulation might
cause divergence, therefore advanced discretization schemes such as Leapfrog and modified Euler
are recommended. We use modified Euler discretization in our implementation of SGHMC and the
meta sampler, resulting in the following update:

pppt+1 = (1− ηCCC)pppt − η∇U(θθθt) + εεεt,

θθθt+1 = θθθt + ηpppt+1,

εεεt ∼ N (000, 2ηCCC).

(17)

B FINITE DIFFERENCE APPROXIMATION FOR THE GAMMA VECTOR

The main computational burden is the gradient computation required by ΓΓΓ(zzz) vector. To simplify
notations we will writeDDD = DDD(zzz) andQQQ = QQQ(zzz). From the parametrization of theQQQ andDDD matrices
in eq. (6), for θθθ,ppp ∈ RD we have ΓΓΓ(zzz) = [ΓΓΓθθθ,ΓΓΓppp]. For the first term ΓΓΓθθθ, we have

ΓΓΓθθθ,i = −∇ppp ·QQQi,: = −
∂fφQ,i

∂pi
. (18)

Due to the two-stage update of Euler integrator, at time t, we have f t−1φQ,i
= fφQ,i(U(θθθt−1), pt−1i),

f̂ t−1φQ,i
= fφQ,i(U(θθθt−1), pti) and f t−1φD,i

= fφD,i(U(θθθt−1), pt−1i ,∇θt−1
i
U(θθθt−1)). Thus a proper finite

15

Published as a conference paper at ICLR 2019

difference method requires fφQ,i(U(θθθt), p
t−1
i), which is not exactly the history from the previous

time. Therefore we further approximate it using delayed estimate:

∂f tφQ,i

∂pti
≈
f̂ t−1φQ,i

− f t−1φQ,i

pti − p
t−1
i

⇒ ΓΓΓtθθθ ≈ −
Q̂QQ
t−1
−QQQt−1

pppt − pppt−1
. (19)

Similarly, the ΓΓΓppp term expands as

ΓΓΓppp,i = ∇ · [DDD +QQQ]i,:

=
∂fφQ,i

∂θi
+
∂fφD,i
∂pi

+ 2αfφQ,i
∂fφQ,i

∂pi

=
∂fφQ,i

∂U(θθθ)

∂U(θθθ)

∂θi
+
∂fφD,i
∂pi

+ 2αfφQ,i
∂fφQ,i

∂pi
.

(20)

We further approximate
∂fφQ,i

∂U(θθθ) by the following

∂fφQ,i

∂U(θθθ)
≈

f tφQ,i − f̂
t−1
φQ,i

U(θθθt)− U(θθθt−1)
(21)

This only requires the storage of previousQQQ matrix. However, ∂fφD,i∂pi
requires one further forward

pass to obtain f̂ t−1φD,i
= fφD,i(U(θθθt), p

t−1
i ,∇θtiU(θθθt)), thus, we have

∂fφD,i
∂pi

≈
f tφD,i − f̂

t−1
φD,i

pti − p
t−1
i

⇒ ΓΓΓppp ≈
QQQt − Q̂QQ

t−1

U(θθθt)− U(θθθt−1)
�∇θθθU(θθθt) +

fff tφD − f̂ff
t−1
φD

pppt − pppt−1
+ 2αfff tφQ

Q̂QQ
t−1
−QQQt−1

pppt − pppt−1
.

(22)

Therefore the proposed finite difference method only requires one more forward passes to compute

f̂ff
t−1
φD and instead, save 3 back-propagations. As back-propagation is typically more expensive than

forward pass, our approach reduces running time drastically, especially when the sampler are applied
to large neural network.

Time complexity figures Every SG-MCMC method (including the meta sampler) requires∇θθθŨ(θθθ).
The main burden is the forward pass and back-propagation through the DDD(zzz) and QQQ(zzz) matrices,
where the latter one has been replaced by the proposed finite difference scheme. The time complexity
is O(HD) for both forward pass and finite difference with H the number of hidden units in the neural
network of the meta sampler. Parallel computation with GPUs improves real-time speed, indeed in
our MNIST experiment the meta sampler spends roughly 1.5x time when compared with SGHMC.

C DETAILS OF THE STEIN GRADIENT ESTIMATOR

For a distribution q(θθθ) that is implicitly defined by a generative procedure, the density q(θθθ) is
often intractable. Li & Turner (2018) derived the Stein gradient estimator that estimates G =
(∇θθθ1 log q(θθθ1), · · · ∇θθθK log q(θθθK))T on samples θθθ1, ..., θθθK ∼ q(θθθ). There are two different ways to
derive this gradient estimator, here we briefly introduce one of them, and refer the readers to Li &
Turner (2018) for details.

