A SEMANTIC LOSS FUNCTION FOR
DEEP LEARNING WITH SYMBOLIC KNOWLEDGE

ABSTRACT

This paper develops a novel methodology for using symbolic knowledge in deep
learning. From first principles, we derive a semantic loss function that bridges
between neural output vectors and logical constraints. This loss function captures
how close the neural network is to satisfying the constraints on its output. An
experimental evaluation shows that our semantic loss function effectively guides
the learner to achieve (near-)state-of-the-art results on semi-supervised multi-class
classification. Moreover, it significantly increases the ability of the neural network
to predict structured objects, such as rankings and paths. These discrete concepts
are tremendously difficult to learn, and benefit from a tight integration of deep
learning and symbolic reasoning methods.

1 INTRODUCTION

The widespread success of representation learning raises the question of which Al tasks are
amenable to deep learning, which require classical model-based symbolic reasoning, and whether
we can benefit from an integration of both. In recent years, significant effort has gone towards var-
ious ways of using representation learning to solve tasks that were previously tackled by symbolic
methods. Such efforts include neural computers, Turing machines, and differentiable programming
(e.g., [Weston et al.| (2014); Reed & De Freitas| (2015); |Graves et al. (2016)); Riedel et al.[ (2016)),
relational embeddings, deep learning for graph data, and neural theorem proving (e.g., Bordes et al.
(2013)); Neelakantan et al.| (2015)); Duvenaud et al.| (2015); Niepert et al.[ (2016)), and many more.
Other work has sought to augment deep learning with (symbolic) knowledge (e.g.,Hu et al.|(2016);
Stewart & Ermon| (2017);|Marquez-Neila et al.|(2017); Minervini et al.[|(2017); |Wang et al.| (2017)).

This paper considers learning tasks where we have symbolic knowledge connecting the different
outputs of a neural network. This knowledge takes the form of a constraint (or sentence) in Boolean
logic. It can be as simple as an exactly-one constraint for one-hot output encodings, or as complex
as a structured output prediction constraint for intricate combinatorial objects such as rankings,
subgraphs, and paths. Our goal is to augment neural networks with the ability to learn how to make
predictions subject to these constraints, and use the symbolic knowledge to improve its performance.

Most neuro-symbolic approaches aim to simulate or learn symbolic reasoning in an end-to-end deep
neural network, or capture symbolic knowledge in a vector-space embedding. This choice is partly
motivated by the need for smooth differentiable models; adding symbolic reasoning code (e.g., SAT
solvers) to a deep learning pipeline destroys this property. Unfortunately, while making reasoning
differentiable, the precise logical meaning of the knowledge is often lost. In this paper, we take a
distinctly different approach, and tackle the problem of differentiable but sound logical reasoning
from first principles. Starting from a set of intuitive axioms, we derive a differentiable semantic
loss function that captures how well the outputs of a neural network match a given constraint. This
function precisely captures the meaning of the constraint, and is independent of its syntax.

Next, we show how this semantic loss gives significant practical improvements in semi-supervised
classification. The semantic loss defined over the exactly-one constraint in this setting permits us to
obtain a learning signal from vast amounts of unlabeled data. The key idea is that the semantic loss
helps us improve how consistently we are able to classify the unlabeled data. This simple addition to
the loss function of standard deep learning architectures yields (near-)state-of-the-art performance
in semi-supervised classification on MNIST, FASHION and CIFAR-10 datasets.



1. Sake
2. Unagi
3. Tka

_.| Preference
—| Ranking

Figure 1: Outputs of a neural network feed into semantic loss functions for constraints representing
a one-hot encoding, a total ranking of preferences, and paths in a grid graph.

Our final set of experiments study the benefits of the semantic loss function for complex structured
output learning tasks, such as preference learning and path prediction in a graph (Daumé et al., 2009;
Chang et al.| 2013} |Choi et al.l 2015} |Graves et al., 2016). In these scenarios, the task is two-fold:
learn both the structure of the output space, and the actual classification function within that space.
By capturing the structure of the output space with logical constraints, and minimizing the semantic
loss for this constraint during learning, we are able to learn networks that are much more likely to
correctly predict structured objects.

2 BACKGROUND AND NOTATION

To formally define semantic loss, we make use of concepts in propositional logic. We write upper-
case letters (X,Y’) for Boolean variables and lowercase letters (x,y) for their instantiation (X = 0
or X = 1). Sets of variables are written in bold uppercase (X,Y), and their joint instantiation in
bold lowercase (x,y). A literal is a variable (z) or its negation (—x). A logical sentence (« or [3) is
constructed in the usual way, from variables and logical connectives (A, V, etc.), and is also called a
formula or constraint. A state or world x is an instantiation to all variables X. A state x satisfies a
sentence «, denoted x = «, if the sentence evaluates to be true in that world, as defined in the usual
way. A sentence « entails another sentence 3, denoted o |= 3 if all worlds that satisfy « also satisfy
B. A sentence « is logically equivalent to sentence 3, denoted o = 3, if both o |= § and § = a

The output row vector of a neural net is denoted p. Each value in p represents the probability of an
output and falls in [0, 1]. We use both softmax and sigmoid units for our output activation functions.
The notation for states x is used to refer the an assignment, the logical sentence enforcing the
assignment, or the binary vector capturing that same assignment, as these are all equivalent notions.

