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ABSTRACT

We study the problem of generating source code in a strongly typed, Java-like
programming language, given a label (for example a set of API calls or types) car-
rying a small amount of information about the code that is desired. The generated
programs are expected to respect a “realistic” relationship between programs and
labels, as exemplified by a corpus of labeled programs available during training.
Two challenges in such conditional program generation are that the generated pro-
grams must satisfy a rich set of syntactic and semantic constraints, and that source
code contains many low-level features that impede learning. We address these
problems by training a neural generator not on code but on program sketches, or
models of program syntax that abstract out names and operations that do not gen-
eralize across programs. During generation, we infer a posterior distribution over
sketches, then concretize samples from this distribution into type-safe programs
using combinatorial techniques. We implement our ideas in a system for generat-
ing API-heavy Java code, and show that it can often predict the entire body of a
method given just a few API calls or data types that appear in the method.

1 INTRODUCTION

Neural networks have been successfully applied to many generative modeling tasks in the recent
past (Oord et al., 2016; Ha & Eck, 2017; Vinyals et al., 2015). However, the use of these mod-
els in generating highly structured text remains relatively understudied. In this paper, we present a
method, combining neural and combinatorial techniques, for the condition generation of an impor-
tant category of such text: the source code of programs in Java-like programming languages.

The specific problem we consider is one of supervised learning. During training, we are given a set
of programs, each program annotated with a label, which may contain information such as the set
of API calls or the types used in the code. Our goal is to learn a function g such that for a test case
of the form (X,Prog) (where Prog is a program and X is a label), g(X) is a compilable, type-safe
program that is equivalent to Prog.

This problem has immediate applications in helping humans solve programming tasks (Hindle et al.,
2012; Raychev et al., 2014). In the usage scenario that we envision, a human programmer uses a
label to specify a small amount of information about a program that they have in mind. Based on
this information, our generator seeks to produce a program equivalent to the “target” program, thus
performing a particularly powerful form of code completion.

Conditional program generation is a special case of program synthesis (Manna & Waldinger, 1971;
Summers, 1977), the classic problem of generating a program given a constraint on its behavior.
This problem has received significant interest in recent years (Alur et al., 2013; Gulwani et al.,
2017). In particular, several neural approaches to program synthesis driven by input-output examples
have emerged (Balog et al., 2017; Parisotto et al., 2016; Devlin et al., 2017). Fundamentally, these
approaches are tasked with associating a program’s syntax with its semantics. As doing so in general
is extremely hard, these methods choose to only generate programs in highly controlled domain-
specific languages. For example, Balog et al. (2017) consider a functional language in which the
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only data types permitted are integers and integer arrays, control flow is linear, and there is a sum
total of 15 library functions. Given a set of input-output examples, their method predicts a vector of
binary attributes indicating the presence or absence of various tokens (library functions) in the target
program, and uses this prediction to guide a combinatorial search for programs.

In contrast, in conditional program generation, we are already given a set of tokens (for example
library functions or types) that appear in a program or its metadata. Thus, we sidestep the problem
of learning the semantics of the programming language from data. We ask: does this simpler setting
permit the generation of programs from a much richer, Java-like language, with one has thousands
of data types and API methods, rich control flow and exception handling, and a strong type system?

While simpler than general program synthesis, this problem is still highly nontrivial. Perhaps the
central issue is that to be acceptable to a compiler, a generated program must satisfy a rich set of
structural and semantic constraints such as “do not use undeclared variables as arguments to a pro-
cedure call” or “only use API calls and variables in a type-safe way”. Learning such constraints
automatically from data is hard. Moreover, as this is also a supervised learning problem, the gener-
ated programs also have to follow the patterns in the data while satisfying these constraints.

We approach this problem with a combination of neural learning and type-guided combinatorial
search (Feser et al., 2015). Our central idea is to learn not over source code, but over tree-structured
syntactic models, or sketches, of programs. A sketch abstracts out low-level names and operations
from a program, but retains information about the program’s control structure, the orders in which it
invokes API methods, and the types of arguments and return values of these methods. We propose
a particular kind of probabilistic encoder-decoder, called a Gaussian Encoder-Decoder or GED, to
learn a distribution over sketches conditioned on labels. During synthesis, we sample sketches from
this distribution, then flesh out these samples into type-safe programs using a combinatorial method
for program synthesis. Doing so effectively is possible because our sketches are designed to contain
rich information about control flow and types.

