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ABSTRACT

Even as pre-trained language encoders such as BERT are shared across many
tasks, the output layers of question answering, text classification, and regression
models are significantly different. Span decoders are frequently used for question
answering, fixed-class, classification layers for text classification, and similarity-
scoring layers for regression tasks, We show that this distinction is not necessary
and that all three can be unified as span extraction. A unified, span-extraction ap-
proach leads to superior or comparable performance in supplementary supervised
pre-trained, low-data, and multi-task learning experiments on several question an-
swering, text classification, and regression benchmarks.

1 INTRODUCTION

Pre-trained natural language processing (NLP) systems (Radford et al.,|2019; Devlin et al., 2018;
Radford et al., |2018; Howard & Ruder, 2018 [Peters et al., |2018; McCann et al., |2017; [Liu et al.,
2019b)) have been shown to transfer remarkably well on downstream tasks including text classifi-
cation, question answering, machine translation, and summarization (Wang et al., |2018; [Rajpurkar
et al., 2016} |Conneau et al., |2018). Such approaches involve a pre-training phase followed by the
addition of task-specific layers and a subsequent re-training or fine-tuning of the conjoined model.
Each task-specific layer relies on an inductive bias related to the kind of target task. For question
answering, a task-specific span-decoder is often used to extract a span of text verbatim from a por-
tion of the input text (Xiong et al. |2016). For text classification, a task-specific classification layer
with fixed classes is typically used instead. For regression, similarity-measuring layers such as least-
squares and cosine similarity are employed. These task-specific inductive biases are unnecessary.
On several tasks predominantly treated as text classification or regression, we find that reformulat-
ing them as span-extraction problems and relying on a span-decoder yields superior performance to
using a task-specific layers.

For text classification and regression problems, pre-trained NLP systems can benefit from supple-
mentary training on intermediate-labeled tasks (STILTs) (Phang et al., [2018)), i.e. supplementary
supervised training. We find this is similarly true for question answering, classification, and regres-
sion when reformulated as span-extraction. Because we rely only on the span-extractive inductive
bias, we are able to further explore previously unconsidered combinations datasets. By doing this,
we find that question answering tasks can benefit from text classification tasks and classification
tasks can benefit from question answering ones.

The success of pre-training for natural language processing systems affords the opportunity to re-
examine the benefits of our inductive biases. Our results on common question answering, text
classification, and regression benchmark tasks suggest that it is advantageous to discard the inductive
bias that motivates task-specific, fixed-class, classification and similarity-scoring layers in favor of
the inductive bias that views all three as span-extraction problems.

1.1 CONTRIBUTIONS
Summarily, we demonstrate the following:

1. Span-extraction is an effective approach for unifying question answering, text classifica-
tion, and regression.



Under review as a conference paper at ICLR 2020

Input Extracted span Output

{ )
Nikola Tesla (10 July 1856 - 7 January 1943) was a Serbian American _> 10 July 1856

inventor ... [SEP] What year was Tesla born?

Positive or negative? [SEP] The movie is slow, very very slow.

The new rights are nice enough. Entailment, contradiction or neutral? [SEP]
The rights recently put in place are nowhere near enough.

A woman is riding a horse. 0.0 0.25 0.5 ... 4.75 5.0 [SEP] A man is playing a

guitar.
\. /

Figure 1: Illustration of our proposed approach using the BERT pre-trained sentence encoder. Text
classification tasks are posed as those of span extraction by appending the choices to the input. Simi-
larly, regression tasks are posed by appending bucketed values to the input. For question answering,
no changes over the BERT approach are necessary. The figure includes four examples from the
SQuAD, SST, MNLI, and STS datasets, respectively.

2. Span-extraction benefits as much from intermediate-task training as more traditional text
classification and regression methods.

3. Span-extraction allows for combinations of question answering and text classification
datasets in intermediate-task training that outperform using only one or the other.

4. Span-extractive multi-task learning yield stronger multi-task models, but weaker single-
task models compared to intermediate-task training.

5. Span-extraction with intermediate-task training proves more robust in the presence of lim-
ited training data than the corresponding task-specific versions.