Figure[T]illustrates the three different concrete output constraints of varying difficulty that are studied
in our experiments. First, we examine the exactly-one or one-hot constraint capturing the encoding
used in multi-class classification. It states that for a set of indicators X = {X3,..., X}, one and
exactly one of those indicators must be true, with the rest being false. This is enforced through a
logical constraint o by conjoining sentences of the form —X; V —X5 for all pairs of variables (at
most one variable is true), and a single sentence X; V --- V X, (at least one variable is true). Our
experiments further examine the valid simple path constraint. It states for a given source-destination
pair and edge indicators, that the edge indicators which are set to true must form a valid simple path
from source to destination. Finally, we explore the ordering constraint, which requires that a set of
n? indicator variables represent a total ordering over n variables, effectively encoding a permutation
matrix. For a full description of the path and ordering constraints, we refer to Section[3}

3 SEMANTIC LOSS

Our goal in this section is to find a semantic loss function that bridges the gap between the contin-
uous world of neural networks, and the symbolic world of propositional logic. We do so by first
postulating intuitive high-level properties that we seek in such a function, and that illustrate its de-
sired behavior. A second set of postulates establish a correspondence between constraints and data.
Finally, we uniquely define the semantic loss function used throughout this paper.



The semantic loss L* (v, p) is a function of a sentence « in propositional logic, defined over variables
X = {X1,...,X,}, and a vector of probabilities p for the same variables X. Element p; denotes
the predicted probability of variable X;, and corresponds to a single output of the neural net. For
example, the semantic loss between the one-hot constraint from the previous section, and a neural
net output vector p, is intended to capture how close the prediction p is to having exactly one output
set to true (that is, 1), and all others set to false (that is, 0), regardless of which output is correct.

3.1 HIGH-LEVEL PROPERTIES

The first axiom says that there is no loss when the logical constraint « is always true (it is a logical
tautology), independent of the predicted probabilities p.

Axiom 1 (Truth). The semantic loss of a true sentence is zero: Vp, L¥(true, p) = 0.
Next, when enforcing two constraints on disjoint sets of variables, we want the ability to compute
the semantic loss of the two constraints separately, and sum the results for their joint semantic loss.

Axiom 2 (Additive Independence). Let o be a sentence over X with probabilities p. Let 3 be a
sentence over Y disjoint from X with probabilities q. The semantic loss between sentence o A 3
and the joint probability vector [p q] decomposes additively: L¢(a A 8, [pq]) = L*(«, p) + L3(5, ).

It directly follows from Axioms || and |2| that the probabilities of variables that are not used on the
constraint do not affect the semantic loss. Proposition [6|in Appendix [A]formalizes this intuition.

To maintain logical meaning, we postulate that semantic loss is monotone in the order of implication.
Axiom 3 (Monotonicity). If « = £, then the semantic loss L («, p) > L5(8, p) for any vector p.

Intuitively, as we add stricter requirements to the logical constraint, going from 3 to a and making
it harder to satisfy, the semantic loss cannot decrease. For example, when /3 enforces the output of

an neural network to encode a subtree of a graph, and we tighten that requirement in « to be a path,
the semantic loss cannot decrease. Every path is also a tree and any solution to « is a solution to (.

A first consequence following the monotonicity axiom is that logically equivalent sentences must
incur an identical semantic loss for the same probability vector p. Hence, the semantic loss is indeed
a semantic property of the logical sentence, and does not depend on the syntax of the sentence.

Proposition 1. If « = 3, then the semantic loss L®(«, p) = L3(3, p) for any vector p.

A second consequence is that semantic loss must be non-negative (see Proposition[5|in Appendix [A).

3.2 DATA-SENTENCE CORRESPONDENCE

A state x is equivalently represented as a data vector, as well as a logical constraint that enforces a
value for every variable in X. When both the constraint and the predicted vector represent the same
state (for example, X; A = X5 A X3 vs. [101]), there should be no semantic loss.

Axiom 4 (Identity). For any state x, there is zero semantic loss between its representation as a
sentence, and its representation as a deterministic vector: Vx, L*(x,x) = 0.

The axioms above together imply that any vector satisfying the constraint must incur zero loss. For
example, when our constraint « requires that the output vector encodes an arbitrary total ranking,
and the vector x correctly represents a single specific total ranking, there is no semantic loss.

Proposition 2 (Satisfaction). Ifx = «, then the semantic loss L®(a, x) = 0.
As a special case, logical literals (x or —x) constrain a single variable to take on a single value, and

thus play a role similar to the labels used in supervised learning. Such constraints require an even
tighter correspondence: the semantic loss must act like a classical loss function (i.e., cross entropy).

Axiom 5 (Label-Literal Correspondence). The semantic loss of a single literal is proportionate to the
cross-entropy loss for the equivalent data label: L8(x, p) oc — log(p) and L8(—x, p) o< —log(1 —p).

Appendix |A states Axioms [7| and |8} on the symmetry between values and the symmetry between
variables, as well as a Lemma|7]that ties together the multiplicative constants mentioned in Axiom[3]
Finally, this allows us to prove the following form of the semantic loss for a state x.

Lemma 3. For state x and vector p, we have L*(x,p) o< =3, v v logpi—D_, 0 x, log(1—p;).



e Class1 e Class1

A Class2 ‘ . 4 Class 2

= Unlabeled . = Unlabeled
~ a a

(a) Trained without semantic loss (b) Trained with semantic loss

Figure 2: Binary classification toy example: a linear classifier without and with semantic loss.

3.3 A GENERAL DEFINITION

Lemma [3] falls short as a full definition of semantic loss for arbitrary sentences. One can define
additional axioms to pin down L®. For example, the following axiom is highly desirable.

Axiom 6 (Differentiability). For any fixed «, the semantic loss L¥(«, p) is monotone in each prob-
ability in p, continuous and differentiable.

