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ABSTRACT

The generalization ability of deep neural networks (DNNs) is intertwined with
model complexity, robustness, and capacity. Through establishing an equivalence
between a DNN and a noisy communication channel, we characterize generaliza-
tion and fault tolerance for unbounded adversarial attacks in terms of information-
theoretic quantities. Invoking rate-distortion theory, we suggest that excess capac-
ity is a significant cause of vulnerability to adversarial examples.

1 INTRODUCTION

The mathematical concept of information, as introduced by Shannon (1948) in the context of com-
munication over noisy channels, has revolutionized fields like psychology and neuroscience. Despite
the fact that deep learning has been heavily influenced by these fields, information theory is not the
established framework for its development. Built on mainly empirically derived design principles,
modern neural networks achieve impressive results. However, a theoretical understanding as to when
good performance can be expected is lacking (Zhang et al., 2017; Arpit et al., 2017).

In particular, the inability to characterize generalization imposes hard constraints on the responsible
deployment of deep learning in performance-critical settings where fault tolerance is required. The
challenge of obtaining such a characterization arises from the difficulty of interpreting (Bau et al.,
2017) and quantifying the uncertainty of the predictions (Gal, 2016; Guo et al., 2017). Furthermore,
the adversarial examples phenomenon (Biggio et al., 2013; Szegedy et al., 2014; Nguyen et al.,
2015; Athalye et al., 2018) shows that solely maximizing test accuracy can result in potentially
unsafe model behavior.

Many studies have attempted to understand generalization via model complexity and introduced
various measures to quantify it. However, Neyshabur et al. (2017) concludes that a combination of
several measures is required to explain some of the empirically observed phenomena. A more com-
pact description of generalization was proposed by Tishby & Zaslavsky (2015), who analyzed the
learning problem in terms of mutual information. This measure incorporates many of the previously
proposed characteristics, effectively summarizing the interplay between the data, network architec-
ture, and the optimization procedure. We adopt this view for the image classification problem and
make the following contributions:

1. Identifying a DNN with a noisy communication channel we formalize the trade-off be-
tween a model’s prediction accuracy and sensitivity to adversarial examples through rate-
distortion theory. Practically speaking, this is the information bottleneck (IB) trade-off in
the context of supervised deep learning for image classification. We attribute sensitivity to
adversarial examples to excess capacity, i.e., complexity of input representations.

2. We explain the mechanisms by which explicit regularization strategies determine the
model’s capacity, drawing on an intuitive sphere packing argument for the Gaussian com-
munication channel. Weight decay has a natural interpretation as a power constraint on the
channel, while batch normalization acts as an information-theoretic “short-circuit” between
adjacent layers.

3. We demonstrate the practical utility of the trade-off mentioned in contribution 1 on the
Street View House Numbers (SVHN) dataset. We propose evaluating robustness in terms
of fault tolerance by plotting the information transmission rate versus the signal-to-noise

1



Under review as a conference paper at ICLR 2019

ratio for unbounded and unseen “worst case” noise. Furthermore, we demonstrate suc-
cessful communication across the DNN in the reverse direction by generating plausible
messages from only the label, confirming the expectation that a communication channel
should work bidirectionally.

2 THEORY

We begin by formulating the machine learning problem in the framework of information theory,
focusing in particular on image classification, with the model being a feedforward deep neural net-
work (DNN) trained in the supervised setting. We find that this problem has a natural interpretation
as that of communication over noisy channels and use it as a concrete example for the following
analysis (which is, however, not limited to image classification). We assume basic familiarity with
information-theoretic quantities, such as entropy and mutual information.

The model’s input (image), the corresponding desired output (true label) and the actual output (pre-
dicted label) are represented by the random variables X,Y and Ŷ , respectively. The goal of the
classification task is to adjust the parameters of the model such that the prediction Ŷ given X is
as close as possible to the true label Y for previously unseen inputs. The mapping from input X
to prediction Ŷ is formally characterized through the conditional probability distribution P (Ŷ |X).
We model each of the nL layers in a DNN as a continuous communication channel, and describe
the corresponding output as a random variable Tj , j = 1, . . . , nL, as in Tishby & Zaslavsky (2015).
The DNN is the series connection of such channels. In the communication setting, the label Y is the
intended message, and the image X can be interpreted as a highly redundant and noisy encoding of
Y . The decoded message Ŷ is obtained from the final layer TnL

.