We have implemented our approach in a system called BAYOU.1 We evaluate BAYOU in the gener-
ation of API-manipulating Android methods, using a corpus of about 150,000 methods drawn from
an online repository. Our experiments show that BAYOU can often generate complex method bodies,
including methods implementing tasks not encountered during training, given a few tokens as input.

2 PROBLEM STATEMENT

Now we define conditional program generation. Assume a universe P of programs and a universe X
of labels. Also assume a set of training examples of the form {(X1,Prog1), (X2,Prog2), ...}, where
each Xi is a label and each Progi is a program. These examples are sampled from an unknown
distribution Q(X,Prog), where X and Prog range over labels and programs, respectively.2

We assume an equivalence relation Eqv ⊆ P × P over programs. If (Prog1,Prog2) ∈ Eqv , then
Prog1 and Prog2 are functionally equivalent. The definition of functional equivalence differs across
applications, but in general it asserts that two programs are “just as good as” one another.

The goal of conditional program generation is to use the training set to learn a function g : X → P
such that the expected value E[I((g(X),Prog) ∈ Eqv)] is maximized. Here, I is the indicator func-
tion, returning 1 if its boolean argument is true, and 0 otherwise. Informally, we are attempting to
learn a function g such that if we sample (X,Prog) ∼ Q(X,Prog), g should be able to reconstitute
a program that is functionally equivalent to Prog, using only the label X.

2.1 INSTANTIATION

In this paper, we consider a particular form of conditional program generation. We take the domain P
to be the set of possible programs in a programming language called AML that captures the essence
of API-heavy Java programs (see Appendix A for more details). AML includes complex control
flow such as loops, if-then statements, and exceptions; access to Java API data types; and calls to
Java API methods. AML is a strongly typed language, and by definition, P only includes programs

1BAYOU is publicly available at https://github.com/capergroup/bayou.
2We use italic fonts for random variables and sans serif — for example X — for values of these variables.
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String s;
BufferedReader br;
FileReader fr;
try {
fr = new FileReader($String);
br = new BufferedReader(fr);
while ((s = br.readLine()) != null) {}
br.close();

} catch (FileNotFoundException _e) {
} catch (IOException _e) {
}

String s;
BufferedReader br;
InputStreamReader isr;
try {
isr = new InputStreamReader($InputStream);
br = new BufferedReader(isr);
while ((s = br.readLine()) != null) {}
} catch (IOException _e) {
}

(a) (b)

Figure 1: Programs generated by BAYOU with the API method name readLine as a label. Names
of variables of type T whose values are obtained from the environment are of the form $T.

that are type-safe.3 To define labels, we assume three finite sets: a set Calls of possible API calls
in AML, a set Types of possible object types, and a set Keys of keywords, defined as words, such
as “read” and “file”, that often appear in textual descriptions of what programs do. The space of
possible labels is X = 2Calls × 2Types × 2Keys (here 2S is the power set of S).

Defining Eqv in practice is tricky. For example, a reasonable definition of Eqv is that
(Prog1,Prog2) ∈ Eqv iff Prog1 and Prog2 produce the same outputs on all inputs. But given
the richness of AML, the problem of determining whether two AML programs always produce the
same output is undecidable. As such, in practice we can only measure success indirectly, by check-
ing whether the programs use the same control structures, and whether they can produce the same
API call sequences. We will discuss this issue more in Section 6.

2.2 EXAMPLE

Consider the label X = (XCalls ,XTypes ,XKeys) where XCalls = {readLine} and XTypes and
XKeys are empty. Figure 1(a) shows a program that our best learner stochastically returns given this
input. As we see, this program indeed reads lines from a file, whose name is given by a special
variable $String that the code takes as input. It also handles exceptions and closes the reader, even
though these actions were not directly specified.

Although the program in Figure 1-(a) matches the label well, failures do occur. Sometimes, the
system generates a program as in Figure 1-(b), which uses an InputStreamReader rather than
a FileReader. It is possible to rule out this program by adding to the label. Suppose we amend
XTypes so that XTypes = {FileReader}. BAYOU now tends to only generate programs that
use FileReader. The variations then arise from different ways of handling exceptions and con-
structing FileReader objects (some programs use a String argument, while others use a File
object). Figure 7 in the appendix shows two other top-five programs returned on this input.