Appendix |A| makes the notion of semantic loss precise by stating one additional axiom. It is based
on the observation that the state loss of Lemma [3]is proportionate to a log-probability. In particular,
it corresponds to the probability of obtaining state x after independently sampling each X; with
probability p;. We have now derived the semantic loss function from first principles as follows.

Definition 1 (Semantic Loss). Let p be a vector of probabilities, one for each variable in X, and let
« be a sentence over X. The semantic loss between « and p is

L°(a, p) x —log Z H P H (1 =pi).

xFa ixEX; ixfE=-X;

Theorem 4 (Uniqueness). The semantic loss function in Definition[I|satisfies Axioms[IH9 and is the
only function that does so, up to a multiplicative constant.

Intuitively, the semantic loss is proportionate to a negative logarithm of the probability of generating
a state that satisfies the constraint, when sampling values according to p. Hence, it is the self-
information (or “surprise”) of obtaining an assignment that satisfies the constraint (Jones, |1979).

4 SEMI-SUPERVISED CLASSIFICATION

The most straightforward constraint that is ubiquitous in multi-class classification is mutual exclu-
sion over one-hot-encoded outputs. That is, for a given example, exactly one class and therefore
exactly one binary indicator must be true. The machine learning community has made great strides
in this machine learning task, due to the invention of assorted deep learning representations and their
associated regularization terms (Krizhevsky et al.,[2012;He et al.,|2016). Many of these models take
large amounts of fully labeled data for granted, and big data is indispensable for discovering accu-
rate representations (Hastie et al., 2009). To sustain this progress, and alleviate the need for more
labeled data, there is a growing interest into utilizing unlabeled data to augment the predictive power
of classifiers (Stewart & Ermonl 2017} [Bilenko et al.2004). This section shows why semantic loss
naturally qualifies for this task.

Illustrative Example To illustrate the benefit of semantic loss in the semi-supervised setting, we
begin our discussion with a small toy example. Consider a binary classification task as depicted
in Figure 2] Ignoring the unlabeled examples, a simple linear classifier learns to distinguish the
two classes by separating the labeled examples in Figure 2a] However, the unlabeled examples
are also informative, as they must carry some properties that give them a particular label. This is
the crux of semantic loss: a model must confidently assign a consistent class even to unlabeled
data. Encouraging the model to do so results in a more accurate decision boundary, as illustrated in
Figure Next, we further explore this idea and apply it to real-world image classification tasks.



Table 1: MNIST. Previously reported test accuracies followed by semantic loss results (£ stddev)

Accuracy % with # of used labels

AtlasRBF (Pitelis et al;[2014)
Deep Generative (Kingma et al., [2014)

Virtual Adversarial (Miyato et al.,|2016)
Ladder Net (Rasmus et al.,[2015)

100 1000 ALL
91.9 (£ 0.95) | 96.32 (£ 0.12) | 98.69
96.67(£ 0.14) | 97.60(% 0.02) | 99.04
97.67 98.64 99.36
98.94 (+£0.37) | 99.16 (+0.08) | 99.43 (£ 0.02)

Baseline: MLP, Gaussian Noise
Baseline: Self-Training
MLP with Semantic Loss (our)

78.46 (£1.94)
72.55 (+4.21)
98.38 (4+0.51)

94.26 (£0.31)
87.43 (£3.07)
98.78 (£0.17)

99.34 (£0.08)
99.34 (40.08)
99.36 (£0.02)

4.1 METHOD

Our proposed method intends to be generally applicable and compatible with any feedforward neural
network. The semantic loss is simply another regularization term that can directly be plugged into
an existing loss function. More specifically, for some weight w, the new overall loss becomes

existing loss + w - semantic loss.

When the constraint over the output space is simple (for example, there is a small number of solu-
tions x = «), the semantic loss can be directly computed from Definition |1} Concretely, for the
exactly-one constraint used in n-class classification, the semantic loss reduces to

n—1 n—1
L% (exactly-one, p) < — log Z pi H (1—pj),
i=0 =05
where he values p; denote the probability of class 7 as predicted by the neural net. The semantic loss
for the exactly-one constraint is efficient and causes no noticeable overhead in our experiments.

In general, for arbitrary constraints c, the semantic loss is not efficient to compute using Definition[T]
and more advanced automated reasoning is required. Section [5]discusses this issue in more detail.

4.2 EXPERIMENTAL EVALUATION

In this section, we evaluate semantic loss in the semi-supervised setting by comparing it with several
competitive models. As most semi-supervised learners build on a supervised learner, changing the
underlying model significantly affects the semi-supervised learner’s performance. For comparison,
we add semantic loss to the same base models used in ladder nets (Rasmus et al., 2015)), which
currently achieve state-of-the-art results on semi-supervised MNIST and CIFAR-10 (Krizhevsky
& Hinton, 2009). Specifically, the MNIST base model is a fully-connected multilayer perceptron
(MLP), with layers of size 784-1000-500-250-250-250-10. On CIFAR-10, it is a 10-layer convolu-
tional neural network (CNN) with 3-by-3 padded filters. After every 3 layers, features are subject
to a 2-by-2 max-pool layer with strides of 2. Furthermore, we use ReLu (Nair & Hinton, [2010),
batch normalization (Ioffe & Szegedy, 2015), and Adam optimization (Kingma & Bal 2015)) with
a learning rate of 0.002. We refer to Appendix [B] and [C] for a specification of the CNN model and
additional details about hyper-parameter tuning.