A central quantity characterizing a physical channel is its capacity, defined as the maximum trans-
mission rate at which communication is possible with arbitrarily low probability of error. Consider
that in order to transmit information over a channel, the message must first be encoded in terms
of signals that the channel can actually represent – for example, voltage pulses of varying ampli-
tude. These signals are composed to sequences of length n, or “codewords”, used to represent the
message. An ideal continuous channel allows for infinitely many codewords that are all uniquely
decodable, and thus achieves error-free information transmission, corresponding to infinite capacity.
In practice, channel capacity is restricted by two factors: the available power and the noise, e.g.,
from the environment. The most common model used in theory to characterize real channels is the
Gaussian channel with additive white noise Z ∼ N (0, N), depicted in Figure 1(a), with a constraint
on the average power of the signal that is proportional to the signal amplitude x2i : 1

n

∑n
i=1 x

2
i ≤ P .

Shannon (1948) proved that the information capacity of the Gaussian channel is a function of the
signal-to-noise ratio (SNR) P/N :

C =
1

2
log2

(
1 +

P

N

)
bits per transmission. (1)

The maximal number of codewords that can be decoded with an arbitrarily small probability of error
under these constraints can be estimated via a simple geometrical argument: An input sequence
x = {xi}ni=1 and the corresponding received sequence y = {yi}ni=1 = {(xi + zi)}ni=1 can be
represented as two points in an n-dimensional space of encodings. The average power constraint
forces x to lie inside a sphere of radius

√
nP centered around the origin. Since y differs from x

only due to noise with variance N , it will be found with high probability in a sphere of radius
√
nN

centered around x. In this way, the sphere with radius
√
n(P +N) is partitioned into decoding

spheres with radius
√
nN , one for each codeword x. The maximum number of non-confusable

codewords M is given by the number of non-intersecting decoding spheres that can be “packed”
into the large sphere, obtained from the ratio of sphere volumes:

M =

(
P +N

N

)n/2
= 2

n
2 log2(1+ P

N ), (2)

where the exponent in the final expression is precisely nC, since capacity C is the maximal
achievable rate.

In image classification setting, the noise is already built into X , as indicated in Figure 1(b). The fact
that we wish to transmit only the message, modeled as a latent cause variable Φ, observable only
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Figure 1: (a) The additive white Gaussian noise (AWGN) channel (Cover & Thomas, 1991). The
additive noise Z, originating from various sources in the environment, is assumed to be independent
ofX . (b) Structural causal model of a pattern recognition task, with the intended message as a latent
random variable Φ, causal mechanisms f , g, and noise variables ZX , ZY ; adapted from Peters et al.
(2017). The red arrow from X to Y represents the DNN channel. By assumption, a learnable
classification task must have a causal relationship between input and output, and the ideal way to
learn the rule is by uncovering this causal relationship.

with noise through X – but not X itself – is an essential detail that lets us reason about deterministic
neural network layers as noisy channels, even though no noise is added in the channel itself after
the input layer.1 An average power constraint on the input to the channel for unbounded activation
functions such as the relu is equivalent to a squared L2 norm constraint on the weights – i.e., the
traditional weight decay – since the input to a DNN is typically bounded, and the input to the channel
is the weighted input of the layer.

The geometric sphere packing argument can be extended to understand the role of capacity in su-
pervised deep learning: We say that the model has learned the rule if training inputs are mapped
to nK non-overlapping clusters, corresponding to the associated labels. The model generalizes to
the extent that test inputs are mapped to the same clusters. Achieving this already means a perfect
solution to the classification task in the sense of arbitrarily small prediction error. However, this
is not sufficient for fault-tolerance, or generalization in the stricter sense, since all vacant encoding
space that is not assigned to any label represents “excess capacity”. To achieve fault-tolerance, we
have to minimize excess capacity, or, in terms of the geometric interpretation, we need to maximally
fill out the available encoding space. The ideal result with the densest packing of a spherical volume
requires the nK non-overlapping clusters to be spherical. Spherical cluster shape can be achieved by
whitening (i.e., sphering) the input, and by learning projections that explain the natural variability
in the data to the extent that it is relevant.

Provided a sufficient power budget, the representation learning problem is that of finding projections
that rotate and reflect the input into compact volumes that can be partitioned homogeneously with
respect to the label. The trade-off is that making the class-specific volumes more compact requires
compression of information, but we need to preserve enough information to distribute the decoding
spheres among the available representation space such that they are all non-overlapping. This illus-
trates how the problem of reliable communication over a noisy channel is essentially that of optimal
information compression. The transmission rate R is a function of the number of codewords M
and their length n: R = log(M)/n. Increasing M for fixed channel properties (P and N ) will
increase the overlap between decoding spheres, while decreasing n corresponds to compressing the
input representation. Therefore, increasing R is only possible at the cost of transmission accuracy.
This fundamental trade-off is characterized analytically by rate-distortion (RD) theory in the form
of a constrained optimization problem. The RD theory introduces a distortion measure d(x, t) that
quantifies the distance between a random variable X and its representation T , and describes the rate
R as a function of the average distortion D.