We start by introducing Stein’s identity (Stein, 1972; 1981; Gorham & Mackey, 2015; Liu et al., 2016).
Let h : Rd×1 → Rd′×1 be a differentiable multivariate test function which maps θθθ to a column vector
h(θθθ) = [h1(θθθ), h2(θθθ), ..., hd′(θθθ)]

T. One can use integration by parts to show the following Stein’s
identity when a boundary condition lim||θθθ||→∞ q(θθθ)h(θθθ) = 0 is assumed for the test function:

Eq[h(θθθ)∇θθθ log q(θθθ)T +∇θθθh(θθθ)] = 0, ∇θθθh(θθθ) = (∇θθθh1(θθθ), · · · ,∇θθθhd′(θθθ))T ∈ Rd
′×d. (23)

This boundary condition holds for almost any test function if q has sufficiently fast-decaying tails
(e.g. Gaussian tails). Li & Turner (2018) proposed the Stein gradient estimator for ∇θθθ log q(θθθ) by

16

Published as a conference paper at ICLR 2019

inverting a Monte Carlo (MC) version of Stein’s identity (23):

− 1

K
HG ≈ ∇θθθh, H =

(
h(θθθ1), · · · ,h(θθθK)

)
∈ Rd

′×K , ∇θθθh =
1

K

K∑
k=1

∇θθθkh(θθθk) ∈ Rd
′×d.

Then G is obtained by ridge regression (with || · ||F the Frobenius norm of a matrix)

ĜStein
V := arg min

Ĝ∈RK×d
||∇θθθh +

1

K
HĜ||2F +

η

K2
||Ĝ||2F , η ≥ 0, (24)

which has an analytical solution

ĜStein
V = −(K + ηI)−1〈∇,K〉, (25)

where
K := HTH, Kij = K(θθθi, θθθj) := h(θθθi)Th(θθθj),

〈∇,K〉 := KHT∇θθθh, 〈∇,K〉ij =

K∑
k=1

∇θθθk(j)K(θθθi, θθθk).

Here θθθk(j) denotes the jth element of vector θθθk. One can show that the RBF kernel satisfies Stein’s
identity (Liu et al., 2016). In this case h(θθθ) = K(θθθ, ·), d′ = +∞ and by the reproducing kernel
property, h(θθθ)Th(θθθ′) = 〈K(θθθ, ·),K(θθθ′, ·)〉H = K(θθθ,θθθ′). Li & Turner (2018) also show that the Stein
gradient estimator can be obtained by minimizing a Monte Carlo estimate of the kernelized Stein
discrepancy (Chwialkowski et al., 2016; Liu et al., 2016).

The kernel choice It is well-known for kernel methods that a better choice of the kernel can greatly
improve the performance. However, optimal kernels are often problem specific, and they are generally
difficult to obtain. Recently, a popular approach for kernel design is to compose a simple kernel
(e.g. RBF kernel) on features extracted from a deep neural network. Representative work include
deep kernel learning for Gaussian processes (Wilson et al., 2016), and adversarial approaches to learn
kernel parameters (Li et al., 2017; Bińkowski et al., 2018). Unfortunately, both approaches do not
scale very well to our application as θθθ has at least tens of thousands of dimensions. Furthermore,
they both considered kernel learning for observed data, while in our case θθθ is a latent variable to
be inferred. Therefore it remains a research question on how to learn kernels on latent variables
efficiently, and addressing this question is out of the scope of the paper. Instead, we follow Liu &
Wang (2016); Li & Turner (2018) to use RBF kernel for the gradient estimator. Other kernels can be
trivially adapted to our method. We expect even better performance if an optimal kernel is in use, but
we leave the investigation to future work.

Time complexity figures During meta sampler training, the Stein gradient estimator requires the
kernel matrix inversion which is O(K3) for cross-chain training. In practice, we only run a few
parallel Markov chains K = 20 ∼ 50, thus, this will not incur huge computation cost. For in-chain
loss the computation can also be reduced with proper thinning schemes.

D IMPLEMENTATION DETAILS OF THE TRAINING LOSS

We visualize on the left panel of Figure 7 the unrolled computation scheme. We apply truncated
back-propagate through time (BPTT) to train the sampler. Specifically, we manually stop the gradient
flow through the input ofDDD andQQQ matrices to avoid computing higher order gradients.