For all semi-supervised experiments, we use the standard 10,000 held-out test examples provided in
the original datasets and randomly pick 10,000 from the standard 60,000 training examples (50,000
for CIFAR-10) as validation set. For values of N that depend on the experiment, we retain N
randomly chosen labeled examples from the training set, and remove labels from the rest. We
balance classes in the labeled samples to ensure no particular class is over-represented. Images are
preprocessed for standardization and Gaussian noise (standard deviation 0.3) is added to every pixel.

MNIST The permutation invariant MNIST classification task is commonly used as a test-bed for
general semi-supervised learning algorithms. This setting does not use any prior information about
the spatial arrangement of the input pixels. Therefore, it excludes many data augmentation tech-
niques that involve geometric distortion of images, as well as convolutional neural networks.

When evaluating on MNIST, we run experiments for 10 epochs, with a batch size of 10 labeled and
10 unlabeled examples. Experiments are repeated 10 times with different random seeds. Table



Table 2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

Accuracy % with # of used labels | 100 500 1000 ALL
Ladder Net (Rasmus et al., 2015) | 81.46 (£0.64 ) | 85.18 (£0.27) | 86.48 (+ 0.15) | 90.46
Baseline: MLP, Gaussian Noise 69.45 (£2.03) | 78.12 (£1.41) | 80.94 (£0.84) | 89.87
MLP with Semantic Loss (our) 86.74 (£0.71) | 89.49 (+0.24) | 89.67 (+0.09) | 89.81

Table 3: CIFAR. Test accuracy comparison between CNN with semantic loss and ladder nets.

Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (£ 0.61) | 90.73
Ladder Net (Rasmus et al.12015) 79.60 (£0.47)

Baseline: CNN, Whitening, Cropping | 77.13 90.96
CNN with Semantic Loss (our) 81.79 90.92

compares semantic loss to two baselines and state-of-the-art results from the literature. The first
baseline is a purely supervised MLP, which makes no use of unlabeled data. The second is the
classic self-training method for semi-supervised learning, which operates as follows. After every
1000 iterations, the unlabeled examples that are predicted by the MLP to have more than 95%
probability of belonging to a single class, are assigned a psuedo-label and become labeled data.

When given 100 labeled examples (N = 100), MLP with semantic loss gains around 20% im-
provement over the purely supervised baseline. The improvement is even larger (25%) compared to
self-training. Considering the only change is an additional loss term, this result is very encouraging.
Compared to the state of the art, ladder nets slightly outperform semantic loss by 0.5% accuracy.
This difference may be an artifact of the excessive tuning of architectures, hyper-parameters and
learning rates that the MNIST dataset has been subject to. In the coming experiments, we extend
our work to more challenging datasets, in order to provide a clearer comparison with ladder nets.

First, we want to share a few more thoughts on how semantic loss works. A classical softmax
layer interprets its output as representing a categorical distribution. Hence, by normalizing its out-
puts, softmax enforces the same mutual exclusion constraint enforced in our semantic loss function.
However, there does not exist a natural way to extend softmax loss to unlabeled samples. In con-
trast, semantic loss does provide a learning signal on unlabeled samples, by forcing the underlying
classifier to make an decision and construct a confident hypothesis for all data. However, for the
fully supervised case (/N = all), the semantic loss does not significantly affect accuracy. Because
the MLP has enough capacity to almost perfectly fit the training data, where the constraint is always
satisfied, the semantic loss is almost always zero. This is a direct consequence of Proposition 2]

FASHION The FASHION (Xiao et al., 2017) dataset consists of Zalando’s article images, aiming
to serve as a more challenging drop-in replacement for MNIST. Arguably, it has not been overused
and requires more advanced techniques to achieve good performance. As in the previous experi-
ment, we run our method for 10 epochs, whereas ladder nets need 100 epochs to converge. Again,
experiments are repeated 10 times and Table [2| reports the classification accuracy and its standard
deviation (except for N = all where it is close to 0 and omitted for space).

Experiments show that utilizing semantic loss results in a very large 17% improvement over the
baseline when only 100 labels are provided. Moreover, our method compares favorably to ladder
nets, except when the setting degrades to be fully supervised. Note that our method already nearly
reaches its maximum accuracy with 500 labeled examples, which is only 1% of the training dataset.

CIFAR-10 To show the general applicability of semantic loss, we evaluate it on CIFAR-10. This
dataset consisting of 32-by-32 RGB images in 10 classes. A simple MLP would not have enough
representation power to capture the huge variance across objects within the same class. To cope with
this spike in difficulty, we switch our underlying model to a 10-layer CNN as described earlier. We
use a batch size of 100 samples of which half are unlabeled. Experiments are run for 100 epochs.
However, due to our limited computational resources, we report on a single trial. Note that we
make slight modifications to the underlying model used in ladder nets to reproduce similar baseline
performance. Please refer to Appendix [B|for the details of this experimental setup.



As shown in Table[3] our method compares favorably to ladder nets. However, due to the slight dif-
ference in performance between the supervised base models, a direct comparison would be method-
ologically flawed. Instead, we compare the net improvements over baselines. In terms of this mea-
sure, our method scores a gain of 4.66% whereas ladder nets gain 2.93%.

4.3 DISCUSSION

Overall, the experiments so far have demonstrated the competitiveness and general applicability
of our proposed method on semi-supervised learning tasks. It surpassed the previous state of the
art (i.e. ladder nets ) on FASHION and CIFAR-10, while being close on MNIST. Considering the
simplicity of our method, such results are encouraging. Indeed, a key advantage of semantic loss is
that it only requires a simple additional loss term. Without changing the network architecture itself,
we incur almost no computational overhead. Conversely, this property makes our method sensitive to
the underlying model’s performance. Without the underlying predictive power of a strong supervised
learning model, we do not expect to see the same benefits we observe here. Recently, we became
aware that Miyato et al.|(2016) extended their work to CIFAR-10 and achieved state-of-the-art results
(Miyato et al., [2017), surpassing our performance by 5%. In future work, we plan to investigate
whether applying semantic loss on their architecture would yield an even stronger performance.

