
Machine Learning Automation Toolbox (MLAUT)

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper we present MLAUT (Machine Learning AUtomation Toolbox) for1

the python data science ecosystem. MLAUT automates large-scale evaluation2

and benchmarking of machine learning algorithms on a large number of datasets.3

MLAUT provides a high-level workflow interface to machine algorithm algo-4

rithms, implements a local back-end to a database of dataset collections, trained5

algorithms, and experimental results, and provides easy-to-use interfaces to the6

scikit-learn and keras modelling libraries. Experiments are easy to set up with de-7

fault settings in a few lines of code, while remaining fully customizable to the level8

of hyper-parameter tuning, pipeline composition, or deep learning architecture.9

This is a short (“extended abstract”) version, abridged for the NIPS submission10

prior to the public release of MLAUT, of a longer manuscript which also includes:11

full mathematical background and description of implemented post-hoc analyses,12

a detailed overview of the package design, and results of a large-scale benchmark-13

ing study conducted with MLAUT.14

1 Introduction to MLAUT15

MLAUT is a modelling and workflow toolbox in python, written with the aim of simplifying large16

scale benchmarking of machine learning strategies, e.g., validation, evaluation and comparison with17

respect to predictive/task-specific performance or runtime. Key features are:18

(i) automation of the most common workflows for benchmarking modelling strategies on mul-19

tiple datasets including statistical post-hoc analyses, with user-friendly default settings20

(ii) unified interface with support for scikit-learn strategies, keras deep neural network archi-21

tectures, including easy user extensibility to (partially or completely) custom strategies22

(iii) higher-level meta-data interface for strategies, allowing easy specification of scikit-learn23

pipelines and keras deep network architectures, with user-friendly (sensible) default con-24

figurations25

(iv) easy setting up and loading of data set collections for local use (e.g., data frames from local26

memory, UCI repository, openML, Delgado study, PMLB)27

(v) back-end agnostic, automated local file system management of datasets, fitted models, pre-28

dictions, and results, with the ability to easily resume crashed benchmark experiments with29

long running times30

1.1 State-of-art: modelling toolbox and workflow design31

A hierarchy of modelling designs may tentatively be identified in contemporary machine learning32

and modelling ecosystems, such as the python data science environment and the R language:33

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

Level 1. implementation of specific methodology or a family of machine learning strategies, e.g.,34

the most popular packages for deep learning, Tensorflow [1], MXNet [2], Caffe [3] and35

CNTK [4].36

Level 2. provision of a unified interface for methodology solving the same “task”, e.g., supervised37

learning aka predictive modelling. This is one core feature of the Weka [5], scikit-learn [6]38

and Shogun [7] projects which both also implement level 1 functionality, and main feature39

of the caret [8] and mlr [9] packages in R which provides level 2 functionality by external40

interfacing of level 1 packages.41

Level 3. composition and meta-learning interfaces such as tuning and pipeline building, more gen-42

erally, first-order operations on modelling strategies. Packages implementing level 2 func-43

tionality usually (but not always) also implement this, such as the general hyper-parameter44

tuning and pipeline composition operations found in scikit-learn and mlr or its mlrCPO45

extension. Keras [10] has abstract level 3 functionality specific to deep learning, Shogun46

possesses such functionality specific to kernel methods.47

Level 4. workflow automation of higher-order tasks performed with level 3 interfaces, e.g., diag-48

nostics, evaluation and comparison of pipeline strategies. Mlr is, to our knowledge, the49

only existing modelling toolbox with a modular, class-based level 4 design that supports50

and automates re-sampling based model evaluation workflows. The Weka GUI and module51

design also provides some level 4 functionality.52

A different type of level 4 functionality is automated model building, closely linked to but53

not identical with benchmarking and automated evaluation - similarly to how, mathemati-54

cally, model selection is not identical with model evaluation. Level 4 interfaces for auto-55

mated model building also tie into level 3 interfaces, examples of automated model building56

are implemented in auto-Weka [11], auto-sklearn [12], or extensions to mlrCPO [13].57

