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Abstract

We introduce salad, an open source toolbox that provides a unified implementa-
tion of state-of-the-art methods for transfer learning, semi-supervised learning and
domain adaptation. In the first release, we provide a framework for reproducing,
extending and combining research results of the past years, including model archi-
tectures, loss functions and training algorithms. The toolbox along with first bench-
mark results and further resources is accessible at domainadaptation.org.

1 Introduction

Domain Adaptation (DA) is a topic of active research and practical relevance in areas such as
computer vision (e.g. [5]), medical imaging (e.g. [23, 2]) and speech processing (e.g. [24]). Classical
approaches usually made use of the assumption of covariate shift and the accompanying theory
[8, 30, 1, 18]. More recently, the growing popularity of deep learning approaches has lead to novel
concepts based on feature and signal transformations [26, 10], feature alignment [9, 27] or adversarial
training [7].

Changing standards of evaluation and benchmark tasks and the accumulation of new algorithms,
datasets and model architectures have made it increasingly difficult to assess the state of the art. Refer-
ence implementations are scattered over software frameworks and are often specific to benchmarking
setups. As a consequence, comparing the performance of algorithms with new model architectures
and on new datasets is difficult and time-consuming.

To overcome these limitations, we developed salad, a library comprised of methods for “Semi-
supervised and Adaptive Learning Across Domains.” The toolbox bundles popular algorithms and
provides both a benchmark setup and easy integration in practical applications. Our main goals
are (1) to provide a benchmark utility that provides results for published and frequently referenced
approaches, (2) to abstract DA approaches relying on the same theoretical intuitions (e.g., many
approaches are based on applying a metric/divergence to the features on source and target domain), (3)
to speed up research and discovery of conceptually new DA algorithms, (4) to provide DA algorithms
in an easy-to-use form for integration into open source projects.

In this paper, we introduce salad, highlight its main features and showcase the applicability of the
toolbox. We replicate previous results and perform a comprehensive comparative study on multiple
adaptation problems (see Fig. 1). New results on different model architectures and datasets are
constantly tracked on the project homepage and will be expanded with the introduction of new
algorithms.

salad makes use of PyTorch [19], Matplotlib [12], Seaborn [29], Numpy [17], Scipy [13], scikit-
learn [20] and Pandas [14]. We drew additional inspiration from the Python Optimal Transport
Library [4] and several original reference implementations cited below.
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2 Toolbox Overview

A common goal of DA approaches is risk minimization (RM) on a target domain T , which we regard
as a joint distribution of signals x and discrete labels y. Given the riskRlT , we aim at finding model
parameters θ that minimize the risk

min
θ
RlT (θ) = Ex,y∼T [`(hθ(x), y)]. (1)

Since labels for the target domain are either scarce or not available, the problem is not directly
approachable by standard machine learning algorithms, motivating the use of DA approaches.

We organize the paper accordingly: In §2.1, we outline the solver subpackage that provides
abstractions between the common training loop and the actual contribution of a particular DA method.
We focus on two main variations of approximating the RM problem described above, unsupervised do-
main adaptation and domain generalization. Models, layers and convenience functions for adaptation
of trained models to new datasets are available in the layers and models subpackages, outlined
in §2.2. Finally, many algorithms require data augmentation techniques, which are implemented
in the datasets package and described in §2.3. A detailed overview of how salad incorporates
different algorithms is given in §A in the supplementary material and in the API documentation.

2.1 Solvers [salad.solver]

Unsupervised Domain Adaptation [salad.solver.DABaseSolver] assumes the presence of
a single source domain S along with a target domain T known at training time. Given a labeled
sample of points drawn from S, {(xsi , ysi )}

Ns
i=1, and an unlabeled sample drawn from T , {xti}

Nt
i=1,

unsupervised adaptation aims at minimizing the risk

min
θ
RlS(θ) + λRuS×T (θ) = Ex,y∼S [`(x, y; θ)] + λExs,ys,xt∼S×T [`(xs, ys, xt; θ)], (2)

leveraging an unsupervised risk termRuS×T (θ) that depends on feature representations fθ(xs, s) and
fθ(x

t, t), classifier labels hθ(xs, s), hθ(xt, t) as well as source labels ys. The full model h = g ◦ f
is a composition of a feature extractor f and classifier g, both of which can possibly depend on the
domain label s or t for domain-specific computations. This formulation is still very generic; in the
following, we briefly discuss three high level approaches for implementingRuS×T (θ).
First, proxy-labeling and ensembling are crucial parts in current state-of-the art approaches (e.g.
[25, 5]), requiring both a separate teacher model providing approximate labels and data augmentation
techniques to enforce consistencies between differently perturbed target samples, cf. §A.1. Second,
a more classical way of implementing the unsupervised loss is a discrepancy term between target
and source feature representations, such as explicit distances between covariance matrices (e.g.
[9, 26, 15]) or by leveraging adversarial training [7], cf. §A.2. Third, domain translation aims at
learning maps between features or even input signals between both domains, possibly in form of a
probability distribution p(xs|xt) and/or p(xt|xs), preserving the label information, cf. §A.3.