(a) Confidently Correct  (b) Unconfidently Correct (c) Unconfidently Incorrect (d) Confidently Incorrect

Figure 3: FASHION pictures grouped by how confidently the supervised base model classifies them
correctly. With semantic loss, the final semi-supervised model predicts all correctly and confidently.

Figure[3]illustrates the effect of semantic loss on FASHION pictures whose correct label was hidden
from the learner. Pictures [3a] and [3b] are correctly classified by the supervised base model, and
on the first set it is confident about this prediction (p; > 0.8). The semantic loss rarely diverts the
model from these initially correct labels. However, it bootstraps these unlabeled examples to achieve
higher confidence in the learned concepts. With this additional learning signal, the model changes
its beliefs about Pictures which it was previously uncertain about. Finally, even on confidently
misclassified Pictures[3d] the semantic loss is able to fully correct the mistakes of the base model.

5 LEARNING WITH COMPLEX CONSTRAINTS

While much of current machine learning research is focused on problems such as multi-class clas-
sification, there remain a multitude of difficult problems involving highly constrained output do-
mains. As mentioned in the previous section, semantic loss has little effect on the fully-supervised
exactly-one classification problem. This leads us to seek out more difficult problems to illustrate that
semantic loss can also be highly informative in the supervised case, provided the output domain is
a sufficiently complex space. Because semantic loss is defined by a Boolean formula, it can be used
on any output domain that can be fully described in this manner. Here, we develop a framework for
tractable semantic loss on highly complex constraints, and evaluate it on some difficult examples.

5.1 A TRACTABLE SEMANTIC LOSS

Our goal here is to develop a method for computing both the semantic loss and its gradient in a
tractable manner. Examining Definition [T of semantic loss, we see that the right-hand side is a well-
known automated reasoning task called weighted model counting (WMC) (Chavira & Darwiche,
2008; [Sang et al., [2005). A key property of WMC is that its partial derivatives can be computed in
terms of other, slightly modified WMCs. Furthermore, we know of circuit languages that compute
WMCs, and that are amenable to backpropagation (Darwiche| 2003). We use the language and
circuit compilation techniques described in Darwiche, (2011) to build a Boolean circuit representing



Table 4: Grid shortest path test results: coherent, incoherent and constraint accuracy.

Test accuracy % Coherent | Incoherent | Constraint
5-layer MLP 5.62 85.91 6.99
With semantic loss (our) | 28.51 83.14 69.89

Table 5: Preference prediction test results: coherent, incoherent and constraint accuracy.

Test accuracy % Coherent | Incoherent | Constraint
3-layer MLP 1.01 75.78 2.72
With semantic loss (our) | 13.59 72.43 55.28

our semantic loss. We refer to the literature for details of this compilation approach. Due to certain
properties of this circuit form, we can use it to compute both the values and the gradients of the
semantic loss in time linear in the size of the circuit (Darwiche & Marquis, [2002). Once we have
constructed this function, we can add it to our standard loss function as described in Section 4. 1

5.2 EXPERIMENTAL EVALUATION

Our ambition when evaluating semantic loss’ performance on complex constraints is not to achieve
state-of-the-art performance on any particular problem, but rather to highlight its effect. To this
end, we evaluate our method on problems with a difficult output space, where the model could no
longer be fit directly from data, and purposefully use simple MLPs for evaluation. The details of
hyper-parameter tuning are again given in Appendix

5.2.1 GRIDS

We begin with a classic algorithmic problem, finding the shortest path in a graph. Specifically, we
use a 4-by-4 grid G = (V, E') with uniform edge weights. We randomly remove edges for each
example to increase difficulty. Formally, our input is a binary vector of length |V| + | E|, with the
first |V'| variables indicating sources and destinations, and the next |E/| which edges are removed.
Similarly, each label is a binary vector of length |E| indicating which edges are in the shortest path.
Finally, we require through our constraint « that the output form a valid simple path between the
desired source and destination. To compile this constraint, we use the method of Nishino et al.
(2017) to encode pairwise simple paths, and logically merge them to enforce the correct source and
destination. For more details on the constraint and data generation process, see Appendix

To evaluate, we use our generated dataset of 1600 examples, with a 60/20/20 train/validation/test
split. Table [4] compares test accuracy between a 5-layer MLP baseline, and the same model aug-
mented with semantic loss. We report three different accuracies that illustrate the effect of semantic
loss: “Coherent” indicates the percentage of examples for which the classifier gets the entire con-
figuration right, while “Incoherent” measures the percentage of individually correct binary labels,
which as a whole may not constitute a valid path at all. Finally, “Constraint” describes the per-
centage of predictions given by the model that satisfy the constraint associated with the problem.
In the case of incoherent accuracy, semantic loss has little effect, and in fact slightly reduces the
accuracy as it combats the standard sigmoid cross entropy. In regard to coherent accuracy, however,
the semantic loss has a very large effect in guiding the network to jointly learn true paths, rather than
optimizing each binary output individually. We further see this by observing the large increase in
the percentage of predictions which really are paths between the desired nodes in the graph.

