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Abstract

Pattern databases are the foundation of some of the strongest
admissible heuristics for optimal classical planning. Experi-
ments showed that the most informative way of combining
information from multiple pattern databases is to use satu-
rated cost partitioning. Previous work selected patterns and
computed saturated cost partitionings over the resulting pat-
tern database heuristics in two separate steps. We introduce
a new method that uses saturated cost partitioning to select
patterns and show that it outperforms all existing pattern se-
lection algorithms.

1 Introduction
A∗ search (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic (Pearl 1984) is one of the most success-
ful methods for solving classical planning tasks optimally.
An important building block of some of the strongest ad-
missible heuristics are pattern database (PDB) heuristics. A
PDB heuristic precomputes all goal distances in a simpli-
fied state space obtained by projecting the task to a sub-
set of state variables, the pattern, and uses these distances
as lower bounds on the true goal distances. PDB heuristics
were originally introduced for solving the 15-puzzle (Cul-
berson and Schaeffer 1996) and have later been generalized
to many other combinatorial search tasks (e.g., Korf 1997;
Felner, Korf, and Hanan 2004) and to the setting of domain-
independent planning (Edelkamp 2001).

Using a single PDB heuristic of reasonable size is usually
not enough to cover sufficiently many aspects of challeng-
ing planning tasks. It is therefore often beneficial to com-
pute multiple PDB heuristics and to combine their estimates
admissibly (Holte et al. 2006). The simplest approach for
this is to choose the PDB with the highest estimate in each
state. Instead of this maximization scheme, we would like
to sum estimates, but this renders the resulting heuristic in-
admissible in general. However, if two PDBs are affected
by disjoint sets of operators, they are independent and we
can admissibly add their estimates (Korf and Felner 2002;
Felner, Korf, and Hanan 2004). Haslum et al. (2007) later
generalized this idea by introducing the canonical heuris-
tic for PDBs, which computes all maximal subsets of pair-
wise independent PDBs and then uses the maximum over
the sums of independent PDBs as the heuristic value.

Cost partitioning (Katz and Domshlak 2008; Yang et al.
2008) is a generalization of the independence-based meth-
ods above. It makes the sum of heuristic estimates ad-
missible by distributing the costs of each operator among
the heuristics. The literature contains many different cost
partitioning algorithms such as zero-one cost partitioning
(Edelkamp 2002; Haslum et al. 2007), uniform cost parti-
tioning (Katz and Domshlak 2008), optimal cost partition-
ing (Katz and Domshlak 2008; Karpas and Domshlak 2009;
Katz and Domshlak 2010; Pommerening et al. 2015), post-
hoc optimization (Pommerening, Röger, and Helmert 2013)
and delta cost partitioning (Fan, Müller, and Holte 2017).

In previous work (Seipp, Keller, and Helmert 2017a), we
showed experimentally for the benchmark tasks from pre-
vious International Planning Competitions (IPC) that sat-
urated cost partitioning (SCP) (Seipp and Helmert 2014;
2018) is the cost partitioning algorithm of choice for PDB
heuristics. Saturated cost partitioning considers an ordered
sequence of heuristics. Iteratively, it gives each heuristic the
minimum amount of costs that the heuristic needs to justify
all its estimates and then uses the remaining costs for sub-
sequent heuristics until all heuristics have been served this
way.

Before we can compute a saturated cost partitioning over
pattern database heuristics, we need to select a collection
of patterns. The first domain-independent automated pat-
tern selection algorithm is due to Edelkamp (2001). It parti-
tions the state variables into patterns via best-fit bin packing.
Edelkamp (2006) later used a genetic algorithm to search
for a pattern collection that maximizes the average heuristic
value of a zero-one cost partitioning over the PDB heuristics.

Haslum et al. (2007) proposed an algorithm that performs
a hill-climbing search in the space of pattern collections
(HC). HC evaluates a collection C by estimating the search
effort of the canonical heuristic over C based on a model of
IDA∗ runtime (Korf, Reid, and Edelkamp 2001).

