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ABSTRACT

Existing unsupervised video-to-video translation methods fail to produce trans-
lated videos which are frame-wise realistic, semantic information preserving and
video-level consistent. In this work, we propose a novel unsupervised video-to-
video translation model. Our model decomposes the style and the content, uses
specialized encoder-decoder structure and propagates the inter-frame information
through bidirectional recurrent neural network (RNN) units. The style-content
decomposition mechanism enables us to achieve long-term style-consistent video
translation results as well as provides us with a good interface for modality flexible
translation. In addition, by changing the input frames and style codes incorporated
in our translation, we propose a video interpolation loss, which captures temporal
information within the sequence to train our building blocks in a self-supervised
manner. Our model can produce photo-realistic, spatio-temporal consistent trans-
lated videos in a multimodal way. Subjective and objective experimental results
validate the superiority of our model over existing methods.

1 INTRODUCTION

Recent image-to-image translation (I2I) works have achieved astonishing results by employing Gen-
erative Adversarial Networks (GANs) (Goodfellow et al., 2014). Most of the GAN-based I2I meth-
ods mainly focus on the case where paired data exists (Isola et al. (2017b), Zhu et al. (2017b), Wang
et al. (2018b)). However, with the cycle-consistency loss introduced in CycleGAN (Zhu et al.,
2017a), promising performance has been achieved also for the unsupervised image-to-image trans-
lation (Huang et al. (2018), Almahairi et al. (2018), Liu et al. (2017), Mo et al. (2018), Romero
et al. (2018), Gong et al. (2019)). While there is an explosion of papers on I2I, its video counter-
part is much less explored. Compared with the I2I task, video-to-video translation (V2V) is more
challenging. Besides the frame-wise realistic and semantic preserving requirements, which is also
required in the I2I task, V2V methods additionally need to consider the temporal consistency issue
for generating sequence-wise realistic videos. Consequently, directly applying I2I methods on each
frame of the video will not work out as those methods fail to utilize temporal information and can
not assure any temporal consistency within the sequence.

In their seminal work, Wang et al. (2018a) combined the optical flow and video-specific constraints
and proposed a general solution for V2V in a supervised way. Their sequential generator can gener-
ate long-term high-resolution video sequences. However, their vid2vid model (Wang et al. (2018a))
relies heavily on labeled data. Based on the I2I CycleGAN approach, previous methods on un-
supervised V2V proposed to design spatio-temporal translator or loss to achieve more temporally
consistent results while preserving semantic information. In order to generate temporally consis-
tent video sequences, Bashkirova et al. (2018) proposed a 3DCycleGAN method which adopts 3D
convolution in the generator and discriminator of the CycleGAN framework to capture temporal
information. However, since the small 3D convolution operator (with temporal dimension 3) only
captures dependency between adjacent frames, 3DCycleGAN can not exploit temporal information
for generating long-term consistent video sequences. Furthermore, the vanilla 3D discriminator is
also limited in capturing complex temporal relationships between video frames. As a result, when
the gap between input and target domain is large, 3DCycleGAN tends to sacrifice the image-level
reality and generates blurry and gray outcomes. Recently, Bansal et al. (2018) designed a Recycle
loss for jointly modeling the spatio-temporal relationship between video frames. They trained a
temporal predictor to predict the next frame based on two past frames, and plugged the temporal
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predictor in the cycle-loss to impose the spatio-temporal constraint on the traditional image transla-
tor. As the temporal predictors can be trained from video sequences in source and target domain in
a self-supervised manner, the recycle-loss is more stable than the 3D discriminator loss proposed by
Bashkirova et al. (2018). The RecycleGAN method of Bansal et al. (2018) achieved state-of-the-art
unsupervised V2V results. Despite its success in translation scenarios with less variety, such as face-
to-face or flower-to-flower, we have experimentally found that applying RecycleGAN to translate
videos between domains with a large gap is still challenging. We think the following two points
are major reasons which affect the application of RecycleGAN method in complex scenarios. On
one hand, the translator in Bansal et al. (2018) processes input frames independently, which has
limited capacity in exploiting temporal information; and on the other hand, its temporal predictor
only imposes the temporal constraint between a few adjacent frames, the generated video content
still might shift abnormally: a sunny scene could change to a snowy scene in the following frames.
In a concurrent work, Chen et al. (2019) incorporate optical flow to add motion cycle consistency
and motion translation constraints. However, their Motion-guided CycleGAN still suffers from the
same two limitations as the RecycleGAN method.