A major drawback of RD theory is that it does not specify how to choose d. The IB method, which
can be seen as a generalization of RD theory, answers this question by introducing the concept
of the relevant variable Y . In this setting, the representation T is required to maximally preserve
information that X carries about Y (Tishby et al., 1999). This way, the constrained optimization

1 We acknowledge that stochastic feedforward DNNs are considered in the literature (c.f. Tang & Salakhut-
dinov, 2013), but only consider the more typical deterministic layers in our work.
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problem is expressed solely in terms of mutual information:

L = I(X;T )− βI(Y ;T ), (3)

where I(X;T ) measures the compression of X and β is a positive parameter associated with the
constraint on the preserved information I(Y ;T ). Thus, the solution to (3) characterizes an optimal
trade-off between compressing X and preserving the relevant information it carries.

It turns out that it is more efficient to split up the task of encoding the message into multiple stages
via a successive refinement of information (Equitz & Cover, 1991), which means that we should
be able to decode the relevant variable Y from any of the layers Tj with distortion Dj , and the
description will be RD-optimal at each layer. In DNNs, each of the “stages” are the hidden layers’
representations Tj of the input X , which induce a partition of the input space w.r.t. the relevant
variable Y and coarsen it gradually in the course of learning. This corresponds to the case of no
excess capacity.

Remarkably, it has been suggested that optimizing all layers in a DNN simultaneously with plain
stochastic gradient descent (SGD) is sufficient to achieve successive refinement. The process is
characterized by a brief fitting or memorization phase where I(X;T ) and I(Y ;T ) increase mono-
tonically – consistent with empirical observations that DNNs begin memorizing after the first
epoch (Carlini et al., 2018) – and followed by a compression phase where I(X;T ) decreases.

If there are no constraints on the complexity of the system, there is no need for successive refine-
ment: relevant information can always be encoded with sub-optimal representations at a higher cost,
e.g., through some degree of memorization. Such a solution achieves small distortion (error) with
significant excess rate (complexity), making it easier to transmit messages along the channel which
are decoded arbitrarily at test time – i.e., adversarial examples.

It is argued that the primary mechanism facilitating compression is the inherent noise in the dataset,
which increases the entropy of the weights subject to a constraint on the empirical risk. This en-
tropy increase is logarithmic in the number of epochs, consistent with observations that we may
reap substantial benefits by continuing to train well after the empirical loss is minimized, e.g., for
obtaining a maximum-margin solution (Soudry et al., 2018). Although optimal compression may be
conferred automatically by SGD given sufficient data, it is prudent to take other measures to improve
learnability, e.g., by whitening the input, to achieve this in fewer epochs.

3 IMPLICATIONS

The interplay between the three fundamental quantities n, N , and P in sphere packing is the key
to a clear understanding of works that study the generalization performance and capacity control of
DNNs. Supplementary sphere packing visualizations are provided in Appendix A.

3.1 CAPACITY

Bartlett (1998) showed that if a multi-layer network with sigmoidal units can be obtained with
low training error, then the generalization performance depends on the size of the weights rather
than the number. In the sphere packing argument, the norm of the weights affects P only, and by
extension, the volume of the outer sphere. The number of weights n scales both the small and large
sphere proportionally. Thus, assuming the case that the model can learn the rule at all, changing P
significantly impacts the excess capacity, wheras n does not.

Neyshabur et al. (2015) showed that capacity cannot be controlled in general through P alone for
unbounded n. In a linear model, however, n is set by the data and is therefore finite, so we can
always bound capacity through P .

The experiments of Zhang et al. (2017) raise the question: Should we be surprised if a particular
architecture with n larger than the number of examples fits random labels? If we bound P – yes,
otherwise – no. We cannot establish to which extent Zhang et al. limit P , and thus the extent to
which we would expect their models to generalize. Generalization gap in terms of accuracy is only
a proxy for that in terms of the loss, which is a signal more sensitive to P . Furthermore, many of
their architectures use batch normalization layers that introduce a learnable scaling parameter that is
not penalized, and therefore the available capacity is infinite (for unbounded activation functions).
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Implicit regularization by early stopping is a natural form of capacity control in that P will be finite,
but this addresses only the symptoms of an ill-posed learning task – not the cause.