2 RELATED WORK

Transfer Learning. The use of pre-trained encoders for transfer learning in NLP dates back to
Collobert & Weston| (2008); (Collobert et al.| (2011) but has had a resurgence in the recent past.
BERT (Devlin et al., 2018)) employs the recently proposed Transformer layers (Vaswani et al.,[2017)
in conjunction with a masked language modeling objective as a pre-trained sentence encoder. Prior
to BERT, contextualized word vectors (McCann et al.,|2017)) were pre-trained using machine trans-
lation data and transferred to text classification and question answering tasks. ELMO (Peters et al.,
2018) improved contextualized word vectors by using a language modeling objective instead of
machine translation. ULMFit (Howard & Ruder, 2018)) and GPT (Radford et al.l 2018)) showed
how traditional, causal language models could be fine-tuned directly for a specific task, and GPT-
2 (Radford et al., 2019) showed that such language models can indirectly learn tasks like machine
translation, question answering, and summarization.

Intermediate-task and Multi-task Learning. The goal of unifying NLP is not new (Collobert &
Weston, 2008}, [Collobert et al., [2011). In Phang et al.| (2018)), the authors explore the efficacy of
supplementary training on intermediate tasks, a framework that the authors abbreviate as STILTs.
Given a target task 7" and a pre-trained sentence encoder, they first fine-tune the encoder on an inter-
mediate (preferably related) task I and then finally fine-tune on the task 7'. The authors showed that
such an approach has several benefits including improved performance and better robustness to hy-
perparameters. The authors primarily focus on the GLUE benchmark (Wang et al., [2018]). |[Liu et al.
(2019a) explore the same task and model class (viz., BERT) in the context of multi-tasking. Instead
of using supplementary training, the authors choose to multi-task on the objectives and, similar to
BERT on STILTs, fine-tune on the specific datasets in the second phase. Further improvements can
be obtained through heuristics such as knowledge distillation as demonstrated in|Clark et al.[(2019).
All of these approaches require a different classifier head for each task, e.g., a two-way classifier
for SST and a three-way classifier for MNLI. Two recent approaches: decaNLP (McCann et al.,
2018) and GPT-2 Radford et al.| (2019) propose the unification of NLP as question answering and
language modeling, respectively. As investigated in this work, the task description is provided in
natural language instead of fixing the classifier a-priori.
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Task Dataset Source Text Auxiliary Text
Sentence Clas- SST positive or negative? it’s slow — very, very slow
sification

Sentence Pair MNLI I don’t know a lot about camping. en- I know exactly.
Classification tailment, contradiction, or neutral?

Sentence Pair RTE The capital of Slovenia is Ljubljana, Slovenia has 270,000 inhabi-
Classification with 270,000 inhabitants. entailment or tants.
not?

Sentence Pair STS-B A woman is riding a horse. 0.0 0.25 0.5 A man is playing a guitar.
Regression 0.751.0--- 5.0.

Question SQuAD Nikola Tesla (10 July 1856 — 7 January When was Tesla born?
Answering 1943) was a Serbian American inventor

Table 1: Treating different examples as forms of span-extraction problems. For sentence pair clas-
sification datasets, one sentence is present in each of the source text and auxiliary text. The possible
classification labels are appended to the source text. For single sentence classification datasets,
the source text only contains the possible classification labels. For question answering datasets, no
changes to the BERT formulation is required; the context is presented as source text and the question
as auxiliary text.

3 METHODS

We propose treating question answering, text classification, and regression as span-extractive tasks.
Each input is split into two segments: a source text which contains the span to be extracted and an
auxiliary text that is used to guide extraction. Question answering often fits naturally into this frame-
work by providing both a question and a context document that contains the answer to that question.
When treated as span-extraction, the question is the auxiliary text and the context document is the
source text from which the span is extracted. Text classification input text most often does not con-
tain a natural language description of the correct class. When it is more natural to consider the input
text as one whole, we treat it as the auxiliary text and use a list of natural language descriptions of
all possible classification labels as source text. When the input text contains two clearly delimited
segments, one is treated as auxiliary text and the other as source text with appended natural language
descriptions of possible classification labels. For regression, we employ a process similar to classi-
fication; instead of predicting a floating-point number, we bucket the possible range and classify the
text instead.