We also illustrate cross-chain in-chain training on the right panel of Figure 7. Cross-chain training
encourages both fast convergence and low bias, provided that the samples are taken from parallel
chains. On the other hand, in-chain training encourages sample diversity inside a chain. In practice,
we might consider thinning the chains when performing in-chain training. Empirically this improves
the Stein gradient estimator’s accuracy as the samples are spread out. Computationally, this also
prevents inverting big matrices for the Stein gradient estimator, and reduces the number of back-
propagation operations. Another trick we applied is parallel chain sub-sampling: if all the chains are
used, then there is less encouragement of singe chain mixing, since the parallel chain samples can be
diverse enough already to give reasonable gradient estimate.

17

Published as a conference paper at ICLR 2019

Figure 7: (Left) The unrolled scheme of the meta sampler updates. Stop gradient operations are
applied to the dashed arrows. (Right) A visualization of cross-chain in-chain training. The grey area
represents samples across multiple chains, and we compute the cross chain loss for every 5 time
steps. The purple area indicates the samples taken across time with sub-sampled chains 1 and 3. In
this visualization the initial 15 samples are discarded for burn-in, and the thinning length is τ = 1
(effectively no thinning).

E INPUT PRE-PROCESSING

One potential challenge is that for different tasks and problem dimensions, the energy function,
momentum and energy gradient can have very different scales and magnitudes. This affects the meta
sampler’s generalization, for example, if training and test densities have completely different energy
scales, then the meta sampler is likely to produce wrong strategies. This is especially the case when
the meta sampler is generalized to much bigger networks or to very different datasets.

To mediate this issue, we propose to pre-process the inputs to both fffφD and fffφQ networks to
make it at similar scale as those in training task. Recall that the energy function is U(θθθ) =

−
∑N
n=1 log p(yyyn|xxxn, θθθ)− log p(θθθ) where the prior log p(θθθ) is often an isotropic Gaussian distribu-

tion. Thus the energy function scale linearly w.r.t both the dimensionality of θθθ and the total number
of observations N . Often the energy function is further approximated using mini-batches of M
datapoints. Putting them together, we propose pre-processing the energy as

U(θθθ) =
1

M

M∑
m=1

log p(yyym|xxxm, θθθ) +
Dtrain

NDtest
log p(θθθ) (26)

where Dtrain and Dtest are the dimensionality of θθθ in the training task and the test task, respectively.
Importantly, for RNNs N represents the total sequence length, namely N =

∑Ndata
n=1 Tn, where

Ndata is the total number of sequences and Tn is the sequence length for a datum xxxn. We also
define M accordingly. The momentum and energy gradient magnitudes are estimated by simulating
a randomly initialized meta sampler for short iterations. With these statistics we normalize both the
momentum and the energy gradient to have roughly zero mean and unit variance.

F EXPERIMENT SETUP

F.1 TOY EXAMPLE

We train our meta sampler on a 10D uncorrelated Gaussian with mean (3, ..., 3) and randomly
generated covariance matrix. We do not set any offset and additional frictions, i.e. α = 0 and
β = 0. The noise estimation matrix B̃BB are set to be 0 for both meta sampler and SGHMC. To
mimic stochastic gradient, we manually inject Gaussian noise with zero mean and unit variance into
∇θθθŨ(θθθ) = ∇θθθU(θθθ)+εεε, εεε ∼ N (000, III). The functions fffφD and fffφQ are represented by 1-hidden-layer
MLPs with 40 hidden units. For training task, the meta sampler step size is 0.01. The initial positions
are drawn from Uniform([0, 6]D). We train our sampler for 100 epochs and each epochs consists
4 x 100 steps. For every 100 steps, we updates theQQQ andDDD matrices using Adam optimizer with
learning rate 0.0005. Then we continue the updated sampler with last position and momentum until 4

18

Published as a conference paper at ICLR 2019

sub-epochs are finished. We re-initialize the momentum and position. We use both cross-chain and
in-chain losses. The Stein Gradient estimator uses RBF kernel with bandwidth chosen to be 0.5 times
the median-heuristic estimated value. We unroll the Markov Chain for 20 steps before we manually
stop the gradient. For cross-chain training, we take sampler across chain for each 2 time steps. For
in-Chain, we discard initial 50 points for burn-in and sub-sample the chain with batch size 5. We thin
the samples for every 3 steps. For both training and evaluation, we run 50 parallel Markov Chains.