Saxe et al. (2018) did not observe compression in terms of I(X;T ) for models with unbounded
activation functions. The information is consistent with the available capacity being infinite in these
experiments as P was not bounded, e.g., with weight decay. We confirm that it is possible to observe
compression without bounding P , but the excess capacity will not be minimized.

3.2 ADVERSARIAL EXAMPLES

The existence of a trade-off between a model’s prediction accuracy and sensitivity to adversarial
examples – where arbitrarily low error implies greater sensitivity – is not yet universally accepted.

Tanay & Griffin (2016) proposed a taxonomy of adversarial examples for linear models, suggesting
a basic trade-off. They define “Type 1” examples that affect optimal classifiers, such that “the
inconvenience of their existence is balanced by the performance gains allowed”. This view has been
maintained for DNNs (Galloway et al., 2018) and advanced more formally by Tsipras et al. (2018).

On the other hand, Gilmer et al. (2018) examine a situation for which non-zero error implies that a
model is sensitive to small perturbations. There is a simple explanation for the apparent contradic-
tion: The synthetic dataset considered by Gilmer et al. has no noise, so there is no rate-distortion
trade-off, and the optimal strategy is to drive the error to zero. However, this is not representative of
computer vision for natural images, where the intended message is always observed with noise.

Dube (2018) draws on high-dimensional geometry and attributes adversarial examples to “negative
space” that is unoccupied by legitimate image manifolds; this can be interpreted as excess rate in
the context of RD theory and our channel analogy. Alemi et al. (2017) make a direct connection
between the IB principle and adversarial examples. They use β in the constrained optimization (3)
as regularization, but do not formalize the problem in terms of excess rate. Tuning β selects an RD
optimal trade-off, with rate I(X;T ) as a distortion constraint, but is not viewed as a regularizer in
IB theory (Chechik et al., 2005).

Chalupka et al. (2015) suggest partitioning the information that X contains about a relevance vari-
able Y into visual causes Φ, and spurious correlates S. We attribute the most impressive adversarial
examples – in the sense that they are indistinguishable to the human eye – to the model fitting spuri-
ous correlates, which are not typically removed when optimizing for high accuracy. We suggest that
Φ is equivalent to robust primary features, and S the weak secondary predictors, recently identified
by Tsipras et al. (2018) and Tanay et al. (2018). Therefore, we would like to discard as much of S,
while retaining as much of Φ, as possible. This implies a drop in prediction accuracy for the training
set, and possibly even the held-out test set. The payoff is conferred via robust generalization and
fault tolerance, i.e., graceful failure, for worst-case inputs.

4 EXPERIMENTS

The purpose of the experiments is to show how we can achieve stronger fault tolerance through
careful parameterization of SGD and training to convergence. We first establish that convergence
can be observed in terms of SNR in the weight updates. We then show how explicit regularization
changes the optimization dynamics.

4.1 THE CONVERGENCE OF SGD VIA THE GRADIENTS’ SIGNAL-TO-NOISE RATIO

We examine the convergence properties of an over-parameterized six-layer fully-connected MLP
trained on MNIST “3 versus 7” dataset with SGD. In Figure 2 we show the SNR for the stochastic
gradients w.r.t. the parameters of this model. As suggested by Schwartz-Ziv & Tishby (2017), the
SNR approaches a constant as training is prolonged, regardless of the choice of activation function.
The number of epochs required to achieve this, however, differs dramatically: it is 1,000 for relu,
3,000 for tanh, but only 100 when BN is applied. The SNR levels in the model without BN converge
to different values for each layer, whereas the curves for the layers with BN collapse.

For both nonlinearities without BN, the difference between the initial and final SNR level is smallest
for the last layer (black), and largest for the earlier layers (e.g., red, cyan). Recall that the “signal”
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Figure 2: The SNR for the stochastic gradient of the cross-entropy loss L w.r.t. the weights ver-
sus epochs, with ‖mean(∇wL)‖2/‖w‖2 as signal and ‖ std(∇wL)‖2 as noise. We use constant
learning rate (1e-3) SGD with a mini-batch size of 100, relu and tanh activation functions, with and
without batch normalization layers on all but the last layer. Best viewed in colour.

is a function of how much information the layer preserves about the relevant variable Y . At random
initialization, the layers close to the input preserve all information about Y , while the last layer
has the least. On convergence, all layers have roughly the same information about Y if we neglect
minor losses due to the data processing inequality, but the last layer maintains the least information
about the input, and therefore has the least “noise”. Thus, the trajectories in the information plane
shown by Schwartz-Ziv & Tishby and in Section 4.2 of the present work, are closely related to the
gradients’ SNR, which predicts the sorting of the layers in descending order as observed on the
left-side panels in Figure 2.