In the Python data science environment, to our knowledge, there is currently no widely adopted58

solution with level 4 functionality for evaluation, comparison, and benchmarking workflows. The59

reasonably well-known skll [14] package provides automation functionality in python for scikit-60

learn based experiments but follows an unencapsulated scripting design which limits extensibility61

and usability, especially since it is difficult to use with level 3 functionality from scikit-learn or62

state-of-art deep learning packages.63

Prior studies conducting experiments which are level 4 use cases, i.e., large-scale benchmarking64

experiments of modelling strategies, exist for supervised classification, such as [15, 16]. Smaller65

studies, focusing on a couple of estimators trained on a small number of datasets have also been66

published [17]. However, to the best of our knowledge: none of the authors released a toolbox67

for carrying out the experiments; code used in these studies cannot be directly applied to conduct68

other machine learning experiments; and, deep neural networks were not included as part of the69

benchmark exercises.70

At the current state-of-art, hence, there is a distinct need for level 4 functionality in the scikit-learn71

and keras ecosystems. Instead of re-creating the mlr interface or following a GUI-based philoso-72

phy such as Weka, we have decided to create a modular workflow environment which builds on the73

particular strengths of python as an object oriented programming language, the notebook-style user74

interaction philosophy of the python data science ecosystem, and the contemporary mathematical-75

statistical state-of-art with best practice recommendations for conducting formal benchmarking ex-76

periments - while attempting to learn from what we believe works well (or not so well) in mlr and77

Weka.78

1.2 Scientific contributions79

MLAUT is more than a mere implementation of readily existing scientific ideas or methods. We80

argue that the following contributions, outlined in the manuscript, are scientific contributions closely81

linked to its creation:82

(1) design of a modular “level 4” software interface which supports the predictive model val-83

idation/comparison workflow, a data/model file input/output back-end, and an abstraction84

of post-hoc evaluation analyses, at the same time.85

(2) a comprehensive overview of the state-of-art in statistical strategy evaluation, comparison86

and comparative hypothesis testing on a collection of data sets. We further close gaps in87

2

said literature by formalizing and explicitly stating the kinds of guarantees the different88

analyses provide, and detailing computations of related confidence intervals.89

(3) as a principal test case for MLAUT, we conducted a large-scale supervised classification90

study in order to benchmark the performance of a number of machine learning algorithms,91

with a key sub-question being whether more complex and/or costly algorithms tend to92

perform better on real-world datasets. On the representative collection of UCI benchmark93

datasets, kernel methods and random forests perform best.94

(4) as a specific but quite important sub-question we investigated whether common off-shelf95

deep learning strategies would be worth considering as a default choice on the “average”96

(non-image, non-text) supervised learning dataset. The answer, somewhat surprising in97

its clarity, appears to be that they are not - in the sense that alternatives (and sometimes98

even naive baselines) usually perform better. However, on the smaller tabular datasets, the99

computational cost of off-shelf deep learning architectures is also not as high as one might100

naively assume.101

Literature relevant to these contribution will be discussed in the respective sections.102

1.3 Ease of Use103

We present a short demo of core MLAUT functionality and user interaction, designed to be conve-104

nient in combination with jupyter notebook or scripting command line working style.105

The first step is setting up a database for the dataset collection, which has to happen only once per106

computer and dataset collection, and which we assume has been already stored in a local MLAUT107

HDF5 database. The first step in the core benchmarking workflow is to define hooks to the database108

input and output files:109
110

i n p u t i o = d a t a . o p e n h d f 5 (. . .) # pa th t o i n p u t HDF5 f i l e111

o u t i o = d a t a . o p e n h d f 5 (. . .) # pa th t o o u t p u t HDF5 f i l e112113

After the hooks are created we can proceed to preparing fixed re-sampling splits (training/test) on114

which all strategies are evaluated. By default MLAUT creates a single evaluation split with a uni-115

formly sampled
2

3
of the data for training and

1

3
for testing.116

117
d a t a . s p l i t d a t a s e t s (h d f 5 i n = . . . , h d f 5 o u t = . . . , d a t a s e t p a t h s = . . .)118119

For a simple set-up, a standard set of estimators that come with sensible parameter defaults can be120

initialized. Advanced commands allow to specify hyper-parameters, tuning strategies, keras deep121

learning architectures, scikit-learn pipelines, or even fully custom estimators.122
123

e s t = [’ R a n d o m F o r e s t C l a s s i f i e r ’ , ’ B a g g i n g C l a s s i f i e r ’]124

e s t i m a t o r s = i n s t a n t i a t e d e f a u l t e s t i m a t o r s (e s t i m a t o r s = e s t)125

>>> e s t i m a t o r s126

<mlau t . e s t i m a t o r s . e n s e m b l e e s t i m a t o r s . R a n d o m F o r e s t C l a s s i f i e r >127

<mlau t . e s t i m a t o r s . e n s e m b l e e s t i m a t o r s . B a g g i n g C l a s s i f i e r >128129

The user can now proceed to running the experiments. Training, prediction and evaluation are130

separate; partial results, including fitted models and predictions, are stored and retrieved through131

database hooks. This allows intermediate analyses, and for the experiment to easily resume in132

case of a crash or interruption. If this happens, the user would simply need to re-run the code133

above and the experiment will continue from the last checkpoint, without re-executing prior costly134

computation.135
136

o r c h e s t . run (m o d e l l i n g s t r a t e g i e s = e s t i m a t o r s)137