Franco et al. (2017) presented the Complementary PDBs
Creation (CPC) method, that combines bin packing and ge-
netic algorithms to create a pattern collection minimizing
the estimated search effort of an A∗ search (Lelis, Stern, and
Sturtevant 2014).

Rovner, Sievers, and Helmert (2019) repeatedly com-
pute patterns using counterexample-guided abstraction re-
finement (CEGAR): starting from a random goal variable,



their CEGAR algorithm iteratively finds solutions in the cor-
responding projection and executes them in the original state
space. Whenever a solution cannot be executed due to a vio-
lated precondition, it adds the missing precondition variable
to the pattern.

Finally, Pommerening, Röger, and Helmert (2013) sys-
tematically generate all interesting patterns up to a given
size X (SYS-X). Experiments showed that cost-partitioned
heuristics over SYS-2 and SYS-3 yield accurate estimates
(Pommerening, Röger, and Helmert 2013; Seipp, Keller, and
Helmert 2017a), but using all interesting patterns of larger
sizes is usually infeasible.

We introduce SYS-SCP, a new pattern selection algo-
rithm based on saturated cost partitioning that potentially
considers all interesting patterns, but only selects useful
ones. SYS-SCP builds multiple pattern sequences that to-
gether form the resulting pattern collection. For each se-
quence σ, it considers the interesting patterns in increasing
order by size and adds a pattern P to σ if P is not part of an
earlier sequence and the saturated cost partitioning heuristic
over σ plus P is more informative than the one over σ alone.

2 Background
We consider optimal classical planning tasks in a SAS+-like
notation (Bäckström and Nebel 1995) and represent a plan-
ning task Π as a tuple 〈V,O, s0, s?〉. Each variable v in the
finite set of variables V has a finite domain dom(v). A par-
tial state s is defined over a subset of variables vars(s) ⊆ V
and maps each v ∈ vars(s) to a value in dom(v), written as
s[v]. We call the pair 〈v, s[v]〉 an atom and interchangeably
treat partial states as mappings from variables to values or
as sets of atoms. If vars(s) = V , we call s a state. We write
S(Π) for the set of all states in Π.

Each operator o in the finite set of operators O has a pre-
condition pre(o) and an effect eff(o), both of which are par-
tial states, and a cost cost(o) ∈ R+

0 . An operator o is appli-
cable in a state s if pre(o) ⊆ s. Applying o in s leads into
state s′ = sJoK with s′[v] = eff(o)[v] for all v ∈ vars(eff(o))
and s′[v] = s[v] for all variables v ∈ V \ vars(eff(o)). The
state s0 is called the initial state and s? is a partial state, the
goal.

Transition systems assign semantics to planning tasks.

Definition 1 (Transition Systems). A transition system T is
a labeled digraph defined by a finite set of states S(T ), a
finite set of labels L(T ), a set T (T ) of labeled transitions
s

`−→ s′ with s, s′ ∈ S(T ) and ` ∈ L(T ), an initial state
s0(T ), and a set S?(T ) of goal states.

A planning task Π = 〈V,O, s0, s?〉 induces a transition
system T with states S(Π), labels O, transitions {s o−→
sJoK | s ∈ S(Π), o ∈ O, pre(o) ⊆ s}, initial state s0 and
goal states {s ∈ S(Π) | s? ⊆ s}.

Separating transition systems from cost functions allows
us to evaluate the same transition system under different cost
functions, which is important for cost partitioning.

Definition 2 (Cost Functions). A cost function for transition
system T is a function cost : L(T ) → R ∪ {−∞,∞}. It is

finite if −∞ < cost(`) < ∞ for all labels `. It is non-
negative if cost(`) ≥ 0 for all labels `. We write C(T ) for
the set of all cost functions for T .

Note that we assume that the cost function of the planning
task is non-negative and finite, but as in previous work we
allow negative (Pommerening et al. 2015) and infinite costs
(Seipp and Helmert 2019) in cost partitionings. The gener-
alization to infinite costs is necessary to cleanly state some
of our definitions.

Definition 3 (Weighted Transition Systems). A weighted
transition system is a pair 〈T , cost〉 where T is a transition
system and cost ∈ C(T ) is a cost function for T .