The fundamental difference between normalizing the input vs. the hidden layers, is that we only lin-
early decorrelate the input, which preserves nonlinear structure, e.g., edges, such that it is possible to
spread out the decoding spheres that initially cluster around the origin and overlap. With BN, we do
this normalization post nonlinearity, which is problematic for successive refinement. Furthermore,
it is irrelevant if the individual neurons maintain some nonlinear effect; if the cumulative effect of
the neurons in the layer is to make T more normal, then this description becomes less refineable,
and cannot be successively refined at all if it is exactly normal and the block length is one (Equitz
& Cover, 1991). We do have a block length of one in a feedforward DNN, because we consider
transmission w.r.t. one use of the channel.

4.2 MEMORIZATION IS THE LACK OF COMPRESSION

Arpit et al. (2017) use a working definition for memorization as “the behavior exhibited by DNNs
trained on noise”. Through information theory, we can provide a more quantitative definition: Mem-
orization is the difference between the realized I(X;T ) – i.e., the mutual information between the
output of layer T and input X – from the IB-optimal value. In other words, the degree of memo-
rization is given by how much compression did not occur relative to what was theoretically possible.
Importantly, this quantity has well-defined upper and lower bounds. We can estimate the lower
bound Î(X;T ) through the data processing inequality (DPI) and plug-in a maximum likelihood es-
timator on samples from the training set. However, we can also upper-bound I(X;T ) by H(X),
for which a conservative estimate can always be obtained by treating the pixels as spatially indepen-
dent. For example, an image with 8-bit pixels has a maximum absolute entropy of 8-bits per pixel,
achieved if and only if the pixels are distributed uniformly.

Experimentally, memorization is characterized by the absence of a phase transition in the informa-
tion plane, as shown in Figure 3 for original versus random labels. We can expect to see more
compression for random labels in general if there is a significant amount of irrelevant information in
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Figure 3: Information plane visualization for the model from Section 4.1 with the relu activation
function trained on the original labels (a), and random labels (b) for 104 epochs. Intuitively, we only
see compression for the original labels, whereas the model memorizes in the random label case. The
degree of memorization is roughly the difference in I(X;T ) values between the two cases.

the dataset, but this is not the case for MNIST 3 versus 7 in Figure 3(b). In this case, memorization
is characterized by a slow monotonic increase in I(T ;Y ) with almost no compression; however, the
fact that this is possible at all implies excess rate. As the relu activation function is not bounded, we
estimate a lower bound on the information with a maximum entropy adaptive binning scheme that
bins the CDF for each layer equally by recomputing the bin ranges every epoch. We use 30 bins
and 2,000 samples from the training set. See Darbellay & Vajda (1999) and Paninski (2003) for an
overview of such methods.

4.3 EXPLICIT REGULARIZATION AND THE GENERALIZATION GAP

In the next two sections we focus on the Street View House Numbers (SVHN) dataset (Netzer
et al., 2011), which is an appropriate dataset for characterizing adversarial robustness now that
compelling results have been shown for 3 versus 7 (Tanay & Griffin, 2016) and full MNIST (Schott
et al., 2018). Learning the SVHN dataset can be considered more “difficult” than MNIST due to
having significantly more noise, e.g., from the “distracting” digits in addition to the relevant one,
and occupying a larger RGB canvas in R32×32×3. Our primary objective is not to construct an
“adversarial defense”, but simply to maximize out-of-sample performance, i.e, generalize to the
global population of house numbers using Arabic numerals. We characterize the fault tolerance of
our models for unbounded adversarial examples in Section 4.4.

Intuitively, colour and texture are not legitimate causes of a digit’s class, so we first convert from
RGB to grayscale (NTSC). We also apply PCA, retaining the top 400 principal components, and
then a zero-phase whitening (ZCA) to linearly decorrelate neighboring pixels (Bell & Sejnowski,
1997). This increases the SNR by emphasizing the information in the edges.

We characterize two explicit regularization strategies applied to a simple four-layer CNN (see Ap-
pendix B for the architecture): batch normalization (Ioffe & Szegedy, 2015) without momentum,
applied to the two middle hidden layers, and squared-L2 weight decay. The training regime was in-
spired by the IB method applied to deep learning (Schwartz-Ziv & Tishby, 2017). We parameterize
SGD’s stationary distribution with deliberately chosen hyperparameters; no automated search was
invoked, then run the system to steady state.