Our proposal is agnostic to the details of most common preprocessing and tokenization schemes
for the tasks under consideration, so for ease of exposition we assume three phases: preprocessing,
encoding, and decoding. Preprocessing includes any manipulation of raw input text; this includes
tokenization. An encoder is used to extract features from the input text, and an output layer is used
to decode the output from the extracted features. Encoders often include a conversion of tokens to
distributed representation followed by application of several layers of LSTM, Transformer, convo-
lutional neural network, attention, or pooling operations. In order to properly use these extracted
features, the output layers often contain more inductive bias related to the specific task. For many
question answering tasks, a span-decoder uses the extracted features to select a start and end token
in the source document. For text classification, a linear layer and softmax allow for classification
of the extracted features. Similarly, for regression, a linear layer and a similarity-scoring objective
such as cosine distance or least-squares is employed. We propose to use span-decoders as the output
layers for text classification and regression in place of the more standard combination of linear layer
with task-specific objectives.

3.1 SPAN-EXTRACTIVE BERT (SPEX-BERT)

In our experiments, we start with a pre-trained BERT as the encoder with preprocessing as described
in Devlin et al.|(2018)). This preprocessing takes in the source text and auxiliary text and outputs a
sequence of p = m +n + 2 tokens: a special CLS token, the m tokens of the source text, a separator
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token SEP, and the n auxiliary tokens. The encoder begins by converting this sequence of tokens into
a sequence of p vectors in R%. Each of these vectors is the sum of a token embedding, a positional
embedding that represents the position of the token in the sequence, and a segment embedding that
represents whether the token is in the source text or the auxiliary text as described in [Devlin et al.
(2018). This sequence is stacked into a matrix X € RP*4 go that it can be processed by several
Transformer layers (Vaswani et al., 2017). The ith layer first computes o”(X;) by applying self-
attention with k£ heads over the previous layer’s outputs:

o (X;) = [has- 5 i)W (1)
where h; = oz(Xﬂ/le, Xinz, X,;Wf)
T
a(X,Y, Z) = softmax <XY > Z 2)
Vd

A residual connection (He et al., 2016) and layer normalization (Ba et al., 2016) merge information
from the input and the multi-head attention:

H; = LayerNorm(o?(X;) + X;) 3)

This is followed by a feedforward network with ReLU activation (Nair & Hinton, 2010} Vaswani
et al., |2017), another residual connection, and a final layer normalization. With parameters U €
RY%F and V e Rfxd;

Xi+1 = LayerNorm(max(0, H;U)V + H;)) “4)

Let Xy € R™X 4 represent the final output of these Transformer layers. At this point, a task-specific
head usually uses some part of X to classify, regress, or extract spans. Our proposal is to use a
span-decoder limited to X,y whenever a classification or similarity-scoring layer is typically used.
In this case, we add only two trainable parameter vectors dgyqr¢ and deyq following Devlin et al.
(2018)), and we compute start and end distributions over possible spans by multiplying these vectors
with Hy and applying a softmax function:

Pstart = softmax (Xsfdstart) DPend = softmax (Xsfdend) (5)

During training, we are given the ground truth answer span (a*,b*) as a pair of indices into the
source text. The summation of cross-entropy losses over the start and end distributions then gives
an overall loss for a training example:

Lstart = — Z I{a* = Z} 1ngstart (Z) Leond = — Z I{b* = Z} Ingend(i) (6)

7 K

With £ = Lstart + Lena and at inference, we extract a span (a, b) as

a = arg max pstart (1) b = arg max penq(i) (7
K3 K3

4 EXPERIMENTAL SETUP

4.1 TASKS, DATASETS AND METRICS

We divide our experiments into three categories: classification, regression, and question answer-
ing. For classification and regression, we evaluate on all the GLUE tasks (Wang et al., 2018). This
includes the Stanford Sentiment Treebank (SST) (Socher et al., 2013), MSR Paraphrase Corpus
(MRPC) (Dolan & Brockett, 2005)), Quora Question Pairs (QQP), Multi-genre Natural Language In-
ference (MNLI) (Williams et al., 2017), Recognizing Textual Entailment (RTE) (Dagan et al., 2010;
Bar-Haim et al.,2006; Giampiccolo et al.,[2007; Bentivogli et al.,|2009), Question-answering as NLI
(QNLI) (Rajpurkar et al), 2016)), and Semantic Textual Similarity (STS-B) Cer et al.| (2017). The
Winograd schemas challenge as NLI (WNLI) [Levesque et al.[(2012)) was excluded during training
because of known issues with the dataset. As with most other models on the GLUE leaderboard, we
report the majority class label for all instances. With the exception of STS-B, which is a regression
dataset, all other datasets are classification datasets. For question answering, we employ 6 popular
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SST MRPC QQP MNLI RTE QNLI CoLA STS GLUE
# Train Ex. 67k 3.7k 364k 393k 2.5k 105k 8.5k 7k  Leaderboard Score