In this paper, we propose UVIT, a novel method for unsupervised video-to-video translation. We
assume that a temporally consistent video sequence should simultaneously be: 1) long-term style
consistent and 2) short-term content consistent. Style consistency requires the whole video se-
quence to have the same style, it ensures the video frames to be overall realistic; while the content
consistency refers to the appearance continuity of contents in adjacent video frames and ensures
the video frames to be dynamically vivid. Compared with previous methods which mainly focused
on imposing short-term consistency between frames, we have considered in addition the long-term
consistency issue which is crucial to generate visually realistic video sequences.

Figure 1: Overview of our proposed UVIT model: given an input video sequence, we first decom-
pose it to the content by Content Encoder and the style by Style Encoder. Then the content is pro-
cessed by special RNN units– TrajGRUs (Shi et al., 2017) to get the content used for translation and
interpolation recurrently. Finally, the translation content and the interpolation content are decoded
to the translated video and the interpolated video together with the style latent variable. We depict
here the video translation loss (orange), the cycle consistency loss (violet), the video interpolation
loss (green) and the style encoder loss (blue).

To simultaneously impose style and content consistency, we adopt an encoder-decoder architecture
as the video translator. Given an input frame sequence, a content encoder and a style encoder firstly
extract its content and style information, respectively. Then, a bidirectional recurrent network prop-
agates the inter-frame content information. Updating this information with the single frame content
information, we get the spatio-temporal content information. At last, making use of the conditional
instance normalization (Dumoulin et al. (2016), Perez et al. (2018)), the decoder takes the style
information as the condition and utilizes the spatio-temporal content information to generate the
translation result. An illustration of the proposed architecture can be found in figure 1. By applying
the same style code to decode the content feature for a specific translated video, we can produce
a long-term consistent video sequence, while the recurrent network helps us combine multi-frame
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content information to achieve content consistent outputs. The conditional decoder also provides us
with a good interface to achieve modality flexible video translation.

Besides using the style dependent content decoder and bidirectional RNNs to ensure long-term and
short-term consistency, another advantage of the proposed method lies in our training strategy. Due
to our flexible Encoder-RNN-Decoder architecture, the proposed translator can benefit from the
highly structured video data and being trained in a self-supervised manner. Concretely, by removing
content information from frame t and using posterior style information, we use our Encoder-RNN-
Decoder translator to solve the video interpolation task, which can be trained by video sequences
in each domain in a supervised manner. In the RecycleGAN method, Bansal et al. (2018) proposed
to train video predictors and plugged them into the GAN losses to impose spatio-temporal con-
straints. They utilize the structured video data in an indirect way: using video predictor trained in a
supervised way to provide spatio-temporal loss for training video translator. In contrast, we use the
temporal information within the video data itself, all the components, i.e. Encoders, RNNs and De-
coders, can be directly trained with the proposed video interpolation loss. The processing pipelines
of using our Encoder-RNN-Decoder architecture for the video interpolation and translation tasks
can be found in figure 2, more details of our video interpolation loss can be found in section 2.

The main contributions of our paper are summarized as follows:

1. a novel Encoder-RNN-Decoder framework which decomposes content and style for tem-
porally consistent and modality flexible unsupervised video-to-video translation;

2. a novel video interpolation loss that captures the temporal information within the sequence
to train translator components in a self-supervised manner;

3. extensive experiments showing the superiority of our model at both video and image level.