The test task is to draw samples from a 20D correlated Gaussian with with mean (3, ..., 3) and
randomly generated covariance matrix. The step size is 0.025 for both meta sampler and SGHMC.
To stabilize the meta sampler we also clamp the output values of fffφQ within [−5, 5]. The friction
matrix for SGHMC is selected as III .

F.2 BAYESIAN MLP MNIST

In MNIST experiment, we apply input pre-processing on energy function as in (26) and scale energy
gradient by 70. Also, we scale up fffφD by 50 to account for sum of stochastic noise. The offset

α is selected as 0.01
η as suggested by Chen et al. (2014), where η =

√
lr
N with lr the per-batch

learning rate. We also turn off the off-set and noise estimation, i.e. β = 0 and B̃BB = 0. We run 20
parallel chains for both training and evaluation. We only adopt the cross chain training with thinning
samplers of 5 times step. We also use the finite difference technique during evaluation to speed-up
computations.

F.2.1 ARCHITECTURE GENERALIZATION (NT)

We train the meta sampler on a smaller BNN with architecture 784-20-10 and ReLU activation
function, then test it on a larger one with architecture 784-40-40-10. In both cases the batch size is
500 following Chen et al. (2014). Both fffφD and fffφQ are parameterized by 1-hidden-layer MLPs
with 10 units. The per-batch learning rate is 0.007. We train the sampler for 100 epochs and each one
consists of 7 sub-epochs. For each sub-epoch, we run the sampler for 100 steps. We re-initialize θθθ
and momentum after each epoch. To stabilize the meta sampler in evaluation, we first run the meta
sampler with small per-batch learning rate 0.0085 for 3 data epochs and clamp theQQQ values. After,
we increase the per-batch learning rate to 0.018 with clipped fffφQ . The learning rate for SGHMC is
0.01 for all times. For SGLD and PSGLD, they are 0.2 and 1.4× 10−3 respectively. These step-sizes
are tuned on MNIST validation data.

F.2.2 NT + ACTIVATION FUNCTION GENERALIZATION

We modify the test network’s activation function to sigmoid. We use almost the same settings as in
network generalization tests, except that the per-batch learning rates are tuned again on validation
data. For the meta sampler and SGHMC, they are 0.18 and 0.15. For SGLD and PSGLD, they are 1
and 1.3× 10−2.

F.2.3 NT + DATASET GENERALIZATION

We train the meta sampler on ReLU network with architecture 784-20-5 to classify images 0-4, and
test the sampler on ReLU network 784-40-40-5 to classify images 5-9. The settings are mostly the
same as in network architecture generalization for both training and evaluation. One exception is
again the per-batch learning rate for PSGLD, which is tuned as 1.3× 10−3. Note that even though
we use the same per-batch learning rate as before, the discretization step-size is now different due to
smaller training dataset, thus, α will be automatically adjusted accordingly.

F.3 BAYESIAN CONVOLUTIONAL NEURAL NETWORK ON CIFAR-10

CIFAR-10 dataset contains 50,000 training images with 10 labels and 10,000 test images. We train
our meta sampler using smaller CNN classifier with two convolutional layer (3 × 3 × 3 × 8 and
3× 3× 8× 8, no padding) and one fc layer of 50 hidden units. Therefore the dimensionality of θθθ

is 15, 768. The training sampler discretization step-size η is
√

0.0007
50000. and scaling term is α = 0.005

η .
To make it analogous to optimization methods, we call 0.0007 as per-batch learning rate and 0.005

19

Published as a conference paper at ICLR 2019

as friction coefficient. The fffφQ and fffφD are defined by 2-layer MLPs with 10 hidden units. We
set the offset values to 0 for bothQQQ andDDD. Further, we scale up the output ofDDDf (zzz) by 10 and its
gradient input ∇U(θθθ) by 100. We scale up the energy input U(θθθ) to both fffφQ and fffφD by 5. We
train our meta sampler using 100 “meta epoch” with 5 data epoch and 500 batch size. Within each
”meta epoch”, we repeat the following computation for 10 times: we run 50 parallel chains using the
meta sampler for 50 iterations (0.5 dataset epoch), compute the loss function, and update the meta
sampler’s parameters using Adam. We manually stop the gradient after 20 iterations. Then we start
the next sub-epoch using the last θθθ and ppp. After we finish all sub-epoch, we re-initialize the θθθ and ppp
using replay techniques with probability 0.15. The sub-sample chain number for in-chain loss is set
to 5.