Development Set Scores

BERTLARGE 925 89.0 915 862 700 923 621 902 —
—MNLI 932 895 914 862 834 923 598 90.9 —
—SNLI 927 885 908 86.1 80.1 — 57.0 90.7 —
SpEx-BERTiarge 937 889 91.0 864 698 91.8 648 895 —
—SQuAD 93.7 865 909 8.0 747 918 57.8 90.1 —

—TriviaQA (Web) 933 850 905 857 736 917 602 899 —
—TriviaQA (Wiki) 944 865 90.6 856 715 91.6 599 90.1 —
—MNLI 944 904 913 864 852 920 60.6 90.9 —
—MNLI—-SQuAD 937 895 91.1 864 841 923 605 90.2 —

Test Set Scores (both on STILTs)

BERTLARrGE 943 86.6 894 8.0 801 927 62.1 885 82.0
SpEx-BERTiarge 945 876 895 862 798 924 632 893 82.3

Table 2: Performance metrics on the GLUE tasks. We use Matthew’s correlation for CoLA, an
average of the Pearson and Spearman correlation for STS, and exact match accuracy for all others.
Bold marks the best performance for a task in a section delimited by double horizontal lines. Scores
for MNLI are averages of matched and mismatched scores. (— A) indicates that a model was
fine-tuned on A as an intermediate task before fine-tuning on a target task (the task header for any
particular column). In cases where A and the target task are the same, no additional fine-tuning is
done. The phrase on STILTs indicates that test set scores on the target task are the result of testing
with the best (— A) according to development scores.

datasets: the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,[2016), QA Zero-shot
Relationship Extraction (ZRE; we use the 0" split and append the token unanswerable to all ex-
amples so it can be extracted as a span) (Levy et al.l 2017), QA Semantic Role Labeling (SRL) (He
et al.,[2015), Commonsense Question Answering (CQA; we use version 1.0) (Talmor et al., [2018)
and the two versions (Web and Wiki) of TriviaQA (Joshi et al., 2017). Unless specified otherwise,
all scores are on development sets. Concrete examples for several datasets can be found in Table|T]

4.2 TRAINING DETAILS

For training the models, we closely follow the original BERT setup |Devlin et al.| (2018) and |Phang
et al|(2018). We refer to the 12-layer model as BERTgasg and the 24-layer model as BERT arGe-
Unless otherwise specified, we train all models with a batch size of 20 for 5 epochs. For the SQuAD
and QQP datasets, we train for 2 epochs. We coarsely tune the learning rate but beyond this, do not
carry out any significant hyperparameter tuning. For STILTs experiments, we re-initialize the Adam
optimizer with the introduction of each intermediate task. For smaller datasets, BERT (especially
BERT aArgg) is known to exhibit high variance across random initializations. In these cases, we
repeat the experiment 20 times and report the best score as is common in prior work (Phang et al.,
2018 Devlin et al., [2018). The model architecture, including the final layers, stay the same across
all tasks and datasets — no task-specific classifier heads or adaptations are necessary.

4.3 MODELS AND CODE

Pre-trained models and code can be found at MASKED, We rely on the BERT training library{T_]
available in PyTorch |Paszke et al.[(2017).

5 RESULTS

Next, we present numerical experiments to buttress the claims presented in Section [I.1]

'"https://github.com/huggingface/pytorch-pretrained-BERT/
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https://github.com/huggingface/pytorch-pretrained-BERT/
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SQuAD ZRE SRL CQA SST MRPC RTE
# Training Examples 87.6k 840k 6.4k 9.5k

At most 1k training examples

SpEX—BERTLARGE 84.0 69.1 90.3 60.3

— MNLI 845 71.6 90.7 56.7 fﬁ;@l‘“‘f g(l)'; 222 ggg

— ZRE 84.0 69.1 90.8 61.3 : : .