We trained all models for 500 epochs, as this was at least one order of magnitude longer than the
“fitting” phase required to minimize the training loss. This would allow sufficient time to observe
compression. We chose a relatively large and constant learning rate of 1e-2 to maximize the power of
the noise during the compression phase, and by extension the energy used to maximize the entropy
of the weights under the ERM constraint in the finite number of epochs. Lastly, we used the smallest
weight decay regularization constant λ, i.e., the average power constraint, that prevented the model
from fitting random labels significantly better than chance (0.20±0.03% absolute percent), as shown
for Model B in Table 2. This λ turned out to be approximately 1e-2. Interestingly, the model with
this setting of weight decay happened to also have the highest test accuracy.
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Table 1: Test accuracy (Test (%)) and generalization gap (Gap (%)) for A: the baseline, B: A +
weight decay (WD), and C: B + batch normalization (BN). There is no large-batch generalization
gap (LBGG) for B; however, a small LBGG appears when we introduce BN in C. Not shown: The
loss gap is one order of magnitude less for B vs. A. Training accuracy is omitted for brevity. Model
A achieves 100±0% training accuracy. We report the mean accuracy and standard error of the mean,
assuming the error is normally distributed and independent over 5 seeds.

A B C
Batch Size Test (%) Gap (%) Test (%) Gap (%) Test (%) Gap (%)

128 85.9± 0.2 14.1± 0.2 88.4± 0.2 4.8± 0.1 87.1± 0.4 12.42± 0.04
64 86.3± 0.1 13.7± 0.1 87.6± 0.1 5.5± 0.2 85.1± 0.5 11.3± 0.2
32 86.6± 0.1 13.4± 0.1 87.2± 0.4 5.4± 0.2 85.2± 0.4 9.0± 0.3

Table 2: Models A, B, and C from Table 1, but trained instead with random labels sampled uni-
formly. Clearly, model B has the least information capacity, yet also happens to achieve the highest
test accuracy for the original labels in Table 1. Notice the 25±1% LBGG for C, and the 54±2% GG
between C and B for batch size 128. There is a 3± 4% LBGG in A.

A B C
Batch Size Train (%) Gap (%) Train (%) Gap (%) Train (%) Gap (%)

128 85± 3 76± 3 10.20± 0.03 3± 2 67± 1 57± 1
32 90± 2 79± 2 – – 42± 1 32± 1

We vary the batch size, optionally adding the explicit regularizers, and report the resulting gen-
eralization gap in Table 1.2 Model C includes weight decay and batch normalization because the
baseline model A already perfectly fits the training set, adding batch norm alone yields a similarly
large generalization gap as the baseline. Results for the same experiments repeated with random
labels are provided in Table 2, where we demonstrate that Model B (baseline + weight decay) has
a generalization gap of 3 ± 2%. This particular generalization gap is not to be trusted, since the
SVHN test set is unbalanced. In fact, one particular seed achieved a generalization gap of 9.4%, or
a test accuracy of 19.6%, which is exactly the accuracy obtained by always predicting class 1. The
information is 0 bits in this case, but we report accuracy here in keeping with standard practice.

Using the strategy that minimized generalization error (Model B), we retrain with additional training
data to boost the test accuracy (Model B+), gaining 2±0.3% for a 0.3±0.1% smaller generalization
gap. An additional generalization result to handwritten digits can be found in Appendix C.

4.4 FAULT TOLERANCE

We demonstrate bidirectional communication with model B+ in Figure 4. The human legible outputs
shown in Figure 4(b) were obtained via a similar gradient-based procedure used by Nguyen et al.
(2015) to craft “fooling images” initialized from noise. There was little qualitative difference to
these samples compared to those obtained from Model B trained on only the smaller training set
consisting of images with distracting digits, which we show in Figure 4(a) along with their prediction
confidences.

In Figure 5 we characterize fault tolerance in terms of information conveyed about the label that
gradually decreases with decreasing SNR. We compute SNR in dB as in Cisse et al. (2017) for
inputs x from the test set, and noise δx as 20 log10

(
1 + ‖x‖

‖δx‖
)

for three noise variants. The first
two are adversarial and obtained by iteratively minimizing the loss w.r.t. the input with a step size of
1e-2, then either taking the real L2-normalized gradient or the signed gradient, denoted as L2 and
L∞, respectively, in Figure 5. As baseline we compare with white Gaussian noise.