Unifying the implementation of unsupervised DA approaches forms an essential part of the first
release of salad. We provide implementations of [5, 25, 27, 9, 7] and summarize the benchmarking
results for training the small digit model used by [5] on different digit benchmarks in Fig. 1.

Domain Generalization [salad.solver.DGBaseSolver] assumes the presence of multiple
source domains alongside a target domain unknown at training time. Following [24], this setting
requires a dataset of training examples {(xi, yi, di)}Ni=1 with class and domain labels. Importantly,
the domains present at training time should reflect the kind of variability that can be expected during
inference. The RM problem is then approached as

min
θ

∑
d

λdRlSd(θ) =
∑
d

λdEx,y∼Sd [`(x, y, d; θ)], (3)

where the different losses are weighted by hyperparameters λd. In contrast to the unsupervised
setting, samples are now presented in a single batch comprised of inputs x, labels y and domains d.
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function UNSUPERVISED DA
xs, ys ∼ S
xt ∼ T
Rl(θ)← `l(xs, ys, θ)
Ru(θ)← `u(xs, ys, xt, θ)
for all optimizers and params θi do

∆θi ← ∇θi(R
l(θ) + λRu(θ))

update θi (e.g., using ADAM)
end for

end function

function DOMAIN GENERALIZATION
x, y, d ∼ S
Rl(θ)← `l(x, y, d)
for all optimizers and params θi do

∆θi ← ∇θiR
l(θ)

update θi (e.g.,using ADAM)
end for

end function
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Figure 1: Left: Unsupervised DA and Domain Generalization in salad. Right: Results of running the salad
example script with algorithms proposed by [9, 7, 27, 5, 25] on different DA benchmark tasks using the model
and augmentation mechanism from [5]. We could generally reproduce results of the reported papers when using
comparable hyperparameter settings and conclude that self-ensembling with a good noise model sets the current
state of the art. Up-to-date results for different training settings will be tracked on the project homepage.

In a addition to a feature extractor fθ and classifier gθ, models should also provide a feature extractor
fdθ to derive domain features along with a domain classifier gdθ , with possibly shared parameters.

In contrast to unsupervised DA, this training setting leverages information from multiple labeled
source domains with the goal of generalizing well on data from a previously unseen domain during
test time. Domain generalization might be regarded as “few-shot unsupervised DA”: Instead of access
to a large unlabeled sample from T that allows for an optimization-based adaptation, the adaptation
process is a direct part of the inference procedure.

2.2 Models & Adaptation Tools [salad.layers, salad.models]

The toolbox provides a variety of network layers necessary for running adaptation algorithms, e.g. for
separating running statistics of the source and target domain and other forms of domain-conditional
computations. For “warm-starting” finetuning and applying models to a novel domain, the package
provides additional tools to quickly re-calculate network parameters depending on dataset statistics.

2.3 Datasets, Noise Models and Pertubations [salad.datasets]

For techniques that incorporate self-labeling, it is crucial to augment the task with a noise model
to artificially create additional data domains or enforce consistency constraints [5, 25]. Two imple-
mentations exist in salad: First, pertubation can be applied to the input image in form of a noise
distribution px̃|x(x̃|x, n) = px̃|x(φn(x)|x, n) where φn is an image transformation preserving labels.
Second, pertubations can be applied internally to fθ or gθ as suggested by [6, 21].

For tasks beyond classification, such as semantic and instance segmentation, the package provides
both benchmarking datasets and transformations that jointly operate in pixel and coordinate space.

3 Discussion and Outlook

We presented the salad toolbox and an accompanying website with the goal of unifying domain
adaptation approaches, fostering reproducibility, fair comparisons and application of modern domain
adaptation algorithms. We invite researchers and software engineers to collaborate with us in
extending the toolbox and offering implementations for other frameworks such as Tensorflow. In
future work, we will extend the toolbox with new algorithms, especially translation-based approaches.
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Supplementary Material

A Algorithms [salad.solver]

Experiment setups are implemented as classes within the solver package, as subclasses of solver.Solver .
In the following, we list several algorithms that are either already implemented in salad or soon to be added
to the package, grouped into five different principles. The first three, proxy-labeling, feature distances and
translation based DA, will be further discussed in §A.1, §A.2 and §A.3 respectively and are special cases of
unsupervised domain adaptation as covered in §2.1 in the main text. Note that many of the particular algorithms
are using a mixture of different components, and grouping is done based on the most important one used in each
algorithm.