The cost of a path π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉 in a
weighted transition system 〈T , cost〉 is defined as cost(π) =∑n
i=1 cost(`i). It is ∞ if the sum contains both +∞ and

−∞. If sn is a goal state, π is called a goal path for s0.

Definition 4 (Goal Distances and Optimal Paths). The goal
distance of a state s ∈ S(T ) in a weighted transition system
〈T , cost〉 is defined as infπ∈Π?(T ,s) cost(π), where Π?(T , s)
is the set of goal paths from s in T . (The infimum of the
empty set is∞.) We write h∗T (cost, s) for the goal distance
of s. If h∗T (cost, s) = ∞, we call s unsolvable. A goal path
π from s is optimal if cost(π) = h∗T (cost, s).

Optimal classical planning is the problem of finding an
optimal goal path from s0 or showing that s0 is unsolvable.

We use heuristics to estimate goal distances (Pearl 1984).

Definition 5 (Heuristics). A heuristic for a transition system
T is a function h : C(T )×S(T )→ R∪{−∞,∞}. Heuristic
h is admissible if h(cost, s) ≤ h∗T (cost, s) for all cost ∈
C(T ) and all s ∈ S(T ).

Cost partitioning makes adding heuristics admissible by
distributing the costs of each operator among the heuristics.

Definition 6 (Cost Partitioning). Let T be a transition sys-
tem. A cost partitioning for a cost function cost ∈ C(T ) is
a tuple 〈cost1, . . . , costn〉 ∈ C(T )n whose sum is bounded
by cost:

∑n
i=1 costi(`) ≤ cost(`) for all ` ∈ L(T ). A cost

partitioning 〈cost1, . . . , costn〉 ∈ C(T )n over the heuris-
tics 〈h1, . . . , hn〉 for T induces the cost-partitioned heuristic
h(cost, s) =

∑n
i=1 hi(costi, s). If the sum contains +∞ and

−∞, it evaluates to the leftmost infinite value.

One of the cost partitioning algorithms from the literature
is saturated cost partitioning (Seipp and Helmert 2018). It
is based on the insight that we can often reduce the amount
of costs given to a heuristic without changing any heuristic
estimates. Saturated cost functions formalize this idea.

Definition 7 (Saturated Cost Function). Consider a tran-
sition system T , a heuristic h for T and a cost function
cost ∈ C(T ). A cost function scf ∈ C(T ) is saturated for
h and cost if

1. scf(`) ≤ cost(`) for all labels ` ∈ L(T ) and
2. h(scf, s) = h(cost, s) for all states s ∈ S(T ).

A saturated cost function scf is minimal if there is no other
saturated cost function scf′ for h and cost with scf(`) ≤
scf′(`) for all labels ` ∈ L(T ).



Whether we can efficiently compute a minimal satu-
rated cost function depends on the type of heuristic. In
earlier work (Seipp and Helmert 2018), we showed that
this is possible for explicitly-represented abstraction heuris-
tics (Helmert, Haslum, and Hoffmann 2007), which include
PDB heuristics.
Definition 8 (Minimum Saturated Cost Function for Ab-
straction Heuristics). Let 〈T , cost〉 be a weighted transition
system and h an abstraction heuristic for T with abstract
transition system T ′. The minimum saturated cost function
mscf for h and cost is

mscf(`) = sup

a
`−→b∈T (T ′)

(h∗T ′(cost, a)− h∗T ′(cost, b))

for all ` ∈ L(T ), where x−y = −∞ iff x = −∞ or y =∞.
Given a sequence of abstraction heuristics, the saturated

cost partitioning algorithm iteratively assigns to each heuris-
tic only the costs that the heuristic needs to preserve its es-
timates and uses the remaining costs for subsequent heuris-
tics.
Definition 9 (Saturated Cost Partitioning). Consider a tran-
sition system T and a sequence of abstraction heuristics
H = 〈h1, . . . , hn〉 for T . For all 1 ≤ i ≤ n, saturatei :
C(T ) → C(T ) receives a cost function rem and returns
the minimum saturated cost function for hi and rem. The
saturated cost partitioning 〈cost1, . . . , costn〉 of a function
cost ∈ C(T ) overH is defined as:

rem0 = cost
costi = saturatei(remi−1) for all 1 ≤ i ≤ n
remi = remi−1 − costi for all 1 ≤ i ≤ n,

where the auxiliary cost functions remi represent the re-
maining costs after processing the first i heuristics inH.