— SQuAD 84.0 82.5 91.7 63.8 SpEx-BERTiarge 91.3 825 67.1

— TriviaQA (Web) 84.5 753 913 63.8 —MNLI 912 86.5 827

— TriviaQA (Wiki) 84.3 742 914 644

— MNLI — SQuAD 84.5 80.1 91.5 65.7
(a) Exact match scores on the development set for a set (b) Development set accuracy scores on three of the
of question answering tasks. Bold marks the best per- GLUE tasks when fine-tuned only on a constrained sub-

formance for a task. Note that SpEx-BERT and BERT set of examples. Bold indicates best score for a task.
are equivalent for the question answering task.

Table 3

Span-extraction is similar or superior to task-specific heads (classification or regression). Ta-
ble[2] shows our results comparing BERT (with and without STILTs) with the corresponding variant
of SpEx-BERT on the GLUE tasks Wang et al.| (2018)). For almost all datasets, the performance
for SpEx-BERT is better than that of BERT, which is perhaps especially surprising for the regres-
sion task (STS-B). One can reasonably expect model performance to improve by converting such
problems into a span-extraction problem over natural language class descriptions.

SpEx-BERT improves on STILTs. As in the case of Phang et al.| (2018), we find that using
supplementary tasks for pre-training improves the performance on the target tasks. We follow the
setup of [Phang et al.| (2018) and carry out a two-stage training process. First, we fine-tune the
BERT model with a span-extraction head on an intermediate task. Next, we fine-tune this model
on the target task with a fresh instance of the optimizer. Note that Phang et al.| (2018) require a
new classifier head when switching between tasks that have different numbers of classes or task,
but no such modifications are necessary when SpEx-BERT is applied. SpEx-BERT also allows for
seamless switching between question answering, text classification, and regression tasks.

In Table[5] we present the results for SpEx-BERT on STILTs. In a majority of cases, the performance
of SpEx-BERT matches or outperforms that of BERT. This is especially pronounced for datasets
with limited training data, such as MRPC and RTE with SpEX-BERT aorge and BERT Argg: 85.2
vs 83.4 for RTE, and 90.4 vs 89.5 for MRPC). We hypothesize that this increase is due to the fact
that the class choices are provided to the model in natural language, which better utilizes the pre-
trained representations of a large language model like BERT. Finally, we note, perhaps surprisingly,
that question answering datasets (SQuAD and TriviaQA) improve performance of some of the clas-
sification tasks. Notable examples include SST (pre-trained from the Wiki version of TriviaQA) and
RTE (pre-trained from any of the three datasets).

STILTs improves question answering as well. Table [3a] shows similar experiments on popu-
lar question answering datasets. The transferability of question answering datasets is well-known.
Datasets such as TriviaQA, SQuAD and ZRE have been known to improve each other’s scores and
have improved robustness to certain kinds of queries (Devlin et al.| 2018; McCann et al.l 2018].
We further discover that through the formulation of SpEx-BERT, classification datasets also help
question answering datasets. In particular, MNLI improves the scores of almost all datasets over
their baselines. For SQuAD, the benefit of STILTs with the classification dataset MNLI is almost as
much as the question answering dataset TriviaQA.

STILTSs can be chained. Pre-training models using intermediate tasks with labeled data has been
shown to be useful in improving performance. [Phang et al.| (2018)) explored the possibility of using
one intermediate task to demonstrate this improvement. We explore the possibility of chaining
multiple intermediate tasks in Table Conceptually, if improved performance on SQuUAD during
the first stage of fine-tuning leads to improved performance for the target task of CQA, improving
performance of SQuAD through in turn pre-training it on MNLI would improve the eventual goal of
CQA. Indeed, our experiments suggest the efficacy of chaining intermediate tasks in this way. CQA
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Model RTE
BERTLARGE — RTE 70.0
BERTArce — MNLI — RTE 83.4
SpEX—BERTLARGE — RTE 69.8
SpEx-BERT1 Arge — MNLI — RTE 85.2
SpEx-BERT1 arce — {MNLI, RTE} 75.0

SpEx-BERTLarGe — {MNLL RTE} — RTE 75.8

(a) Development set accuracy on the RTE dataset with
STILTs and multi-tasking. We denote the process of
multi-tasking on datasets A and B by { A, B}. For each
progression (represented by —), we reset the optimizer
but retain model weights from the previous stage.

