Abstract

In this paper we present MLAUT (Machine Learning AUtomation Toolbox) for the python data science ecosystem. MLAUT automates large-scale evaluation and benchmarking of machine learning algorithms on a large number of datasets. MLAUT provides a high-level workflow interface to machine algorithm algorithms, implements a local back-end to a database of dataset collections, trained algorithms, and experimental results, and provides easy-to-use interfaces to the scikit-learn and keras modelling libraries. Experiments are easy to set up with default settings in a few lines of code, while remaining fully customizable to the level of hyper-parameter tuning, pipeline composition, or deep learning architecture.

This is a short ("extended abstract") version, abridged for the NIPS submission prior to the public release of MLAUT, of a longer manuscript which also includes: full mathematical background and description of implemented post-hoc analyses, a detailed overview of the package design, and results of a large-scale benchmarking study conducted with MLAUT.

1 Introduction to MLAUT

MLAUT is a modelling and workflow toolbox in python, written with the aim of simplifying large scale benchmarking of machine learning strategies, e.g., validation, evaluation and comparison with respect to predictive/task-specific performance or runtime. Key features are:

(i) automation of the most common workflows for benchmarking modelling strategies on multiple datasets including statistical post-hoc analyses, with user-friendly default settings

(ii) unified interface with support for scikit-learn strategies, keras deep neural network architectures, including easy user extensibility to (partially or completely) custom strategies

(iii) higher-level meta-data interface for strategies, allowing easy specification of scikit-learn pipelines and keras deep network architectures, with user-friendly (sensible) default configurations

(iv) easy setting up and loading of data set collections for local use (e.g., data frames from local memory, UCI repository, openML, Delgado study, PMLB)

(v) back-end agnostic, automated local file system management of datasets, fitted models, predictions, and results, with the ability to easily resume crashed benchmark experiments with long running times

1.1 State-of-art: modelling toolbox and workflow design

A hierarchy of modelling designs may tentatively be identified in contemporary machine learning and modelling ecosystems, such as the python data science environment and the R language:

Level 1. implementation of specific methodology or a family of machine learning strategies, e.g.,
the most popular packages for deep learning, Tensorflow [1], MXNet [2], Caffe [3] and
CNTK [4].
Level 2. provision of a unified interface for methodology solving the same “task”, e.g., supervised
learning aka predictive modelling. This is one core feature of the Weka [5], scikit-learn [6]
and Shogun [7] projects which both also implement level 1 functionality, and main feature
of the caret [8] and mlr [9] packages in R which provides level 2 functionality by external
interfacing of level 1 packages.
Level 3. composition and meta-learning interfaces such as tuning and pipeline building, more gen-
erally, first-order operations on modelling strategies. Packages implementing level 2 func-
tionality usually (but not always) also implement this, such as the general hyper-parameter
tuning and pipeline composition operations found in scikit-learn and mlr or its mlrCPO
extension. Keras [10] has abstract level 3 functionality specific to deep learning. Shogun
possesses such functionality specific to kernel methods.
Level 4. workflow automation of higher-order tasks performed with level 3 interfaces, e.g., diagn-
ostics, evaluation and comparison of pipeline strategies. Packages implementing level 2 func-
tionality usually (but not always) also implement this, such as the general hyper-parameter
tuning and pipeline composition operations found in scikit-learn and mlr or its mlrCPO
extension. Keras [10] has abstract level 3 functionality specific to deep learning. Shogun
possesses such functionality specific to kernel methods.
Level 4. workflow automation of higher-order tasks performed with level 3 interfaces, e.g., diagn-
ostics, evaluation and comparison of pipeline strategies. Packages implementing level 2 func-
tionality usually (but not always) also implement this, such as the general hyper-parameter
tuning and pipeline composition operations found in scikit-learn and mlr or its mlrCPO
extension. Keras [10] has abstract level 3 functionality specific to deep learning. Shogun
possesses such functionality specific to kernel methods.

In the Python data science environment, to our knowledge, there is currently no widely adopted
solution with level 4 functionality for evaluation, comparison, and benchmarking workflows. The
reasonably well-known skll [14] package provides automation functionality in python for scikit-
learn based experiments but follows an unencapsulated scripting design which limits extensibility
and usability, especially since it is difficult to use with level 3 functionality from scikit-learn or
state-of-art deep learning packages.
Prior studies conducting experiments which are level 4 use cases, i.e., large-scale benchmarking
experiments of modelling strategies, exist for supervised classification, such as [15][16]. Smaller
studies, focusing on a couple of estimators trained on a small number of datasets have also been
published [17]. However, to the best of our knowledge: none of the authors released a toolbox
for carrying out the experiments; code used in these studies cannot be directly applied to conduct
other machine learning experiments; and, deep neural networks were not included as part of the
benchmark exercises.
At the current state-of-art, hence, there is a distinct need for level 4 functionality in the scikit-learn
and keras ecosystems. Instead of re-creating the mlr interface or following a GUI-based philo-
sophy such as Weka, we have decided to create a modular workflow environment which builds on the
particular strengths of python as an object oriented programming language, the notebook-style user
interaction philosophy of the python data science ecosystem, and the contemporary mathematical-
statistical state-of-art with best practice recommendations for conducting formal benchmarking ex-
periments - while attempting to learn from what we believe works well (or not so well) in mlr and
Weka.