We write hSCP
H for the saturated cost partitioning heuristic

over the sequence of heuristicsH. In this work, we compute
saturated cost partitionings over pattern database heuristics.

A pattern for task Π with variables V is a subset P ⊆ V .
By syntactically removing all variables from Π that are not
in P , we obtain the projected task Π|P inducing the abstract
transition system TP . The PDB heuristic hP for a pattern P
is defined as hP (cost, s) = h∗TP (cost, s|P ), where s|P is the
abstract state that s is projected to in Π|P . For the pattern se-
quence 〈P1, . . . , Pn〉 we define hSCP

〈P1,...,Pn〉 = hSCP
〈hP1 ,...,hPn 〉.

One of the simplest pattern selection algorithms is to gen-
erate all patterns up to a given size X (Felner, Korf, and
Hanan 2004) and we call this approach SYS-NAIVE-X. It is
easy to see that for tasks with n variables, SYS-NAIVE-X
generates

∑X
i=1

(
n
i

)
patterns. Usually, many of these pat-

terns do not add much information to a cost-partitioned
heuristic over the patterns. Unfortunately, there is no effi-
ciently computable test that allows us to discard such unin-
formative patterns. Even patterns without any goal variables
can increase heuristic estimates in a cost partitioning (Pom-
merening 2017).

However, in the setting where only non-negative cost
functions are allowed in cost partitionings, there are effi-
ciently computable criteria for deciding whether a pattern

Algorithm 1 SYS-SCP: Given a planning task with states
S(T ), cost function cost and interesting patterns SYS, select
a subset C ⊆ SYS.

1: function SYS-SCP(Π)
2: C ← ∅
3: repeat for at most Tx seconds
4: σ← 〈〉
5: for P ∈ ORDER(SYS) and at most Ty seconds do
6: if P /∈ C and PATTERNUSEFUL(σ, P ) then
7: σ← σ ⊕ P
8: C ← C ∪ {P}
9: until σ = 〈〉

10: return C

11: function PATTERNUSEFUL(σ, P )
12: return ∃s ∈ S(T ) :

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞

is interesting, i.e., whether it cannot be replaced by a set of
smaller patterns that together yield the same heuristic esti-
mates (Pommerening, Röger, and Helmert 2013).

The criteria are based on the causal graph CG(Π) of a
task Π (Helmert 2004). CG(Π) is a directed graph with a
node for each variable in Π. If there is an operator with a
precondition on u and an effect on v 6= u, CG(Π) contains
a precondition arc from u to v. If an operator affects both u
and v, CG(Π) contains co-effect arcs from u to v and from
v to u.
Definition 10 (Interesting Patterns). A pattern P is interest-
ing if
1. CG(Π|P ) is weakly connected, and
2. CG(Π|P ) contains a directed path via precondition arcs

from each node to some goal variable node.
The systematic pattern generation method SYS-X gener-

ates all interesting patterns up to size X . We let SYS denote
the set of all interesting patterns for a given task. On IPC
benchmark tasks, SYS-X often generates much fewer pat-
terns than SYS-NAIVE-X for the same size limit X . Still,
it is usually infeasible to compute all SYS-X patterns and
the corresponding projections for X > 3 within reason-
able amounts of time and memory. Also, we hypothesize
that even when considering only interesting patterns, usu-
ally only a small percentage of the systematic patterns up to
size 3 contribute much information to the resulting heuristic.

For these two reasons we propose a new pattern selection
algorithm that potentially considers all interesting patterns,
but only selects the ones that it deems useful.

3 Sys-SCP Pattern Selection Algorithm
Our new pattern selection algorithm repeatedly creates a
new empty pattern sequence σ and only appends those inter-
esting patterns to σ that increase any finite heuristic values
of a saturated cost partitioning heuristic computed over σ.