Proxy Labels
Self Ensembling [5] EnsemblingSolver
Virtual Adversarial Domain Adaptation (VADA) [25] VADASolver
Adversarial Dropout Regularization [22] AdvDropoutSolver

Correlation Distance Based
Deep CORAL [26] CoralSolver
Log CORAL [15] LogCoralSolver
Domain Adversarial Training [7] DANNSolver
Associative Domain Adaptation [9] AssociationSolver

Translation Based
CORAL [27] –
Cyclic Domain Adaptation [10] CyclicDASolver

Domain Generalization
Cross Gradient Training [24] CrossGradSolver
Domain Adversarial Training [7] MultiDANNSolver

Finetuning
DIRT-T [25] DIRTTSolver

Most importantly, salad is designed to make it easy to combine concepts employed in different algorithms,
by abstracting optimization routines, loss functions and models. Several of the core concepts will be reviewed
below. For the algorithms currently implemented in salad, we will provide details about how the unsupervised
lossRuS×T (θ) used for adaptation is computed.

Constraints on the formulation of models are intentionally kept as low as possible. Given an input space X , a
feature space Z and a label space Y , we will consider models hθ : X 7→ Y which can be decomposed into a
feature extractor fθ : X 7→ Z and a classifier gθ : Z 7→ Y . Concerning notation, by the label space we denote
the individual class probabilities Y ⊂ RN×C for a sample, which can then be mapped to labels l ∈ NN , by
means of selecting the maximum probability.

Following this notation, the supervised risk on the source domain,RlS(θ) can be written as

RlS(θ) = DKL(ys‖hθ(xs)) = Exs,ys∼S [〈ys,− log hθ(x
s)〉]. (4)

Note that the supervised loss function can also be adapted to other target spaces Y , e.g. for tasks such as instance
or semantic image segmentation or regression problems.

A.1 Proxy-Labeling for Domain Adaptation

A first important class of approaches, used among others by [5] and [25], is concerned with obtaining approximate
labels on the target domain. Given a proxy-label function h∗ : X 7→ Y , the unsupervised loss can be expressed
as

RuS×T (θ) = Ext∼T [`y(hθ(x
t), h∗(xt))]. (5)

Different modifications to this general formulation are possible, which are not reflected in the equation for
simplified notation, but are straightforward to implement in salad. First, in the work by [5], an additional noise

6



model p(x̃|x) is employed on the target sample xt that (partly) reflects the variability between source and target
domains. Second, [21] incorporate the noise model directly into the classifier h by means of dropout layers.
Third, [25] use virtual adversarial training to compute a perturbed sample xt + ε, which amounts to a noise
model with an adversarial input distribution.

Apart from the exact implementation of the noise model, possible choices for the loss function include

`y(y, y∗) = DKL(y∗‖y) =
1

nt

∑
i

〈y∗i ,− log yi〉, (6)

`y(y, y∗) =
1

nt

∑
i

‖y∗i − yi‖2, (7)

`y(y, y∗) =
1

|I|
∑
i∈I

〈y∗i ,− log yi〉,where I = {i : y∗i > ε} (8)

where ε denotes a confidence threshold that determines whether or not a particular proxy-label should be included
in the loss function, as used by [5].

In addition, different choices of proxy-labeling functions are possible. Let us denote by θτ the collection of model
parameters after τ training batches and by t the count of the current batch, by α ∈ (0, 1) a decay parameters for
exponential averaging, then recent approaches made use of the following proxy-labeling functions h∗:

h∗(x) = hθ(x), (Self-Labeling, Entropy Minimization)

h∗(x) = hθ∗(x),where θ∗ =

t∑
τ=1

αt−τθτ , (Mean Teacher, Self-Ensembling)

h∗(x) =

t∑
τ=1

αt−τhθτ (x). (Mean Labeling)

In recent work, [5] proposed the self-ensembling formulation, which is currently implemented in the
SelfEnsemblingSolver while [25] combined, among adversarial training, entropy-minimization during the

phase implemented in the VADASolver as well as self-ensembling during the refinement phase implemented
in the DIRTTSolver .