The model trained with batch normalization conveys less information for all sources of noise at the
same SNR than without. Note that the information plateau in Figure 5(a) after SNR of 30dB for
the adversarial noise is not due to the gradient masking effect – the accuracy indeed goes to 0%
for this unbounded attack. At this point, there is so much salient structure in the noise that we are

2 The significant figures are consistent with the precision of the standard error in each experiment.
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(a)

(b)

Figure 4: Demonstration of regularized generative modeling via an adversarial attack. (a) Samples
from our preprocessed version of the SVHN dataset for each class Y ∈ {0, . . . , 9} arranged from
left to right, with the predicted class (argmax softmax probability) and confidence. (b) Transmitting
a message across the channel in the reverse direction (i.e., from Y to X) by minimizing the loss for
each y ∈ Y w.r.t. X ∼ N (µ, σ2) with step size 1e-2. We set µ equal to the population mean, and
σ2 as two orders of magnitude less than the population standard deviation. We show the pattern X
obtained after iterating until full confidence to within 3 decimal places, which took ≈ 100 steps.
Unlike in Nguyen et al. (2015), we recover prototypical examples because we have reduced the
excess rate of the channel. This would not be a suitable model of the original data-generating
distribution as it is implicitly regularized by Y such that the irrelevant digits in (a) are forgotten.
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Figure 5: Characterizing fault tolerance in terms of information transmitted, I(T ;Y ) for 10K sam-
ples from the SVHN test set, as a function of the SNR for two kinds of adversarial noise (“L2” and
“L∞”), and white Gaussian noise (“Gauss”). Model (a) is regularized with weight decay, while (b)
uses BN and is less tolerant to all sources of noise. Accuracy is eventually reduced to 0% for the
unbounded attacks and ≈ 10% for Gaussian noise, however the images with model dependent ad-
versarial “noise” contain more information (as expected) as the SNR→ 0.

interpolating between legitimate images. The information slowly rises as the model reliably predicts
a specific class as if it were a targeted attack, even though the original goal was only to make the
prediction not Y . This conveys some information about Y since there are several alternatives that
are consistently not chosen, e.g., for large perturbations ‘9’s are mapped to ‘6’s more often than not.
The plateau for the less robust model in Figure 5(b) can be explained given that L∞ perturbations
induce significantly more noise in pixel space for the same decrease in information about the label,
therefore the attack cannot follow the least Euclidean distance to the nearest misclassified volume.

5 CONCLUSION

The established framework for characterizing information transmission in the presence of noise is
Shannon’s rate-distortion theory. The insight that essentially the same trade-off is central to deep
learning problems allows us to establish a notion of capacity for DNNs that explains their general-
ization behaviour to a significant extent. Guided by the IB principle, which augments rate-distortion
theory with the relevant variable, and minimizing the difference between the empirical and expected
loss – as suggested by statistical learning theory – we derive guidelines for efficient use of this ca-
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pacity and obtain a recipe that yields compelling fault tolerance for “worst-case” inputs, such as
adversarial examples. We confirm that it is indeed possible to generalize in a narrow sense to the
“clean” test set when the model has excess capacity, but that minimizing this excess capacity is
essential for fault-tolerant generalization behaviour.

The implications for practical deep learning are simple: To obtain a more fault tolerant model, i)
irrelevant information in the dataset, such as, e.g., colour and texture in the task of digit recognition,
can be safely removed; ii) training with constant learning rate SGD should be prolonged well beyond
the number of epochs required to minimize the empirical loss; iii) sufficient constraints, e.g., weight
decay, have to be applied. Particular care has to be taken when applying batch normalization, since
it impedes successive refinement of information in the learning procedure and may harm robustness.
As a general rule, we suggest that preventing the model from fitting random labels better than chance
is a good first step for calibrating such constraints.

Future work will consider the role of the DNN architecture in more detail – which was set aside to
emphasize general properties of SGD and the explicit regularizers – for obtaining fault tolerance to
a broader array of challenging inputs such as adversarial deformations. The interpretable fooling
images, and fault tolerance for unbounded Lp perturbations obtained in the present work, without
having optimized these metrics directly, i.e. with adversarial training, are important steps to this end.

10
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A SPHERE PACKING
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(b)
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Figure 6: Sphere packing in a two-neuron (n = 2) layer over 500 epochs. Architecture is a fully-
connected MLP [(a) (784–392–196–2–49–10) and (b) (784–392–BN–196–BN–2–49–10)] with relu
units, batch size 128, constant learning rate 1e-2, weight decay λ=1e-3, and β=5e-2. All other
settings left as default from Kolchinsky et al. (2017). The plots have a fixed x- and y-axis range of
±10. All samples from the MNIST training set are plotted and colour coded by label.