2 PROPOSED UVIT (UNSUPERVISED VIDEO-TO-VIDEO TRANSLATION)

2.1 PROBLEM SETTING

Let A be the video domain A, a1:T = {a1, a2, ..., aT } be a sequence of video frames in A, let B
be the video domain B, b1:T = {b1, b2, ..., bT } be a sequence of video frames in B. For example,
they can be sequences of semantic segmentation labels or scene images. Our general goal of unsu-
pervised video-to-video translation is to train a translator to convert videos between domain A and
domain B with many-to-many mappings, so that the distribution of the translated video would be
close to that of the real target domain video. More concretely, to generate the style consistent video
sequence, we assume each video frame has a style latent variable z. Let za ∈ ZA and zb ∈ ZB be
the style latent variables in domain A and B, respectively. Our target is to align the conditional dis-
tribution of translated videos and target domain videos, i.e. P (btrans1:T |a1:T , zb) ≈ P (b1:T |a1:T , zb)
and P (atrans1:T |b1:T , za) ≈ P (a1:T |b1:T , zb). The style information can be drawn from the prior or
encoded from the style encoder in an example-based way. In addition, taking the prior subset infor-
mation (rain, snow, day, night, etc.) as label and incorporating that into the style code, we can also
achieve deterministic control for the style of the output.

2.2 TRANSLATION AND INTERPOLATION PIPELINE

In this work, we assume a shared content space such that corresponding frames in two domains
are mapped to the same latent content code just like UNIT (Liu et al., 2017). To achieve the goal
of unsupervised video-to-video translation, we propose an Encoder-RNN-Decoder translator which
contains the following components:

• Two content encoders CEA and CEB , which extract the frame-wise content information
in the common spatial content space (e.g., CEA(at) = lt).
• Two style encoders SEA and SEB , which encode video frames to the respective style

domains (e.g., SEA(a1:T ) = zposta ). Here, zposta is the posterior style latent variable. In
practice, we usually take the first frame to conduct style encoding(SEA(a1) = zposta ).

• Two Trajectory Gated Recurrent Units (TrajGRUs) (Shi et al., 2017) TrajGRUforw and
TrajGRUback, which propagate the inter-frame content information in the forward and
the backward direction to form the forward lforwt and backward lbackt content recurrently.
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• One Merge Module Merge, which adaptively combine lforwt and lbackt . Without the lt
from the current frame, it gets the interpolation content linterpt . Using lt to update the
linterpt , it gets the translation content ltranst .

• Two conditional content decoders CDA and CDB , which take the spatio-temporal con-
tent information and the style code to generate the output frame. It can produce the
interpolation frame (e.g., CDA(l

interp
t , zposta ) = ainterpt ) or the translation frame (e.g.,

CDB(l
trans
t , zpriorb ) = btranst ). Here, zpriorb is the prior style latent variable of domain A

drawn from the prior distribution.

Combining the above components, we achieve two conditional video translation mappings: Gtrans
AB :

A× ZB 7→ Btrans and Gtrans
BA : B × ZA 7→ Atrans. In order to achieve the style-consistent trans-

lation result, we let all the frames in a video sequence to share the same style code za (zb). Besides
imposing long-term style consistency, another benefit of the conditional generator is modality flex-
ible translation. By assigning partial dimension of the style code to encode subset labels in the
training phase, we are able to control the subset style of the translated video in a deterministic way.

As we propose to use the video interpolation loss to train the translator components in a self-
supervised manner, here we also define the video interpolation mappings: Ginterp

A : A × ZA 7→
Ainterp and Ginterp

B : B × ZB 7→ Binterp. Though the interpolation mapping is conducted within
each domain, the interpolation and translation mappings use exactly the same building blocks. An
illustration of the translation and interpolation mappings are provided in figure 2.

Figure 2: Video interpolation (left) and video translation (right): two processes share modules or-
ganically. The input latent content is processed by the Merge Module to merge information from
TrajGRUs in both the forward and the backward direction. The translated content (ltranst ) is obtained
by updating interpolated content (linterpt ) with the content (lt) from the current frame (at).