Algorithm 1 shows pseudo-code for the procedure, which
we call SYS-SCP. It starts with an empty pattern collection
C. In each iteration of the outer loop, SYS-SCP creates a



new empty pattern sequence σ and then loops over the in-
teresting patterns P ∈ SYS in the order chosen by ORDER
(see Section 3.2) for at most Ty seconds. SYS-SCP appends
a pattern P to σ and includes it in C if there is a state s for
which the saturated cost partitioning over σ extended by P
has a higher finite heuristic value than the one over σ alone.
Once an iteration selects no new patterns or SYS-SCP hits
the time limit Tx, the algorithm stops and returns C.

We impose a time limit Tx on the outer loop of the al-
gorithm since the number of interesting patterns is expo-
nential in the number of variables and therefore SYS-SCP
usually cannot evaluate them all in a reasonable amount of
time. By imposing a time limit Ty on the inner loop, we al-
low SYS-SCP to periodically start over with a new empty
pattern sequence.

The most important component of the SYS-SCP algo-
rithm is the PATTERNUSEFUL function that decides whether
to select a pattern P . The function enumerates all states
s ∈ S(Π), which is obviously infeasible for all but the
smallest tasks Π. Fortunately, we can efficiently compute an
equivalent test in the projection to P .

Lemma 1. Consider a planning task Π with non-negative
cost function cost and induced transition system T . Let s ∈
S(T ) be a state, P be a pattern for Π and σ be a (possibly
empty) sequence of patterns 〈P1, . . . , Pn〉 for Π. Finally, let
rem be the remaining cost function after computing hSCP

σ for
cost.

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ 0 < h∗TP (rem, s|P ) <∞

Proof. hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞

(1)⇔ hSCP
〈P1,...,Pn〉(cost, s) < hSCP

〈P1,...,Pn,P 〉(cost, s) <∞

(2)⇔
n∑
i=1

hPi(costi, s) <
n∑
i=1

hPi(costi, s) + hP (rem, s) <∞

(3)⇔ 0 < hP (rem, s) <∞ (4)⇔ 0 < h∗TP (rem, s|P ) <∞

Step 1 substitutes 〈P1, . . . , Pn〉 for σ and Step 2 uses the
definition of saturated cost partitioning heuristics. For Step 3
we need to show that x =

∑n
i=1 h

Pi(costi, s) is finite.
The inequality states x <∞. We now show x ≥ 0, which

implies x > −∞. Using requirement 1 for saturated cost
functions from Definition 7 and the fact that rem0 = cost
is non-negative, it is easy to see that all remaining cost
functions are non-negative. Consequently, hPi(costi, s) =
hPi(remi−1, s) ≥ 0 for all s ∈ S(T ), which uses require-
ment 2 from Definition 7 and the fact that goal distances
are non-negative in transition systems with non-negative
weights.

Step 4 uses the definition of PDB heuristics.

Theorem 1 (Computing PATTERNUSEFUL on Projections).
Consider a planning task Π with non-negative cost function
cost and induced transition system T . Let P be a single pat-
tern and σ be a (possibly empty) sequence of patterns. Fi-
nally, let rem be the remaining cost function after computing

hSCP
σ for cost.

∃s ∈ S(T ) : hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ ∃s′ ∈ S(TP ) : 0 < h∗TP (rem, s′) <∞

Proof. Follows directly from Lemma 1 and the fact that pro-
jections are induced abstractions: for each abstract state s′ in
an induced abstraction there is at least one concrete state s
which is projected to s′.

We use Theorem 1 in our SYS-SCP implementation by
keeping track of the cost function rem, i.e., the costs that
remain after computing hSCP

σ . We select a pattern P if there
are any goal distances d with 0 < d <∞ in TP under rem.

Theorem 1 also removes the need to compute hSCP
σ⊕P from

scratch for every pattern P . This is important since we want
to decide whether or not to add P quickly and this operation
should not become slower when σ contains more patterns.

3.1 Dead Ends
To obtain high finite heuristic values for solvable states it
is important to choose good cost partitionings. In contrast,
cost functions are irrelevant for detecting unsolvable states.
This is the underlying reason why Lemma 1 only holds for
finite values and therefore why SYS-SCP ignores unsolvable
states.