5.2.2 PREFERENCE LEARNING

The next problem we examine is that of predicting a complete order of preferences. That is, for a
given set of user features, we would like to predict how the user would rank their preference over a
fixed set of items. We encode a preference ordering over n items as a flattened binary matrix {X;;},
where foreach i,j € {1,...,n}, X; denotes that item 4 is at position j (Choi et al.,|2015). Clearly,
not all configurations of outputs correspond to a valid ordering.



For data, we use preference rankings over 10 types of sushi for 5000 individuals, taken from
PREFLIB (Mattei & Walsh| 2013). We take the ordering over 6 types of sushi as input features
to predict the ordering over the remaining 4 types, with splits identical to those in|Shen et al.[(2017).
We again split the data 60/20/20 into train/test/split, and employ a 3 layer MLP as our baseline.
Table 5] compares the baseline to the same MLP augmented with semantic loss for valid total order-
ings. Again, we see that semantic loss has a marginal effect on incoherent accuracy, but massively
improves the network’s ability to predict valid, correct orderings. Remarkably, without semantic
loss, the network is only able to output a valid ordering on 0.01% of the test examples.

6 RELATED WORK

Incorporating symbolic background knowledge into machine learning is a long-standing chal-
lenge (Srinivasan et al.l [1995). It has received considerable attention for structured prediction in
natural language processing, in both supervised and semi-supervised settings. For example, con-
strained conditional models extend linear models with constraints that are enforced through integer
linear programming (Chang et al., 2008} 2013). Constraints have also been studied in the context
of probabilistic graphical models (Mateescu & Dechter, [2008; |Ganchev et al., [2010). Kisa et al.
(2014) utilize a circuit language called the probabilistic sentential decision diagram to induce dis-
tributions over arbitrary logical formulas. They learn generative models that satisfy preference and
path constraints (Choi et al., [2015; 2016)), which we both study in a discriminative setting.

Various deep learning techniques have been proposed to enforce either arithmetic constraints (Pathak’
et al., [2015; Marquez-Neila et al., 2017) or logical constraints (Rocktédschel et al., 20155 [Hu et al.,
2016; |[Demeester et al. 2016} [Stewart & Ermon| [2017; Minervini et al., 2017} |Diligenti et al., 2017}
Donadello et al., 2017) on the output of a neural network. The common approach is to reduce logical
constraints into differentiable arithmetic objectives by replacing logical operators with their fuzzy
t-norms and logical implications with simple inequalities. A downside of this fuzzy relaxation is that
the logical sentences lose their precise meaning. The learning objective becomes a function of the
syntax rather than the semantics. Moreover, these relaxations are often only applied to Horn clauses.
One alternative is to encode the logic into a factor graph and perform loopy belief propagation to
compute a loss function (Naradowsky & Riedel,2017), which is known to have issues in the presence
of complex logical constraints (Smith & Gogatel [2014).

Several specialized techniques have been proposed to exploit the rich structure of real world labels.
Deng et al.| (2014) propose hierarchy and exclusion graphs that allow a flexible joint modeling of
hierarchical categories. It is a method invented to address examples whose labels are not provided
at the most specific level. Finally, the objective of semantic loss to increase the confidence of pre-
dictions on unlabeled data is in common with information-theoretic approaches to semi-supervised
learning (Grandvalet & Bengiol 2005} |[Erkan & Altun, |2010), and approaches that increase robust-
ness to output perturbation (Miyato et al.,[2016). A key difference between semantic loss and these
information-theoretic losses is that semantic loss generalizes to arbitrary output constraints.

7 CONCLUSIONS

Both reasoning and semi-supervised learning are often identified as key challenges for deep learning
going forward. In this paper, we developed a principled way of combining automated reasoning
for propositional logic with existing deep learning architectures. Moreover, we showed that our
semantic loss function provides significant benefits during semi-supervised classification, as well as
deep structured prediction for highly complex output spaces.

REFERENCES

Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints and metric learn-
ing in semi-supervised clustering. In Proceedings of the International Conference on Machine
learning, pp. 11. ACM, 2004.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pp. 2787-2795, 2013.



Kai-Wei Chang, Rajhans Samdani, and Dan Roth. A constrained latent variable model for corefer-
ence resolution. 2013.

Ming-Wei Chang, Lev-Arie Ratinov, Nicholas Rizzolo, and Dan Roth. Learning and inference with
constraints. In AAAI, pp. 1513-1518, 2008.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Arti-
ficial Intelligence, 172(6):772 — 799, 2008.

Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Tractable learning for structured probabil-
ity spaces: A case study in learning preference distributions. In Proceedings of 24th International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

Arthur Choi, Nazgol Tavabi, and Adnan Darwiche. Structured features in naive Bayes classification.
In Proceedings of AAAI pp. 3233-3240, 2016.

Adnan Darwiche. A differential approach to inference in bayesian networks. J. ACM, 50(3):280—
305, May 2003. ISSN 0004-5411. doi: 10.1145/765568.765570.

Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, volume 22, pp. 819, 2011.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelli-
gence Research, 17:229-264, 2002.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine learn-
ing, 75(3):297-325, 2009.

Thomas Demeester, Tim Rocktédschel, and Sebastian Riedel. Lifted rule injection for relation em-
beddings. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 1389-1399, 2016.

Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. Large-scale object classification using label relation graphs. In
ECCYV, volume 8689, 2014.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143-165, 2017.

Ivan Donadello, Luciano Serafini, and Artur d’Avila Garcez. Logic tensor networks for semantic
image interpretation. In International Joint Conference on Artificial Intelligence, pp. 1596—1602,
2017.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldn
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224-2232, 2015.

Ayse Erkan and Yasemin Altun. Semi-supervised learning via generalized maximum entropy. In
Thirteenth International Conference on Artificial Intelligence and Statistics, volume PMLR, pp.
209-216, 2010.

Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar, et al. Posterior regularization for structured
latent variable models. Journal of Machine Learning Research, 11(Jul):2001-2049, 2010.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Ad-
vances in neural information processing systems, pp. 529-536, 2005.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiniska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471-476, 2016.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview of supervised learning. In The
elements of statistical learning, pp. 9—41. Springer, 2009.

10



Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. In ACL, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448-456,
2015.

Douglas Samuel Jones. Elementary information theory. Clarendon Press, 1979.
Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 2015.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 3581—
3589. Curran Associates, Inc., 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential deci-
sion diagrams. In Proceedings of KR, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifcation with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 25, pp. 1097-1105, 2012.

Pablo Mérquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

Robert Mateescu and Rina Dechter. Mixed deterministic and probabilistic networks. Annals of
mathematics and artificial intelligence, 54(1-3):3, 2008.

Nicholas Mattei and Toby Walsh. Preflib: A library of preference data HTTP://PREFLIB.ORG. In
Proceedings of ADT, 2013.

Pasquale Minervini, Thomas Demeester, Tim Rocktischel, and Sebastian Riedel. Adversarial sets
for regularising neural link predictors. arXiv preprint arXiv:1707.07596, 2017.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional
smoothing with virtual adversarial training. In ICLR, 2016.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. ArXiv e-prints,
2017.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 807-814. Omnipress, 2010.

Jason Naradowsky and Sebastian Riedel. Modeling exclusion with a differentiable factor graph
constraint. In International Conference on Machine Learning (Workshop Track), 2017.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector space models
for knowledge base inference. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing, pp. 156-166, 2015.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International Conference on Machine Learning, pp. 2014-2023, 2016.

Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Compiling graph sub-
structures into sentential decision diagrams. In Proceedings of the Thirty-First Conference on
Artificial Intelligence (AAAI), 2017.

11



Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1796-1804, 2015.

Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Semi-supervised learning using an unsuper-
vised atlas. In Proceedings of ECML-PKDD, pp. 565-580. Springer, 2014.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing Systems,
pp. 3546-3554, 2015.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktédschel. Programming with a differentiable forth
interpreter. CoRR, abs/1605.06640, 2016.

Tim Rocktischel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge
into embeddings for relation extraction. In HLT-NAACL, pp. 1119-1129, 2015.

Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted model
counting. In AAAI, volume 5, pp. 475-481, 2005.

Yujia Shen, Arthur Choi, and Adnan Darwiche. A tractable probabilistic model for subset selection.
In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

David Smith and Vibhav Gogate. Loopy belief propagation in the presence of determinism. In
Artificial Intelligence and Statistics, pp. 895-903, 2014.

Ashwin Srinivasan, S Muggleton, and RD King. Comparing the use of background knowledge by
inductive logic programming systems. In Proceedings of ILP, pp. 199-230, 1995.

Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and
domain knowledge. In AAAI pp. 2576-2582, 2017.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by
deep graph embedding. arXiv preprint arXiv:1709.09994, 2017.

Jason Weston, Sumit Chopra, and Antoine Bordes. @ Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

A  AXIOMATIZATION OF SEMANTIC LOSS: DETAILS

This appendix provides further details on our axiomatization of the semantic loss.

Proposition 5 (Non-Negativity). Semantic loss is non-negative.

Proof. Because « |= true for all o, the monotonicity axiom implies that Vp, L®(c, p) > L3(true, p).
By the truth axiom, L®(¢rue, p) = 0, and therefore L*(«, p) > 0 for all choices of « and p. O

Proposition 6 (Locality). Let « be a sentence over X with probabilities p. For any Y disjoint from
X with probabilities q, the semantic loss L*(«, [pq]) = L®(«, p).

Proof. Follows from the additive independence and truth axioms. Set 8 = true in the additive
independence axiom, and observe that this sets 1.%(3, q) = 0 because of the truth axiom. O

Proof of Proposition[J] The monotonicity axiom specializes to say that if x = «, we have that
Vp,L3(x,p) > L%(a, p). By choosing p to be x, this implies L°(x,x) > L®(a,x). From the
identity axiom, L*(x,x) = 0, and therefore 0 > L%(a,x). Proposition [5| bounds the loss from
below as L%(«, x) > 0. O

12



Axiom 7 (Value Symmetry). For all p and «, we have that L®(«, p) = L*(@, 1 — p) where & replaces
every variable in « by its negation.

Axiom 8 (Variable Symmetry). Let « be a sentence over X with probabilities p. Let 7 be a permu-
tation of the variables X, let () be the sentence obtained by replacing variables « by 7(z), and
let 7r(p) be the corresponding permuted vector of probabilities. Then, L®(«, p) = L3 (7 (), 7(p)).

The value and variable symmetry axioms together imply the equality of the multiplicative constants
in the label-literal duality axiom for all literals.

Lemma 7. There exists a single constant K such that 15(X,p) = —K log(p) and L*(=X,p) =
—Klog(1 — p) for any literal x.

Proof. Value symmetry implies that L(X;, p) = L%(—X;,1 — p). Using label-literal correspon-
dence, this implies K log(p;) = K2 log(1—(1—p;)) for the multiplicative constants K and K that
are left unspecified by that axiom. This implies that the constants are identical. A similar argument
based on variable symmetry proves equality between the multiplicative constants for different 7. [

Proof of Lemma[3] A state x is a conjunction of independent literals, and therefore subject to the
additive independence axiom. Each literal’s loss in this sum is defined by Lemmal[7} O

The following and final axiom requires that the semantic loss is proportionate to the logarithm of a
function that is additive for mutually exclusive sentences.