2.3 LOSS FUNCTION

2.3.1 GENERATOR LOSS

Video translation loss. The translated video frames should be similar to the real samples in the
target domain. Both the image-level discriminator and the video-level discriminator are added to
ensure the image-level quality and the video-level quality. Here we adopt relativistic LSGAN loss
(Jolicoeur-Martineau (2018), Mao et al. (2017)). Such loss for domain B can be listed as:

Ltrans
B =

1

T

i=T∑
i=1

[Dimg
B (btransi )−Dimg

B (bi)− 1]2 + [Dvid
B (btrans1:T )−Dvid

B (b1:T )− 1]2 (1)
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Here, btrans1:T are the translated frames from time 1 to T : btrans1:T = Gtrans
AB (a1:T , z

prior
b ). Dimg

B is
the image-level discriminator for domain B , Dvid

B is the video-level discriminator for domain B.
Translation loss for domain A (Ltrans

A ) is defined in the same way.

Video interpolation loss. The interpolated video frames should be close to the ground truth frames.
At the same time, they should be realistic compared to other frames in the domain. This loss term
(in domain A) is as follows:

Linterp
A =

1

(T − 2)
(λinterp ‖ a2:T−1 − ainterp2:T−1 ‖1+

i=T−1∑
i=2

[Dimg
A (ainterpi )−Dimg

A (ai)− 1]2) (2)

Here, because of the characteristic of bidirectional TrajGRUs, only frames from time 2 to T − 1 are
taken to compute the video interpolation loss. a2:T−1 are the real frames in domain A, ainterp2:t−1 are
the interpolated frames. The former part of the loss is the supervised L1 loss. The later part of the
loss is the GAN loss computed on the image-level discriminator Dimg

A in domain A. λinterp is used
to control the weight between two loss elements. B(Linterp

B ) is defined in the same way.

Cycle consistency loss. This loss is added to ensure semantic consistency. This loss term (in domain
A) is defined as:

Lcycle
A =

λcycle
T
‖ a1:T − arec1:T ‖1 (3)

arec1:T are the reconstructed frames of domain A from time 1 to T by the translation model, arec1:T =

Gtrans
BA (btrans1:T , zposta ). The λcycle is the cycle consistency loss weight. Lcycle

B is defined in the same
way.

Style encoder loss. To train the style encoder, the style reconstruction loss and style adversarial loss
are defined as follows:

Lstyle
ZA

= λrec ‖ zreca − zpriora ‖1 +[DZA
(zposta )−DZA

(zpriora )− 1]2 (4)

Here, zreca is the reconstructed style latent variable of domain A, zreca = SEA(a
trans
1 ). λrec is the

style reconstruction loss weight. Such loss for ZB (Lstyle
ZB

) is defined in the same way.

2.3.2 DISCRIMINATOR LOSS

There are the image-level discriminator loss (LGAN
Dimg

A

, LGAN
Dimg

B

), the video-level discriminators loss

(LGAN
Dvid

A
, LGAN

Dvid
B

) and the style latent variable discriminator loss (LGAN
DZA

, LGAN
DZB

). The detailed loss
functions are attached in Appendix A.1.

2.3.3 FULL OBJECTIVE

Our objective for the Generator:

Ltotal
G = Ltrans

A + Ltrans
B + Linterp

A + Linterp
B + Lcycle

A + Lcycle
B + Lstyle

ZA
+ Lstyle

ZB
(5)

Here G are the generator modules, which consist of CEA, CEB , SEA, SEB , TrajGRUforw,
TrajGRUback, Merge, CDA and CDB .

Our objective for the Discriminator:

Ltotal
D = LGAN

Dimg
A

+ LGAN
Dimg

B

+ LGAN
Dvid

A
+ LGAN

Dvid
B

+ LGAN
DZA

+ LGAN
DZB

(6)

Here, D are discriminator modules, which consist of Dimg
A , Dimg

B , Dvid
A , Dvid

B , DZA
, DZB

.

We aim to solve the optimization problem:

G∗ = argminGL
total
G

D∗ = argminDL
total
D

(7)
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Figure 3: Label-to-image: multi-subset outcomes. Top left: input semantic labels; Top right: trans-
lated day video; Middle left: translated sunset video; Middle right: translated rain video; Bottom
left: translated snow video; Bottom right: translated night video.