However, we can still use the information about unsolv-
able states contained in projections. It is easy to see that each
abstract state in a projection corresponds to a partial state in
the original task. If an abstract state is unsolvable in a pro-
jection, we call the corresponding partial state a dead end.
Since projections preserve all paths, any state in the original
task subsuming a dead end is unsolvable. We can extract all
dead ends from the projections that SYS-SCP evaluates and
use this information to prune unsolvable states during the A∗

search (Pommerening and Seipp 2016).

3.2 Ordering Patterns
We showed in earlier work that the order in which satu-
rated cost partitioning considers the component heuristics
has a strong influence on the quality of the resulting heuris-
tic (Seipp, Keller, and Helmert 2017b). Choosing a good or-
der is even more important for SYS-SCP, since it usually
only sees a subset of interesting patterns within the allotted
time. To ensure that this subset of interesting patterns cov-
ers different aspects of the planning task, we let the ORDER
function generate the interesting patterns in increasing order
by size.

This leaves the question how to sort patterns of the same
size. We propose four methods for making this decision. The
first one (random) simply orders patterns of the same size
randomly. The remaining three assign a key to each pattern,
allowing us to sort by key in increasing or decreasing order.

Causal Graph. The first ordering method is based on
the insight that it is often more important to have accu-
rate heuristic estimates near the goal states rather than else-
where in the state space (e.g., Holte et al. 2006; Torralba,



Linares López, and Borrajo 2018). We therefore want to fo-
cus on patterns containing goal variables or variables that
are closely connected to goal variables. To quantify “goal-
connectedness” we use an approximate topological order-
ing ≺ of the causal graph CG(Π). We let the function cg :
V → N+

0 assign each variable v ∈ V to its index in ≺. For
a given pattern P , the cg ordering method returns the key
〈cg(v1), . . . , cg(vn)〉, where vi ∈ P and cg(vi) < cg(vj)
for all 1 ≤ i < j ≤ n. Since the keys are unique, they de-
fine a total order. Sorting the patterns by cg in decreasing
order (cg-down), yields the desired order which starts with
“goal-connected” patterns.

States in Projection. Given a pattern P , the ordering
method states returns the key |S(Π|P )|, i.e., the number of
states in the projection to P . We use cg-down to break ties.

Active Operators. Given a pattern P , the ops ordering
method returns the number of operators that affect a vari-
able in P . We break ties with cg-down.

4 Experiments
We implemented the SYS-SCP pattern selection algorithm
in the Fast Downward planning system (Helmert 2006)
and conducted experiments with the Downward Lab toolkit
(Seipp et al. 2017) on Intel Xeon Silver 4114 processors. Our
benchmark set consists of all 1827 tasks without conditional
effects from the optimization tracks of the 1998–2018 IPCs.
The tasks belong to 48 different domains. We limit time by
30 minutes and memory by 3.5 GiB. All benchmarks1, code2

and experimental data3 have been published online.
To fairly compare the quality of different pattern collec-

tions, we use the same cost partitioning algorithm for all
collections. Saturated cost partitioning is the obvious choice
for the evaluation since experiments showed that it is prefer-
able to all other cost partitioning algorithms for HC, SYS-2
and CPC patterns in almost all evaluated benchmark do-
mains (Seipp, Keller, and Helmert 2017a; Rovner, Sievers,
and Helmert 2019).

Diverse Saturated Cost Partitioning Heuristics. For a
given pattern collection C, we compute diverse saturated
cost partitioning heuristics using the diversification proce-
dure by Seipp, Keller, and Helmert (2017b): we start with an
empty family of saturated cost partitioning heuristics F and
a set Ŝ of 1000 sample states obtained with random walks
(Haslum et al. 2007). Then we iteratively sample a new state
s and compute a greedy order ω of C that works well for
s (Seipp 2017). If hSCP

ω has a higher heuristic estimate for
any state s′ ∈ Ŝ than all heuristics in F , we add hSCP

ω to
F . We stop this diversification procedure after 200 seconds
and then perform an A∗ search using the maximum over the
heuristics in F .