F.3.1 THE REPLAY TECHNIQUE

Experience replay (Lin, 1993) is a technique broadly used in reinforcement learning literature.
Inspired by this, in Bayesian CNN experiments we train the meta sampler in a similar way, and we
found this replay technique particularly useful for more complicated dataset like CIFAR-10.

At the beginning of each “meta epoch”, each chain is initialized either with a specific state randomly
chosen from a replay pool, or with a random state sampled from a Gaussian distribution. We use a
pre-defined replay probability to control the replay strategy. The replay pool is updated after each
sub-epoch, and it has a queue-like data structure of constant size, so that the old states are replaced
by the new ones. Therefore, this replay technique is useful for both short-time and long-time horizon
generalization. On one hand, the meta sampler can continue with previous states, allowing it to
accommodate long-time horizon behavior. On the other hand, due to non-zero probability of random
restart, the meta sampler can learn a better strategy for fast convergence. Therefore with this replay
technique, the sampler can observe both burn-in and roughly-converged behavior, and this balance is
controlled by the replay probability.

F.3.2 ARCHITECTURE GENERALIZATION (NT)

For architecture generalization, the test CNN has two convolutional layer (3 × 3 × 3 × 16 and
3 × 3 × 16 × 16, no padding) and one fully connected layer with 100 hidden units. Thus, the
dimensionality of θθθ is 61,478, roughly 4 times of the training dimension. We run 20 parallel chains
in test time. We split the 50,000 training images into 45,000 training and 5,000 validation images,
and tune the discretization step-size of each sampling and optimization methods on the validation
set for 80 epochs. For test, we run the tuned samplers/optimizers for 200 data epoch (roughly 40
times longer than training) to ensure convergence. For the meta sampler, the per-batch rate is 0.003.
For SGHMC, the per-batch is also 0.003 with friction coefficient 0.01. For SGLD, the per-batch
learning rate is 0.15. PSGLD uses 1.3× 10−3 as learning rate and 0.99 as moving average term. For
optimization methods, we use learning rate 0.002 for Adam and 0.003 for SGD-M. The momentum
term is 0.9. To prevent overfitting, we use weight penalty with coefficient 0.001.

F.3.3 NT + SIGMOID GENERALIZATION

The test CNN has same architecture as in NT, except that it replaces all ReLU activation functions
with sigmoid activations. We fix all other parameters for sampling method and only re-tune the step
sizes using same setup as in NT. The per-batch rate for meta sampler, SGHMC, SGLD and PSGLD
are 0.1, 0.03, 0.5 and 0.005 respectively. For optimization methods, the step size for Adam and
SGD-M are 0.002 and 0.03 respectively.

F.3.4 NT + DATASET GENERALIZATION

We split the CIFAR-10 training and test dataset according to the labels. We use training data with
labels 0-4 for meta sampler training, training data with labels 5-9 for test CNN training, and test
data with labels 5-9 for test CNN evaluation. Thus, the meta sampler has no access to the test task’s
training and test data during sampler training. We train our sampler using the same scaling terms as
in NT but reduce the discretization step-size to 0.0005. The rest setup is the same as in NT.

We use the same test CNN architecture and ReLU activation as in NT, and tune the learning rate using
validation data. The step size for the meta sampler, SGHMC, SGLD and PSGLD are 0.0015, 0.005,

20

Published as a conference paper at ICLR 2019

Table 3: The basic statistics for 4 RNN datasets, bold figure represents large difference compared to
others. Size is the number of data point. Avg. Time is the averaged sequence and Energy scale is the
rough scale of the train NLL when sampler converges.

Piano Muse Nott JSB
Size:train 87 524 694 229
Size:test 25 124 170 77

Avg. Time:train 872 467 254 60
Avg. Time:test 761 518 261 61

Energy scale:train ≈ 7.2 ≈ 7 ≈ 2.52.52.5 ≈ 7.8

0.2 and 0.0018, respectively. For optimization methods, we use learning rates 0.002 and 0.003 for
Adam and SGD-M respectively.