We use the source release from Kolchinsky et al. (2017) which exposes the IB Lagrange multiplier,
β. We adapt their architecture which has a 2D layer perfect for observing the sphere packing effect
with no arbitrary dimensionality reduction, e.g., by PCA or t-SNE.

Figure 6(a) depicts how the flow of information about the relevant variable is impeded immediately
following random initialization, as there is no label homogeneous partition. The data are spread
further apart over the first ≈ 20 epochs, with little emphasis on compression. Once it is possible
to partition the clusters, a phase transition begins in which the clusters become more circular and
power is simultaneously reduced. Note how it would be possible to trivially observe circular clusters
without compression by arbitrarily increasing the inter-cluster distance with more power, thus hiding
the noise, but this is suboptimal and implies excess capacity.

Figure 6(b) introduces two batch normalization layers with default settings before the 2D layer (Ioffe
& Szegedy, 2015). There are notable differences compared to Figure 6(a): i) it is easier to parti-
tion the clusters immediately after initialization as the data are more spread out, contributing to a
“short circuit” of information between the input and output along the Markov chain, ii) the clusters
are more stationary and there is no clear phase transition, iii) there is more excess capacity; the
inter-cluster distance, as well as the clusters themselves, are larger. In Figure 6(c) we disable the
scaling parameter γ to isolate the effect of the normalization itself on the excess capacity. The sit-
uation improves slightly as the arrangement of the clusters is more circular, but the excess capacity
remains because the normalization has made it more difficult to achieve a successive refinement of
information (Equitz & Cover, 1991).

B MODEL ARCHITECTURE

We describe the CNN architecture used for the SVHN experiments in Table 3, which was adapted
from the CleverHans library tutorials (Papernot et al., 2018).

C ZERO AND ONE-SHOT TRANSFER

We were curious to see if the best SVHN model would generalize to handwritten digits. To this end,
we bilinearly upsample MNIST to a 32 × 32 grid, but do not apply any preprocessing other than
to normalize digits in the range [0, 1]. The model obtained 72.6% accuracy zero-shot. Randomly
selecting one example from the MNIST validation set for each class, and fine-tuning with SGD for
ten steps while rotating the ten instances randomly ≤ 10◦ at each step, boosted overall test accuracy
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Figure 7: The model with prolonged weight decay training on SVHN (Model B+) has well calibrated
predictions in a transfer learning setup to MNIST. (Top) Histogram of prediction margins for zero-
shot (left), and one-shot (right) transfer. (Bottom) Test accuracy versus binned prediction margins.
Although the accuracy on the full test set lags what can be obtained by training on MNIST, the
model is still useful in this setting as the confidence is well calibrated despite the distributional shift.
Presence of “Gap” above the diagonal line indicates under-confidence, while the same below the
line means over-confidence.
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Table 3: Basic fully-convolutional CNN architecture. We respectively denote h, w, cin, cout, s as
convolution kernel height, width, number of input and output channels w.r.t. each layer, and stride.
The model uses the ReLU activation function, and a Gaussian parameter initialization scheme.

Block h w cin cout s params
Conv1 8 8 1 32 2 2.0k
Conv2 6 6 32 64 2 73.7k
Conv3 5 5 64 64 1 102.4k
Fc 1 1 256 10 1 2.6k

Total – – – – – 180.9k

to 77.6%. This is better than figures reported elsewhere for one-shot learning, e.g., Vinyals et al.
(2016) obtain 72% (they did not report a zero-shot figure), and transfer from the Omniglot dataset,
which has a flat background like MNIST, rather than SVHN.

More interestingly, Figure 7 shows that the predictions are reasonably well calibrated out of the box,
i.e., without temperature scaling.3 As the model must provide a score for each of the ten categories,
i.e., it has no explicit abstain mechanism, we use the prediction margin: the difference between the
maximum softmax probability and second highest probability, as its confidence. Taking the proba-
bility associated with the predicted class, as in Guo et al. (2017), is not representative of the actual
confidence, e.g., the prediction: 55% class 7, 40% class 1, should be interpreted as 15% confidence
in class 7, not 55%. Surprisingly, the average confidence was exactly matched to the average test
accuracy in the zero-shot case, which is why “Avg. margin” and “Avg. accuracy” are overlapping
in the top left plot of Figure 7. Fine tuning with a single instance from each class primarily re-
duces over-confidence, while leaving the model under-confident for small margins, which slightly
increases the gap between the average margin and the higher accuracy.

3Temperature scaling renders an analysis of the prediction margins meaningless with respect to generaliza-
tion, and may cause gradient masking (Carlini & Wagner, 2016).
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