3 EXPERIMENTS

Implementation details: Our model is trained with 6 frames per batch, with a resolution of 128 ×
128. This enables us to train our model with a single Titan Xp GPU. During test time, we follow the
experimental setting of Wang et al. (2018a) and load video clips with 30 frames. These 30 frames
are divided into 7 smaller sequences of 6 frames with overlap. They all share the same style code
to be style consistent. Please note that our model can be easily extended to process video sequences
with any lengths. Details of the network architecture are attached in Appendix A.2.

Datasets: We use the Viper dataset (Richter et al., 2017). Viper has semantic label videos and scene
image videos. There are 5 subsets for the scene videos: day, sunset, rain, snow and night. The large
diversity of scene scenarios makes this dataset a very challenging testing bed for the unsupervised
V2V task. We quantitatively evaluate translation performance by different methods on the image-
to-label and the label-to-image mapping tasks. We further conduct the translation between different
subsets of the scene videos for qualitative analysis.

3.1 ABLATION STUDY

Before comparing the proposed UVIT with state-of-the-art approaches, we first conduct ablation
study experiments to emphasize our contributions. We provide experimental results to show the
effect of style-conditioned translation and the effectiveness of the proposed video interpolation loss.

Conditional Video Translation: UVIT utilizes an Encoder-RNN-Decoder architecture and adopts
a conditional decoder to ensure the generated video sequence to be style consistent. The conditional
decoder also provides us with a good interface to achieve modality flexible video translation. In our
implementation, we use a 21-dimensional vector as the style latent variable to encode the subset label
as well as the stochastic part. By changing the subset label, we are able to control the subset style
of the generated video in a deterministic way. Meanwhile, by changing the stochastic part, we can
generate various video sequences in a stochastic way. In figure 3, we use the same semantic label
sequence to generate video sequences with different sub-domain labels. In figure 4, inducing the
same subset label – sunset but changing the stochastic part of the style latent variable, we present
different sunset videos generated from the same semantic label sequence. Figure 3 and figure 4
clearly show the effectiveness of the proposed conditional video translation mechanism. Please note
that the training of our method does not rely on the subset labels, we incorporate subset labels for the
purpose of a deterministic controllable translation. Without the subset labels, we can still generate
multimodal style consistent results in a stochastic way.

Video Interpolation Loss: In this part, we provide ablation experiments to show the effectiveness
of the proposed video interpolation loss. We conduct ablation studies on both the image-to-label and
the label-to-image tasks. Besides comparing UVIT with and without video interpolation loss, we
also train UVIT with image reconstruction loss (Huang et al., 2018), which only uses image-level
information to train encoder-decoder architectures in a self-supervised manner. We denote UVIT
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Figure 4: Label-to-image: translation with multimodality. Top left: label inputs; Top right: trans-
lated video 1; Bottom left: ground truth; Bottom right: translated video 2. By incorporating different
style codes, UVIT could generate different translation results.

Criterion Model Day Sunset Rain Snow Night

mIoU
UVIT (ours) 12.29 12.66 13.03 11.77 9.79

UVIT w/o vi-loss (ours) 9.54 10.11 10.72 10.21 8.61
UVIT w/o vi w ir loss (ours) 8.47 9.01 9.46 8.35 8.34

AC
UVIT(ours) 17.5 17.46 17.66 16.73 14.23

UVIT w/o vi-loss (ours) 14.37 15.23 15.24 14.95 12.83
UVIT w/o vi w ir loss (ours) 12.34 12.74 13.20 12.44 12.29

PA
UVIT(ours) 62.85 61.21 62.21 59.77 56.84

UVIT w/o vi-loss (ours) 52.23 53.39 56.35 54.9 50.89
UVIT w/o vi w ir loss (ours) 53.33 55.15 55.25 52.16 51.05

Table 1: Ablation study: image-to-label (Semantic segmentation). More details can be found in
Section 3.1.

trained without video interpolation loss as “UVIT w/o vi-loss” and UVIT trained without video
interpolation loss but with image reconstruction loss as “UVIT w/o vi w ir loss”.