1.2 Scientific contributions

MLAUT is more than a mere implementation of readily existing scientific ideas or methods. We
argue that the following contributions, outlined in the manuscript, are scientific contributions closely
linked to its creation:

(1) design of a modular “level 4” software interface which supports the predictive model val-
idation/comparison workflow, a data/model file input/output back-end, and an abstraction
of post-hoc evaluation analyses, at the same time.
(2) a comprehensive overview of the state-of-art in statistical strategy evaluation, comparison
and comparative hypothesis testing on a collection of data sets. We further close gaps in
said literature by formalizing and explicitly stating the kinds of guarantees the different analyses provide, and detailing computations of related confidence intervals.

(3) as a principal test case for MLAUT, we conducted a large-scale supervised classification study in order to benchmark the performance of a number of machine learning algorithms, with a key sub-question being whether more complex and/or costly algorithms tend to perform better on real-world datasets. On the representative collection of UCI benchmark datasets, kernel methods and random forests perform best.

(4) as a specific but quite important sub-question we investigated whether common off-shelf deep learning strategies would be worth considering as a default choice on the “average” (non-image, non-text) supervised learning dataset. The answer, somewhat surprising in its clarity, appears to be that they are not - in the sense that alternatives (and sometimes even naive baselines) usually perform better. However, on the smaller tabular datasets, the computational cost of off-shelf deep learning architectures is also not as high as one might naively assume.

Literature relevant to these contribution will be discussed in the respective sections.

1.3 Ease of Use

We present a short demo of core MLAUT functionality and user interaction, designed to be convenient in combination with jupyter notebook or scripting command line working style.

The first step is setting up a database for the dataset collection, which has to happen only once per computer and dataset collection, and which we assume has been already stored in a local MLAUT HDF5 database. The first step in the core benchmarking workflow is to define hooks to the database input and output files:

```python
input_io = data.open_hdf5(..., #path to input HDF5 file
out_io = data.open_hdf5(..., #path to output HDF5 file
```

After the hooks are created we can proceed to preparing fixed re-sampling splits (training/test) on which all strategies are evaluated. By default MLAUT creates a single evaluation split with a uniformly sampled \(\frac{2}{3} \) of the data for training and \(\frac{1}{3} \) for testing.

```python
data.split_datasets(hdf5_in=..., hdf5_out=..., dataset_paths=...)
```

For a simple set-up, a standard set of estimators that come with sensible parameter defaults can be initialized. Advanced commands allow to specify hyper-parameters, tuning strategies, keras deep learning architectures, scikit-learn pipelines, or even fully custom estimators.

```python
est = ['RandomForestClassifier', 'BaggingClassifier']
estimators = instantiate_default_estimators(estimators=est)
```

The user can now proceed to running the experiments. Training, prediction and evaluation are separate; partial results, including fitted models and predictions, are stored and retrieved through database hooks. This allows intermediate analyses, and for the experiment to easily resume in case of a crash or interruption. If this happens, the user would simply need to re-run the code above and the experiment will continue from the last checkpoint, without re-executing prior costly computation.

```python
orchest.run(modeling_strategies=estimators)
```

```python
>>> RandomForestClassifier trained on dataset 1
RandomForestClassifier trained on dataset 2
...
orchest.predict_all(trained_models_dir='data/trained_models', estimators=estimators, verbose=False)
```

```python
>>> Predictions of RandomForestClassifier on dataset 1 saved in database
Predictions of RandomForestClassifier on dataset 2 saved in database
...
The last step in the pipeline is executing post-hoc analyses for the benchmarking experiments. The `AnalyseResults` class allows to specify performance quantifiers to be computed and comparison tests to be carried out, based on the intermediate computation data, e.g., predictions from all the strategies.

```python
analyze.prediction_errors(score_accuracy, estimators)
```

The `prediction_errors()` method returns two sets of results: `errors_per_estimator` dictionary which is used subsequently in further statistical tests and `errors_per_dataset` which is a dataframe with the loss of each estimator on each dataset that can be examined directly by the user.

We can also use the produced errors in order to perform the statistical tests for method comparison. The code below shows an example of running a t-test.

```python
>>> t_test_df = analyze.t_test(errors_per_estimator)
```

```
 Estimator 1 Estimator 2
 t_stat p_val t_stat p_val
Estimator 1
Estimator 2

```

Data frames or graphs resulting from the analyses can then be exported, e.g., for presentation in a scientific report.

References


[8] Max Kuhn Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R. Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and Tyler Hunt. caret: Classification and Regression Training, May 2018.