1Benchmarks: https://doi.org/10.5281/zenodo.2616479
2Code: https://doi.org/10.5281/zenodo.3233330
3Experimental data: https://doi.org/10.5281/zenodo.3233326

Coverage 10s 100s 1000s ∞
1s 1137 1132 1055 716
10s 1077 1168 1142 337
100s 1077 1082 1154 284
∞ 1077 1082 989 227

Table 1: Number of tasks solved by SYS-SCP using differ-
ent time limits Tx and Ty for the outer loop (x axis) and
inner loop (y axis).
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Coverage

cg-up – 5 6 5 4 3 3 1140.0
states-up 6 – 6 8 5 2 2 1153.0
random 10 10 – 8 7 6 3 1148.2
ops-down 7 8 9 – 4 7 3 1141.0
states-down 9 8 9 7 – 4 2 1152.0
ops-up 11 12 12 11 11 – 6 1166.0
cg-down 12 10 12 10 9 6 – 1168.0

Table 2: Per-domain coverage comparison of different or-
ders for patterns of the same size. The entry in row r and
column c shows the number of domains in which order r
solves more tasks than order c. For each order pair we high-
light the maximum of the entries (r, c) and (c, r) in bold.
Right: Total number of solved tasks. The results for random
are averaged over 10 runs (standard deviation: 3.36).

Before we compare SYS-SCP to other pattern selection
algorithms, we evaluate the effects of changing its parame-
ters in four ablation studies. We use at most 2M states per
PDB and 20M states in the PDB collection for all SYS-SCP
runs.

4.1 Time Limits
Table 1 shows that a time limit for the outer loop is more
important than one for the inner loop, but for maximum cov-
erage we need both limits. The combination that solves the
highest number of tasks is 10s for the inner and 100s for the
outer loop. We use these values in all other experiments.

4.2 Dead Ends
All configurations from Table 1 store the dead ends from all
projections evaluated by SYS-SCP and use them to prune
unsolvable states during the A∗ search. For the best config-
uration from Table 1, coverage decreases from 1168 to 1153
tasks if we ignore the dead ends. Therefore, we use dead
ends for pruning unsolvable states in all other experiments.

4.3 Pattern Orders
Table 2 compares the different methods for ordering patterns
of the same size. For all of states, ops and cg, at least one or-



Max pattern size 1 2 3 4 5

SYS-NAIVE 840 937 914 752 571
SYS-NAIVE-LIM 840 968 1004 912 878
SYS 840 986 1057 922 731
SYS-LIM 840 985 1088 1050 1035

Table 3: Number of solved tasks for naive (SYS-NAIVE) and
interesting patterns (SYS). We evaluate both versions with-
out and with time and memory limits and using different
maximum pattern sizes.

dering direction (up or down) is preferable to using random
orders. The ops-up method is preferable to ops-down for 11
domains, but there are also 7 domains where the opposite
is the case. The relation between states-down and states-up
is similar. The only ordering method where one direction is
clearly preferable to the other is cg: cg-down solves more
tasks than cg-up in 12 domains, while the opposite is the
case in only 3 domains. Since cg-down also has the highest
overall coverage, we use it in all other experiments.

4.4 Using Pattern Sequences for Diversification
Instead of discarding the computed pattern sequences when
SYS-SCP finishes, we can turn each pattern sequence σ into
a full pattern order by randomly appending all SYS-SCP
patterns missing from σ to σ and pass the resulting order
to the diversification procedure.

Feeding the diversification exclusively with such orders
leads to solving 1130 tasks, while using only greedy orders
for sample states (Seipp 2017) solves 1156 tasks. We obtain
the best results by diversifying both types of orders, solving
1168 tasks, and we use this variant in all other experiments.

4.5 Systematic Patterns With Limits
In the next experiment, we evaluate the obvious baseline for
SYS-SCP: selecting all (interesting) patterns up to a fixed
size. Table 3 holds coverage results of SYS-NAIVE-X and
SYS-X for 1 ≤ X ≤ 5. We also include variants (*-LIM)
that use at most 100 seconds, no more than 2M states in each
projection and at most 20M states per collection. For the *-
LIM variants, we sort the patterns in the cg-down order.