Axiom 9 (Exponential Additivity). Let o and S be mutually exclusive sentences (i.e., a A 3 is
unsatisfiable), and let f°(K,«,p) = K~ L*(e,p) | Then, there exists a positive constant K such that
f(K,avB,p)=f(K ap)+ (K, B p)

Proof of TheoremH] The truth axiom states that Vp, f*(K, true, p) = 1 for all positive constants K.
This is the first Kolmogorov axiom of probability. The second Kolmogorov axiom for f*(K, ., p)
follows from the additive independence axiom of semantic loss. The third Kolmogorov axiom
(for the finite discrete case) is given by the exponential additivity axiom of semantic loss. Hence,
f2(K, ., p) is a probability distribution for some choice of K, which implies the definition up to a
multiplicative constant. O

B SPECIFICATION OF THE CONVOLUTIONAL NEURAL NETWORK MODEL

Table[6] shows the slight architectural difference between the CNN used in ladder nets and ours. The
major difference lies in the choice of ReLu. Note we add standard padded cropping to preprocess
images and an additional fully connected layer at the end of the model, neither is used in ladder nets.
We only make those slight modification so that the baseline performance reported by Rasmus et al.
(2015)) can be reproduced.

C HYPER-PARAMETER TUNING DETAILS

Validation sets are used for tuning the weight associated with semantic loss, the only hyper-
parameter that causes noticeable difference in performance for our method. For our semi-supervised
classification experiments, we perform a grid search over {0.001, 0.005,0.01,0.05,0.1} to find the
optimal value. Empirically, 0.005 always gives the best or nearly the best results and we report its
results on all experiments.

For the FASHION dataset specifically, because MNIST and FASHION share the same image size
and structure, methods developed in MNIST should be able to directly perform on FASHION with-
out heavy modifications. Because of this, we use the same hyper-parameters when evaluating our
method. However, for the sake of fairness, we subject ladder nets to a small-scale parameter tuning
in case its performance is more volatile.

For the grids experiment, the only hyper parameter that needed to be tuned was again the weight
given to semantic loss, which after trying {0.001, 0.005,0.01,0.05,0.1,0.5, 1} was selected to be

13



Table 6: Specifications of CNNs in Ladder Net and our proposed method.

CNN in Ladder Net | CNN in this paper

Input 3232 RGB image
Resizing to 36 x 36 with padding
Cropping Back
Whitening
Contrast Normalization

Gaussian Noise with std. of 0.3
3%3 conv. 96 BN LeakyReLU 3%3 conv. 96 BN ReLU
3x%3 conv. 96 BN LeakyReLU 3x%3 conv. 96 BN ReLU
3%3 conv. 96 BN LeakyReLU 3%3 conv. 96 BN ReLU

2 %2 max-pooling stride 2 BN
3x3 conv. 192 BN LeakyReLU | 3x3 conv. 192 BN ReLU
3x3 conv. 192 BN LeakyReLU | 3x3 conv. 192 BN ReLU
3x3 conv. 192 BN LeakyReLU | 3x3 conv. 192 BN ReLU

2x2 max-pooling stride 2 BN
3x3 conv. 192 BN LeakyReLU | 3x3 conv. 192 BN ReLU
1x1 conv. 192 BN LeakyReLU | 3x3 conv. 192 BN ReLU
1x1 conv. 10 BN LeakyReL.U 1x1 conv. 10 BN ReLu

global meanpool BN
| fully connected BN
10-way softmax

0.5 based on validation results. For the preference learning experiment, we initially chose the se-
mantic loss weight from {0.001,0.005,0.01,0.05,0.1,0.5,1} to be 0.1 based on validation, and
then further tuned the weight to 0.25.

D SPECIFICATION OF COMPLEX CONSTRAINT MODELS

Grids To compile our grid constraint, we first use |[Nishino et al.[ (2017)) to generate a constraint
for each source destination pair. Then, we conjoin each of these with indicators specifying which
source and destination pair must be used, and finally we disjoin all of these together to form our
constraint.

To generate the data, we begin by randomly removing one third of edges. We then filter out con-
nected components with fewer than 5 nodes to reduce degenerate cases, and proceed with randomly
selecting pairs of point to create data points.

The predictive model we employ as our baseline is a 5 layer MLP with 50 hidden sigmoid units
per layer. It is trained using Adam Optimizer, with full data batches (Kingma & Bal [2015). Early
stopping with respect to validation loss is used as a regularizer.

Preference Learning We split each user’s ordering into their ordering over sushis 1,2,3,5,7,8,
which we use as the features, and their ordering over 4,6,9,10 which are the labels we predict. The
constraint is compiled directly from logic, as this can be done in a straightforward manner for an
n-item ordering.

The predictive model we use here is a 3 layer MLP with 25 hidden sigmoid units per layer. It is
trained using Adam Optimizer with full data batches (Kingma & Bal 2015). Early stopping with
respect to validation loss is used as a regularizer.

14



	Introduction
	Background and Notation
	Semantic Loss
	High-Level Properties
	Data-Sentence Correspondence
	A General Definition

	Semi-Supervised Classification
	Method
	Experimental Evaluation
	Discussion

	Learning with Complex Constraints
	A Tractable Semantic Loss
	Experimental Evaluation
	Grids
	Preference Learning


	Related Work
	Conclusions
	Axiomatization of Semantic Loss: Details
	Specification of the Convolutional Neural Network Model
	Hyper-parameter Tuning Details
	Specification of Complex Constraint Models