>>> R a n d o m F o r e s t C l a s s i f i e r t r a i n e d on d a t a s e t 1138

R a n d o m F o r e s t C l a s s i f i e r t r a i n e d on d a t a s e t 2139

. . .140

o r c h e s t . p r e d i c t a l l (t r a i n e d m o d e l s d i r = ’ d a t a / t r a i n e d m o d e l s ’ , e s t i m a t o r s =141

e s t i m a t o r s , v e r b o s e = F a l s e)142

>>> P r e d i c t i o n s o f R a n d o m F o r e s t C l a s s i f i e r on d a t a s e t 1 saved i n d a t a b a s e143

P r e d i c t i o n s o f R a n d o m F o r e s t C l a s s i f i e r on d a t a s e t 2 saved i n d a t a b a s e144

. . .145146

3

The last step in the pipeline is executing post-hoc analyses for the benchmarking experiments. The147

AnalyseResults class allows to specify performance quantifiers to be computed and comparison148

tests to be carried out, based on the intermediate computation data, e.g., predictions from all the149

strategies.150

151
a n a l y z e . p r e d i c t i o n e r r o r s (s c o r e a c c u r a c y , e s t i m a t o r s)152153

The prediction errors() method returns two sets of results: errors per estimator154

dictionary which is used subsequently in further statistical tests and errors per dataset155

per estimator df which is a dataframe with the loss of each estimator on each dataset that156

can be examined directly by the user.157

We can also use the produced errors in order to perform the statistical tests for method comparison.158

The code below shows an example of running a t-test.159

160
, t t e s t d f = a n a l y z e . t t e s t (e r r o r s p e r e s t i m a t o r)161

>>> t t e s t d f162

E s t i m a t o r 1 E s t i m a t o r 2163

t s t a t p v a l t s t a t p v a l164

E s t i m a t o r 1165

E s t i m a t o r 2166

. . .167168

Data frames or graphs resulting from the analyses can then be exported, e.g., for presentation in a169

scientific report.170

References171

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,172

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-173

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz174

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,175

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,176

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol177

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.178

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.179

[2] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,180

Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Li-181

brary for Heterogeneous Distributed Systems. arXiv:1512.01274 [cs], December 2015. arXiv:182

1512.01274.183

[3] Yangqing Jia. Caffe | Deep Learning Framework. http://caffe.berkeleyvision.184

org.185

[4] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. In186

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery187

and Data Mining, KDD ’16, pages 2135–2135, New York, NY, USA, 2016. ACM.188

[5] Sudhir B. Jagtap and Kodge B. G. Census Data Mining and Data Analysis using WEKA.189

arXiv:1310.4647 [cs], October 2013. arXiv: 1310.4647.190

[6] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,191

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake192

Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and193

Édouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning194

Research, 12(Oct):2825–2830, 2011.195

[7] SĆ Sonnenburg, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de196

Bona, Alexander Binder, Christian Gehl, VojtÄ Franc, et al. The shogun machine learning197

toolbox. Journal of Machine Learning Research, 11(Jun):1799–1802, 2010.198

4

http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org

[8] Max Kuhn Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Al-199

lan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R. Core Team, Michael200

Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and201

and Tyler Hunt. caret: Classification and Regression Training, May 2018.202

[9] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,203

Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine Learning in R. Journal of Machine204

Learning Research, 17(170):1–5, 2016.205

[10] François Chollet. Keras. https://keras.io, 2015.206

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H207

Witten. The weka data mining software: an update. ACM SIGKDD explorations newsletter,208

11(1):10–18, 2009.209

[12] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and210

Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural Infor-211

mation Processing Systems, pages 2962–2970, 2015.212

[13] Janek Thomas, Stefan Coors, and Bernd Bischl. Automatic gradient boosting. arXiv preprint213

arXiv:1807.03873, 2018.214

[14] scikit-learn laboratory. https://skll.readthedocs.io.215

[15] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we Need216

Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine217

Learning Research, 15:3133–3181, 2014.218

[16] Jacques Wainer. Comparison of 14 different families of classification algorithms on 115 binary219

datasets. arXiv:1606.00930 [cs], June 2016. arXiv: 1606.00930.220

[17] J. Huang, J. Lu, and C.X. Ling. Comparing naive Bayes, decision trees, and SVM with AUC221

and accuracy. pages 553–556. IEEE Comput. Soc, 2003.222

5

https://keras.io
https://skll.readthedocs.io

	Introduction to MLAUT
	State-of-art: modelling toolbox and workflow design
	Scientific contributions
	Ease of Use