We follow the experimental setting of RecycleGAN (Bansal et al., 2018) and use semantic segmen-
tation metrics to evaluate the image-to-label results quantitatively. We report the Mean Intersection
over Union (mIoU), Average Class Accuracy (AC) and Pixel Accuracy (PA) achieved by different
methods in Table 1. For the label-to-image task, we use the Fréchet Inception Distance (FID) (Heusel
et al., 2017) to evaluate the feature distribution distance between translated videos and ground truth
videos. The same as vid2vid (Wang et al., 2018a), we use the pretrained I3D (Carreira & Zisser-
man, 2017) model to extract features from videos. We use the semantic labels from the respective
sub-domains to generate videos and evaluate the FID score on all the subsets of the Viper dataset.
The FID score achieved by the proposed UVIT and its ablations can be found in Table 2. On both
the image-to-label and label-to-image tasks, the proposed video interpolation loss plays a crucial
role for UVIT to achieve good translation results. In addition, compared with the image-level image
reconstruction loss, video interpolation loss could effectively incorporate temporal information, and
delivers better video-to-video translation results.

Criterion Model Day Sunset Rain Snow Night

FID
UVIT (ours) 14.32 15.21 18.39 16.34 16.39

UVIT w/o vi-loss (ours) 22.32 20.48 24.02 18.59 18.12
UVIT w/o vi w ir loss (ours) 18.30 19.32 24.67 19.89 21.29

Table 2: Ablation study: Label-to-image FID. More details can be found in Section 3.1.

3.2 COMPARISON OF UVIT WITH STATE-OF-THE-ART METHODS

Image-to-label mapping: We use exactly the same setting as our ablation study to compare UVIT
with RecycleGAN in the image-to-label mapping task. The mIoU, AC and PA value by the proposed
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UVIT and competing methods are listed in Table 3. The results clearly validate the advantage of our
method over the competing approaches in terms of preserving semantic information.

Criterion Model Day Sunset Rain Snow Night All

mIoU

UVIT (ours) 12.29 12.66 13.03 11.77 9.79 11.94
RecycleGAN (Reproduced)1 10.31 11.18 11.26 9.81 7.74 10.11
RecycleGAN (Reported) 2 8.5 13.2 10.1 9.6 3.1 8.9

Cycle-GAN 3.39 3.82 3.02 3.05 7.76 4.1

AC

UVIT (Ours) 17.5 17.46 17.66 16.73 14.23 16.62
RecycleGAN (Reproduced)1 15.78 15.8 15.95 15.56 11.46 14.84

RecycleGAN (Reported)2 12.6 13.2 10.1 13.3 5.9 12.4
Cycle-GAN 7.83 8.56 7.91 7.53 11.12 8.55

PA

UVIT (ours) 62.85 61.21 62.21 59.77 56.84 60.51
RecycleGAN (Reproduced)1 54.68 55.91 57.72 50.84 49.10 53.65

RecycleGAN (Reported)2 48.7 70.0 60.1 58.9 33.7 53.7
Cycle-GAN 15.46 16.34 12.83 13.2 49.03 19.59

Table 3: Quantitative comparison between UVIT and baseline approaches on the image-to-label
(Semantic segmentation) task. More details can be found in Section 3.2.

Criterion Model Day Sunset Rain Snow Night

FID
UVIT (ours) 14.32 15.21 18.39 16.34 16.39

Improved RecycleGAN 16.50 17.68 23.61 20.01 19.56
RecycleGAN 17.10 18.87 21.60 25.35 28.28

Table 4: Quantitative comparison between UVIT and baseline approaches on the label-to-image
task. More details can be found in Section 3.2.

Criterion Comparing models Video level Image level

Human Preference Score

UVIT (ours) / Improved RecycleGAN 0.67 / 0.33 0.66 / 0.34
UVIT (ours) / 3DCycleGAN 0.75 / 0.25 0.70 / 0.30

UVIT (ours) / vid2vid 0.49 / 0.51 –
UVIT (ours) / CycleGAN – 0.61 / 0.39

Table 5: Label-to-image: Human Preference Score. Vid2vid is a supervised method and the other
methods are unsupervised approaches, more details can be found in Section 3.2.