The results show that interesting patterns are always
preferable to naive patterns, both with and without lim-
its, which is why we only consider interesting patterns in
SYS-SCP. Imposing limits is not important for SYS-1 and
SYS-2, but leads to solving many more tasks for X ≥ 3.
Overall, SYS-3-LIM has the highest total coverage (1088
tasks).

4.6 Comparison of Pattern Selection Algorithms
In Table 4 we compare SYS-SCP to the strongest pattern
selection algorithms from the literature: HC, SYS-3-LIM,
CPC and CEGAR. (See Table 6 for per-domain coverage
results.) We run each algorithm with its preferred parameter
values, which implies using at most 900s for HC and CPC
and 100s for the other algorithms.

HC is outperformed by all other algorithms. Interestingly,
already the simple SYS-3-LIM approach is competitive with
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HC – 8 10 8 3 966
SYS-3-LIM 19 – 14 10 2 1088
CPC 20 15 – 12 3 1055
CEGAR 22 14 16 – 3 1098
SYS-SCP 28 23 21 21 – 1168

Table 4: Per-domain coverage comparison of pattern selec-
tion algorithms. For an explanation of the data see the cap-
tion of Table 2.

CPC and CEGAR. However, we obtain the best results with
SYS-SCP. It is preferable to all other pattern selection algo-
rithms in per-domain comparisons: no algorithm has higher
coverage than SYS-SCP in more than three domains, while
SYS-SCP solves more tasks than each of the other algo-
rithms in at least 21 domains. SYS-SCP also has the highest
total coverage of 1168 tasks, solving 70 more tasks than the
strongest contender. This is a considerable improvement in
the setting of optimal classical planning, where task diffi-
culty tends to scale exponentially.

4.7 Comparison to IPC Planners
In our final experiment, we evaluate whether Scorpion
(Seipp 2018), one of the strongest optimal planners in
IPC 2018, benefits from using SYS-SCP patterns. Scorpion
computes diverse saturated cost partitioning heuristics over
HC and SYS-2 PDB heuristics and Cartesian abstraction
heuristics (CART) (Seipp and Helmert 2018). We abbrevi-
ate this combination with COMB=HC+SYS-2+CART. In Ta-
ble 5 we compare the original Scorpion planner, three Scor-
pion variants that use different sets of heuristics and the
top three optimal planners from IPC 2018, Delfi 1 (Siev-
ers et al. 2019), Complementary 1 (Franco et al. 2018) and
Complementary 2 (Franco et al. 2017). (Table 6 holds per-
domain coverage results.) In contrast to the configurations
we evaluated above, all planners in Table 5 prune irrele-
vant operators in a preprocessing step (Alcázar and Torralba
2015).

The results show that all Scorpion variants outperform the
top three IPC 2018 planners in per-domain comparisons. We
also see that Scorpion benefits from using SYS-SCP PDBs
instead of the COMB heuristics in many domains. Using
the union of both sets is clearly preferable to using either
COMB or SYS-SCP alone, since it raises the total cover-
age to 1261 by 56 and 44 tasks, respectively. For maximum
coverage (1265 tasks), Scorpion only needs SYS-SCP PDBs
and Cartesian abstraction heuristics.

5 Conclusion
We introduced a new pattern selection algorithm based on
saturated cost partitioning and showed that it outperforms
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Complementary 1 – 7 4 12 9 9 9 1030
Complementary 2 24 – 7 12 10 9 8 1093
Delfi 1 35 28 – 16 15 13 13 1236
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COMB 28 27 19 – 7 5 2 1205
SYS-SCP 29 25 21 15 – 4 4 1217
SYS-SCP+CART 29 26 22 16 10 – 4 1265
SYS-SCP+COMB 30 27 23 13 13 5 – 1261

Table 5: Comparison of IPC 2018 planners and Scorpion
variants.

all other pattern selection algorithms from the literature. The
algorithm selects a pattern if it is useful for any state in
the state space. In future work, we would like to evaluate
whether it is beneficial to restrict this criterion to a subset of
states, such as all reachable states or a set of sample states.
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