F.4 BAYESIAN RNN

The Piano data is selected as the training task, which is further split into training, validation and test
subsets. We use batch-size 1, meaning that the energy and the gradient are estimated on a single
sequence. The meta sampler uses similar neural network architectures as in MNIST tests. The
training and evaluation per-batch learning rate for all the samplers is set to be 0.001 following Chen
et al. (2016). We train the meta sampler for 40 epochs with 7 sub-epochs with only cross chain loss.
Each sub-epochs consists 70 iterations. We scale theDDD output by 20 and set α = 0.002

η , where η is
defined in the same way as before. We use zero offset during training, i.e. β = 0. We apply input
pre-processing for both fffφD and fffφQ . To prevent divergence of the meta sampler at early training
stage. We also set the constant of c = 100 to the fφD . For dataset generalization, we tune the off-set
value based on Piano validation set and transfer the tuned setting β = −1.5 to the other three datasets.
For Piano architecture generalization, we do not tune any hyper-parameters including β and use
exactly same settings as training. Exact gradient is used in RNN experiments instead of computing
finite differences.

G RNN DATASET DESCRIPTION

We list some data statistics in Table 3 which roughly indicates the similarity between datasets. Piano
dataset is the smallest in terms of data number, however, the averaged sequence length is the largest.
Muse dataset is similar to Piano in sequence length and energy scale but much larger in terms of data
number. On the other hand, Nott dataset has very different energy scale compared to the other three.
This potentially makes the generalization much harder due to inconsistent energy scale fed into fffφQ
and fffφD . For JSB, we notice a very short sequence length on average, therefore the GRU model is
more likely to over-fit. Indeed, some algorithms exhibits significant over-fitting behavior on JSB
dataset compared to other data (Santa is particularly severe).

H ADDITIONAL PLOTS

H.1 SHORT HORIZON PERFORMANCE COMPARISONS

We also run the samplers using the same settings as in MNIST experiments for a short period of
time (500 iterations). We also compare to other optimization methods including momentum SGD
(SGD-M) and Adam. We use the same per-batch learning rate for SGD-M and SGHMC as in MNIST
experiment. For Adam, we use 0.002 for ReLU and 0.01 for Sigmoid network.

The results are shown in Figure 8. Meta sampler and Adam achieves the fastest convergence speed.
This again confirms the faster convergence of the meta sampler especially at initial stages. We also
provide additional contour plots (Figure 9) for MNIST experiments to demonstrate the strategy
learned by fffφD for reference.

21

Published as a conference paper at ICLR 2019

0.05

0.10

0.15

0.20

0.25

0.30
Er

ro
r

Network Generalization
Adam
SGD-M
SGHMC
NNSGHMC
SGLD

0.05

0.10

0.15

0.20

0.25

0.30 NT + Sigmoid Generalization

0 100 200 300 400 500
Iter.

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ne
g.

 L
L

0 100 200 300 400 500
Iter.

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 8: We only test the Network Generalization and Activation function generalization. The upper
part indicates the test error plot and lower part are the negative test LL curve

0.0 0.5 1.0 1.5 2.0 2.5
Energy

2

1

0

1

2

Mo
me

nt
um

f D Contour with gradient 0.12

0.0 0.5 1.0 1.5 2.0 2.5
Energy

2

1

0

1

2

Gr
ad

ien
t

f D Contour with Momentum -1

0.0 0.5 1.0 1.5 2.0 2.5
Energy

2

1

0

1

2

Gr
ad

ien
t

f D Contour with Momentum 0.5

2 1 0 1 2
Momentum

2

1

0

1

2

Gr
ad

ien
t

f D Contour with energy 4

0

8

16

24

32

40

48

56

64

72

0

20

40

60

80

100

120

140

160

180

0

24

48

72

96

120

144

168

192

135

160

185

210

235

260

285

310

335

Figure 9: The contour plots of fφD for other input values.

22

	Introduction
	Background: a complete framework for SG-MCMC
	Meta-learning for SG-MCMC
	Efficient parameterization of diffusion and curl matrices
	Choices of inputs to the neural networks
	Loss function design for meta-learning

	Related work
	Experiments
	Synthetic example: sampling Gaussian variables with noisy gradients
	Bayesian feedforward neural networks
	Bayesian convolutional neural networks
	Bayesian recurrent neural networks

	Conclusions and future work
	Comparing momentum SGD and SGHMC
	Finite difference approximation for the Gamma vector
	Details of the Stein gradient estimator
	Implementation details of the training loss
	Input pre-processing
	Experiment Setup
	Toy Example
	Bayesian MLP MNIST
	Architecture Generalization (NT)
	NT + Activation function generalization
	NT + Dataset Generalization

	Bayesian Convolutional Neural Network on CIFAR-10
	The replay technique
	Architecture generalization (NT)
	NT + Sigmoid generalization
	NT + Dataset generalization

	Bayesian RNN

	RNN dataset description
	Additional Plots
	Short horizon performance comparisons