Label-to-image mapping: In this setting, we compare the quality of the translated video sequence
by different methods. We firstly report the FID score (Heusel et al., 2017) on all the sub-domains of
the Viper dataset in the same setting as our ablation experiments. As the original RecycleGAN
method can not produce long-term style consistent video sequences, we also report the results
achieved by our improved version of the RecycleGAN. Concretely, we develop a conditional version
which formally controls the style of generated video sequences in a similar way as our UVIT model,
and denote the conditional version as improved RecycleGAN. The FID results by different methods
are shown in Table 4. The proposed UVIT achieves better FID on all the 5 sub-domains.

To thoroughly evaluate the visual quality of the video translation results, we conduct subjective
evaluation on the Amazon Mechanical Turk (AMT) platform. We compare the proposed UVIT with
3DCycleGAN and RecycleGAN. The video-level and image-level human preference scores (HPS)
are reported in Table 5. For reference, we also compare the video-level quality between UVIT and
the supervised vid2vid model (Wang et al., 2018a). Meanwhile, image-level quality comparison
between UVIT and CycleGAN (the image translation baseline) is also included. Table 5 clearly

1The result is reproduced by us. The output would be in a resolution of 256× 256, we then downscale it to
128× 128 to compute the statistics.

2This is the result reported in the original paper with a resolution of 256× 256.
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Figure 5: Label-to-image: qualitative comparison. First row: label inputs; Second row: improved
RecycleGAN outputs; Third row: UVIT outputs. Fourth row: ground truth.

Figure 6: Viper sunset to viper day. Top: input sunset video; Bottom: translated day video.

demonstrates the effectiveness of our proposed UVIT model. In the video-level comparison, our
unsupervised UVIT model outperforms the competing unsupervised RecycleGAN and 3DCycle-
GAN by a large margin, and achieves comparable results with the supervised benchmark. In the
image-level comparison, UVIT achieves better HPS than both the V2V competing approaches and
the image-to-image baseline. A qualitative example in figure 5 also shows that UVIT model pro-
duces a more content consistent video sequence. It could not be achieved by simply introducing the
style control without the specialized network structure to record the inter-frame information.

3.3 OTHER TASKS

Besides translating video sequences between image and label domains, we also train models to
translate video sequences between different image subsets and different video datasets. In figure 6,
we provide visual examples of video translation from Sunset to Day scenes in the Viper dataset.
More results of translation between Viper and Cityscapes (Cordts et al., 2016) datasets can be found
in our Appendix.

4 CONCLUSION

In this paper, we have proposed UVIT, a novel method for unsupervised video-to-video translation.
A novel Encoder-RNN-Decoder architecture has been proposed to decompose style and content in
the video for temporally consistent and modality flexible video-to-video translation. In addition,
we have designed a video interpolation loss which utilizes highly structured video data to train our
translators in a self-supervised manner. Extensive experiments have been conducted to show the ef-
fectiveness of the proposed UVIT model. Without using any paired training data, the proposed UVIT
model is capable of producing excellent multimodal video translation results, which are image-level
realistic, semantic information preserving and video-level consistent.
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A APPENDIX

A.1 DETAILED LOSS FUNCTION FOR THE DISCRIMINATOR

Image level discriminator loss. This loss term (for Dimg
A in domain A) is defined as follows:

LGAN
Dimg

A

=
1

2(T − 2)

i=T−1∑
i=2

[Dimg
A (ai)−Dimg

A (ainterpi )− 1]2

+
1

2T

i=T∑
i=1

[Dimg
A (ai)−Dimg

A (atransi )− 1]2

(8)

LGAN
Dimg

B

for domain B is defined in the same way.

Video level discriminator loss. This loss term (for Dvid
A in domain A) is defined as follows:

LGAN
Dvid

A
= [Dvid

A (a1:T )−Dvid
A (atrans1:T )− 1]2 (9)

LGAN
Dvid

B
for domain B is defined in the same way.