Natural language description MNLI

Proposed Approach 84.7
- segmentation of input text 83.2
- terse class descriptions 84.4

(b) Development set accuracy using the SpEx-BERT
approach on three versions of the MNLI dataset:
(1) with the hypothesis and premise separated across
source and auxiliary text (see Section [3|for details) and
terse class descriptions; (2) with both hypothesis and
premise treated entirely as auxiliary text; and (3) with
segmented input but including a one-sentence descrip-
tion of the classes (entailment, contradiction, neutral)

based on definitions and common synonyms.

Table 4

obtains a score of 63.8 when fine-tuned from a SQuAD model (of score 84.0) and obtains a score of
65.7 when fine-tuned on a SQuAD model that was itself fine-tuned using MNLI (of score 84.5) as
an intermediate task.

Multi-task STILTS yields stronger multi-task models, but weaker single-task models. We also
experiment with multi-task learning during intermediate-task training. We present the results for
such intermediate-multi-task training on RTE in Table da] In intermediate-multi-task training, we
cycle through one batch for each of the tasks until the maximum number of iterations is reached.
No special consideration is made for the optimizer or weighing of objectives. The results show that
intermediate-multi-task training improves performance over the baseline for RTE, but this improve-
ment is less than when only MNLI is used for intermediate-task training. Though not desirable if
RTE is the only target task, such intermediate-multi-task training yields a better multi-task model
that performs well on both datasets: the joint (single) model achieved 75.0 on RTE and 86.2 on
MNLLI, both of which are better than their single-task baselines. In some cases, the increased per-
formance for one task (MNLI) might be preferable to that on another (RTE). We note that this
observation is similar to the one of |Phang et al.| (2018)).

SpEx-BERT on STILTs is more robust than BERT on STILTs when training data is limited.
In Table we present results for the same models (BERT and SpEx-BERT) being fine-tuned
with sub-sampled versions of the dataset. For this experiment, we follow Phang et al.[(2018) and
subsample 1000 data points at random without replacement and choose the best development set
accuracy across several random restarts. The rest of the experimental setup remains unchanged.
When used in conjunction with STILTs, the performance improves as expected and, in a majority of
cases, significantly exceeds that of the corresponding baseline that does not use span-extraction.

6 DISCUSSION

6.1 PHRASING THE QUESTION

As described in Section [3] when converting any of the classification or regression problems into a
span-extraction one, the possible classes or bucketed values need to be presented in natural language
as part of the input text. This leaves room for experimentation. We found that separation of naturally
delimited parts of the input text into source and auxiliary text was crucial for best performance. Re-
call that for question answering, the natural delimitation is to assign the given context document as
the source text and the question as the auxiliary text. This allows the span-decoder to extract a span
from the context document, as expected. For single-sentence problems, there is no need for delimita-
tion and the correct span is typically not found in the given sentence, so it is treated as auxiliary text.
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Natural language descriptions of the classes or allowable regression values are provided as source
text for span extraction. For two-sentence problems, the natural delimitation suggests treating one
sentence as source text and the other as auxiliary. The classification or regression choices must be
in the source text, but it was also the case that one of the sentences must also be in the source text.
Simply concatenating both sentences and assigning them as the source text was detrimental for tasks
like MNLI.

For the case of classification, when experimenting with various levels of brevity, we found that
simpler is better. Being terse eases training since the softmax operation over possible start and end
locations is over a relatively smaller window. While more detailed explanations might elaborate
on what the classes mean or otherwise provide additional context for the classes, these potential
benefits were outstripped by increasing the length of the source text. We present these results on
the development set of the MNLI dataset with BERTgagsg in Table @ For regression, there exists
a trade-off between brevity and granularity of the regression. We found that dividing the range into
10 — 20 buckets did not appreciably change the resulting correlation score for STS-B.

6.2 A FULLY JOINT MODEL WITHOUT TASK-SPECIFIC PARAMETERS

Unlike similar approaches using task-specific heads Liu et al.|(2019a), SpEx-BERT allows for a sin-
gle model across a broader set of tasks. This makes possible a single, joint model with all parameters
shared. We present the results of this experiment in Table[5)in the Appendix; we multi-task over all
datasets considered so far. Multi-task performance exceeds single-task performance for many of the
question answering datasets (ZRE, SRL, CQA) as well as the classification dataset RTE. In some
cases, these improvements are drastic (over 9% accuracy). Unfortunately, the opposite is true for
the two tasks that are the greatest source of transfer, MNLI and SQuAD, and the remaining GLUE
tasks. Understanding why such vampiric relationships amongst datasets manifest, why any particu-
lar dataset appears beneficial, neutral, or detrimental to the performance of others, and why question
answering tasks appear more amenable to the fully-joint setting remain open questions. Nonethe-
less, a purely span-extractive approach has allowed us to observe such relationships more directly
than in settings that use multiple task-specific heads or fine-tune separately on each task. Because
some tasks benefit and others suffer, these results present a trade-off. Depending on which tasks and
datasets are more pertinent, multi-task learning might be the right choice, especially given the ease
of deploying a single architecture that does not require any task-specific modifications.