A.2 Feature Distance Based Domain Adaptation

A second class of approaches implements the unsupervised loss RuS×T (θ) as a distance between the feature
representations on the source and target domain, zs := fθ(x

s) and zt := fθ(x
t), respectively. This yields the

formulation of the unsupervised loss

RuS×T (θ) = Exs,ys,xt∼S×T [`z(fθ(x
s), fθ(x

t), ys)]. (9)

Note that apart from the features zs and zt, the loss function `z might also incorporate information from the
source label tensor ys. Let us denote by C(·) the computation of the covariance matrix of a batch of examples,
by dφ : Z 7→ [0, 1] a discriminator obtained in adversarial training [7] and by K(·, ·) a normalized exponential
kernel matrix with entries Kij(z

s, zt) := Z−1 exp(〈zsi , ztj〉) [9]. Possible loss functions between feature
embeddings then include:

`z(z
s, zt) =

1

4d2
‖C(zs)− C(zt)‖2F (Deep CORAL)

`z(z
s, zt) =

1

4d2
‖ logC(zs)− logC(zt)‖2F (Log CORAL, geodesic distance)

`z(z
s, zt) =

1

ns

∑
i

− log dφ(zsi ) +
1

nt

∑
i

− log(1− dφ(zti)) (Domain Adversarial Training)

`z(z
s, zt, ys) = DKL(ysy

T
s ‖K(zs, zt)TK(zs, zt)) (Associative Domain Adaptation)

Note that while many of these distance functions were investigated in separate publications, they might well
be used in conjunction. salad makes it easy to blend different distance functions and write new solvers that
combine existing concepts.
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For instance, many domain adaptation approaches used in recent literature build on top of Domain Adversarial
Networks [7], which is also reflected in the structure of salad: By deriving a solver from the DANNSolver , it
is easy to build new algorithms on top. As an already implemented example, also refer to the VADASolver ,
which uses adversarial training as one component.

A.3 Translation Based Domain Adaptation

While not being prominently supported by the library yet, translation-based approaches will play an important
role in extending salad in the future. Frequently, these approaches jointly train translation functions T s 7→tθ and
T t7→sθ that translate either examples xs, xt or features zs, zt from the source into target domain, or vice versa.
Another approach is to explicitly formulate the translation function, e.g. by a whitening-coloring transformation
[26].

A formulation of the unsupervised loss, excluding the adversarial and cycle consistency objectives needed to
train T , will leverage the fact that following translation, label information for the samples is available:

RuS×T (θ) = Exs,xt∼S×T [`y(hθ(T
s7→t
θ (xs), ys)]. (10)

Note that for training the translation functions as well as choosing suitable loss functions `y , results from §A.1
and §A.2 might be re-used. Translation-based methods were, among others, proposed and used by [11, 10, 23]
in different application settings.

While as of now, at least within classification benchmark settings, they do not (yet) exceed the performance
of discriminative domain adaptation approaches such as [5, 25], they might play an important role in settings
where the target domain is “richer” than the source domain, such as the MNIST7→SVHN setting, which is a
challenging task. Therefor, using translation-based DA as trainable noise models for discriminative approaches
might be an interesting direction to follow.
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B Datasets [salad.datasets]

In addition to the classical digit benchmarks, the datasets offers methods to create new synthetic and
controllable data sources (e.g. by adding noise or image transformations), to vary the existing datasets and create
new training setups (for openset domain adaptation or scenarios such as partial overlapping classes between
source and target datasets) or to consider settings beyond classification (such as instance segmentation). While in
the first release of salad, we focus on providing example scripts for classical benchmarks, it is straightforward
to implement new settings and integrate them into the existing processing pipelines.

• Toy Tasks (e.g., Moon Dataset)

• Standard Benchmarks: MNIST, SVHN, UPSP, SYNTH

• Noise Benchmarks (e.g. Gaussian, Salt and Pepper, Rotations)

• MNIST/SVHN Semantic Segmentation Task

• VisDA classification challenge 2017

• VisDA detection and openset challenge 2018
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C Experiments [salad.examples]

In the first release, we provide reference implementations of recently published domain adaptation algorithms
such as

• Correlation Alignment [27] and variants

• Self Ensembling for Visual Domain Adaptation [5]

• A DIRT-T Approach to Unsupervised Domain Adaptation [25]

• Domain-Adversarial Training of Neural Networks [7]

• Associative Domain Adaptation [9]

• Generalizing Across Domains Via Cross-Gradient Training [24].

Partially finished implementations include

• Return of Frustratingly Easy Domain Adaptation [26]

• Few-Shot Adversarial Domain Adaptation [16]

• Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised
deep learning results [28]
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D Network Layers and Loss Functions [salad.layers]

The aforementioned algorithms usually use novel metrics and training schemes. In order to encourage devel-
opment of new algorithms for particular problems, salad makes it easy to re-use parts of existing algorithms.
Among other functions, we implement the following loss functions:

• Distance Functions between covariate matrices (CORAL, Deep CORAL, Log CORAL)

• Visit and Walker losses for Associative Domain Adaptation

• Virtual Adversarial Training

• Confidence Weighted Cross Entropy

• Conditional Entropy

and the following network layers:

• Conditional Batch Normalization

• Feature Aware Normalization [2]

• AutoDIAL [3]

We provide model implementations for conditional training similar to the PyTorch ResNet implementation.
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