Style latent variable discriminator loss. This loss term (for DZA
in style domain A) is defined as

follows:
LGAN
DZA

= [DZA
(zpriora )−DZA

(zposta )− 1]2 (10)

LGAN
DZB

for style domain B is defined in the same way.
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Figure 7: Style inconsistency of RecycleGAN. Top: label inputs; Bottom: RecycleGAN outputs. It
is evident that the frames produced by RecycleGAN fail to be style consistent. The first frame is in
the rain scenario, the following frames gradually turns to the sunset scene images.

A.2 NETWORK STRUCTURE

The Content Encoder and Content Decoder are similar to the Conditional Instance Normalized (CIN)
ResnetGenerator used in the MUNIT (Huang et al., 2018). For the Content Encoder, after the 3
layers downsampling Convolutional Neural Networks (CNNs) followed by Instance Normalization
(IN), we add 3 Resnet Blocks. For the Content Decoder, following the 3 CIN-Resnet Blocks, 3
layers upsampling CNNs are added with CIN.

The Trajectory Gated Recurrent Units (TrajGRUs) (Shi et al., 2017) can actively learn the location-
variant structure in the video data. It uses the input and hidden state to generate the local neighbor-
hood set for each location at each time, thus warping the previous state to compensate for the motion
information. We take two TrajGRUs to propagate the inter-frame information in both directions in
the shared content space.

For the image-level discriminators Dimg
A and Dimg

B , the architecture is based on the the Patch-
GANs (Isola et al., 2017a). Video-level discriminators Dvid

A and Dvid
B are are also similar to Patch-

GANs, but with 3D convolutional filters. The style latent variable discriminators DZA
and DZB

are
used with the same architecture as Augmented CycleGAN by Almahairi et al. (2018).

A.3 ADDITIONAL TRAINING DETAILS

With the video being in a resolution of 128 × 128, we use a single Titan Xp GPU to train our
network for 3 to 4 days to get a mature model. Due to the GPU memory limitation, the batch size
is set to be one. Currently, the frame per clip is 6. Feeding more frames per clip may improve the
ability of our model to capture the content dependency in a longer range. However, it requires more
GPU memory. The same requirement holds if we want to achieve a higher resolution and display
more details.

A.4 ADDITIONAL EXPERIMENT RESULTS

An example of style inconsistency of RecyceGAN is shown in figure 7. A qualitative example of the
mapping between images and labels can be found at figure 8, which shows that our UVIT model can
output semantic preserving and consistent segmentation labels. More results on the label-to-image
mapping comparison of UVIT and Improved RecycleGAN are plotted in figure 9 and figure 10.
More results on label sequences to image sequences with multimodality are plotted in figure 11.
The Cityscapes (Cordts et al. (2016)) dataset has real-world street scene videos. As a supplement,
we conduct qualitative analysis on the translation between scene videos of Cityscapes and Viper
dataset. The result is organized in figure 12.
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Figure 8: Image-to-label and lable-to-image. Top left: real images inputs; Top right: generated
semantic labels; Bottom left:real semantic label inputs; Bottom right: generated images.

Figure 9: Label-to-image: qualitative comparison. First row: label inputs; Second row: improved
RecycleGAN outputs; Third row: UVIT outputs. Fourth row: ground truth. Incomplete translation
of the large road in improved RecycleGAN outputs becomes better for the UVIT model.

Figure 10: Label-to-image: qualitative comparison. First row: label inputs; Second row: improved
RecycleGAN outputs; Third row: UVIT outputs. Fourth row: ground truth. The boundary between
different cars is clearer in the UVIT model output.
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Figure 11: Label-to-image: translation with multimodality. The translated day sequences have
different car style versions. Top left: label inputs; Top right: translated video 1; Bottom left: ground
truth; Bottom right: translated video 2.

Figure 12: Cityscapes to Viper translation. Top left: input Cityscapes video; Top right: translated
Viper video in the night scenario; Bottom left: translated Viper video in the snow scenario; Bottom
right: translated Viper video in the sunset scenario.
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