Joint models for NLP have already been studied |Collobert et al.| (2011); McCann et al.| (2018);
Radford et al.| (2019) with a broad set of tasks that may require text generation and more general
architectures. These approaches have yet to perform as well as task-specific models on common
benchmarks, but they have demonstrated that large amounts of unsupervised data, curriculum learn-
ing, and task sampling strategies can help mitigate the negative influence multitasking tends to have
on datasets that are especially good for transfer learning. This work represents a connection between
those works and work that focuses on task-specific fine-tuning of pre-trained architectures.

7 CONCLUSION

With the successful training of supervised and unsupervised systems that rely on increasingly large
amounts of data, more of the natural variation in language is captured during pre-training. This
suggests that less inductive bias in the design of task-specific architectures might be required when
approaching NLP tasks. We have proposed that the inductive bias that motivates the use task-specific
layers is no longer necessary. Instead, a span-extractive approach, common to question answering,
should be extended to text classification and regression problems as well. Experiments comparing
the traditional approach with BERT to SpEx-BERT have shown that the span-extractive approach
often yields stronger performance as measured by scores on the GLUE benchmark. This reduces the
need for architectural modifications across datasets or tasks, and opens ways for applying methods
like STILTS to question answering or a combination of text classification, regression, and question
answering datasets to further improve performance. Experiments have further shown that span-
extraction proves more robust in the presence of limited training data. We hope that these findings
will promote further exploration into the design of unified architectures for a broader set of tasks.
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A MULTITASKING RESULTS

Below is the table that supports the commentary in Section [6.2}

SST MRPC QQP MNLI RTE QNLI CoLA STS SQuAD ZRE SRL CQA

Individual Models

BERTarGE 925 89.0 915 862 700 923 621 909 84.0 69.1 903 603
SpEx-BERTrLarge 937 889 91.0 863 69.8 91.8 648 895 84.0 69.1 903 60.3

Multi-task Models (best joint single model)

SpEx-BERTrarge 924 875 909 850 711 91.3 588 892 804 750 97.7 61.0
—MNLI 932 870 909 856 812 913 579 90.1 80.5 76.6 977 615
—+SQuAD 922 870 91.0 853 809 912 520 90.1 80.6 788 97.7 634
—MNLI—-SQuAD 923 909 90.8 852 841 909 521 902 80.6 753 978 615

Multi-task Models (maximum individual score for each dataset during the course of training)

SpEx-BERTLarge 930 885 91.0 852 733 914 598 889 819 778 97.7 64.7
—MNLI 932 897 908 857 841 91.6 599 898 814 782 977 633
—SQuAD 929 892 911 854 841 914 561 90.1 828 796 978 653
—+MNLI—-SQuAD 92.7 914 90.8 854 852 912 575 902 832 775 978 648

Table 5: Development set performance metrics on a single (joint) model obtained by multi-tasking
on all included datasets. We include best single-task performances (without STILTs), labeled as
individual models, for the sake of easier comparison. We divide the remaining into two parts — in
the first, the scores indicate the performance on a single snapshot during training and not individual
maximum scores across the training trajectory. In the second, we include the best score for every
dataset through the training; note that this involves inference on multiple model snapshots. For the
models trained with STILTs, the SpEx-BERT model is first fine-tuned on the intermediate task by
itself after which the model is trained in multi-tasking fashion. Bold implies best in each column
(i.e., task).

11



	Introduction
	Contributions

	Related Work
	Methods
	Span-Extractive BERT (SpEx-BERT)

	Experimental Setup
	Tasks, Datasets and Metrics
	Training Details
	Models and Code

	Results
	Discussion
	Phrasing the question
	A fully joint model without task-specific parameters

	Conclusion
	Multitasking Results