3 TECHNICAL APPROACH

X Y Prog

Figure 2: Bayes net for
Prog , X , Y

Our approach is to learn g via maximum conditional likelihood esti-
mation (CLE). That is, given a distribution family P (Prog|X, θ) for
a parameter set θ, we choose θ∗ = argmaxθ

∑
i logP (Progi | Xi, θ).

Then, g(X) = argmaxProg P (Prog|X, θ∗).
The key innovation of our approach is that here, learning happens at a
higher level of abstraction than (Xi,Progi) pairs. In practice, Java-like

programs contain many low-level details (for example, variable names and intermediate results) that
can obscure patterns in code. Further, they contain complicated semantic rules (for example, for type
safety) that are difficult to learn from data. In contrast, these are relatively easy for a combinatorial,
syntax-guided program synthesizer (Alur et al., 2013) to deal with. However, synthesizers have a

3In research on programming languages, a program is typically judged as type-safe under a type environ-
ment, which sets up types for the program’s input variables and return value. Here, we consider a program to
be type-safe if it can be typed under some type environment.
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notoriously difficult time figuring out the correct “shape” of a program (such as the placement of
loops and conditionals), which we hypothesize should be relatively easy for a statistical learner.

Specifically, our approach learns over sketches: tree-structured data that capture key facets of pro-
gram syntax. A sketch Y does not contain low-level variable names and operations, but carries
information about broadly shared facets of programs such as the types and API calls. During gener-
ation, a program synthesizer is used to generate programs from sketches produced by the learner.

Let the universe of all sketches be denoted by Y. The sketch for a given program is computed by
applying an abstraction function α : P → Y. We call a sketch Y satisfiable, and write sat(Y),
if α−1(Y) 6= ∅. The process of generating (type-safe) programs given a satisfiable sketch Y is
probabilistic, and captured by a concretization distribution P (Prog | Y, sat(Y)). We require that for
all programs Prog and sketches Y such that sat(Y), we have P (Prog | Y) 6= 0 only if Y = α(Prog).

Importantly, the concretization distribution is fixed and chosen heuristically. The alternative of
learning this distribution from source code poses difficulties: a single sketch can correspond to
many programs that only differ in superficial details, and deciding which differences between pro-
grams are superficial and which are not requires knowledge about program semantics. In contrast,
our heuristic approach utilizes known semantic properties of programming languages like ours —
for example, that local variable names do not matter, and that some algebraic expressions are se-
mantically equivalent. This knowledge allows us to limit the set of programs that we generate.

Y ::= skip | call Cexp | Y1;Y2 |
if Cseq then Y1 else Y2 |
while Cseq do Y1 | try Y1 Catch

Cexp ::= τ0.a(τ1, . . . , τk)

Cseq ::= List of Cexp
Catch ::= catch(τ1) Y1 . . . catch(τk) Yk

Figure 3: Grammar for sketches

Let us define a random variable Y = α(Prog). We
assume that the variablesX , Y and Prog are related
as in the Bayes net in Figure 2. Specifically, given
Y , Prog is conditionally independent of X . Fur-
ther, let us assume a distribution family P (Y |X, θ)
parameterized on θ.

Let Yi = α(Progi), and note that P (Progi|Y) 6=
0 only if Y = Yi. Our problem now simplifies to
learning over sketches, i.e., finding

θ∗ = argmax
θ

∑
i

log
∑

Y:sat(Y)

P (Progi|Y)P (Y|Xi, θ)

= argmax
θ

∑
i

logP (Progi|Yi)P (Yi|Xi, θ) = argmax
θ

∑
i

logP (Yi|Xi, θ). (1)

3.1 INSTANTIATION

Figure 3 shows the full grammar for sketches in our implementation. Here, τ0, τ1, . . . range over a
finite set of API data types that AML programs can use. A data type, akin to a Java class, is identified
with a finite set of API method names (including constructors), and a ranges over these names. Note
that sketches do not contain constants or variable names.

A full definition of the abstraction function for AML appears in Appendix B. As an example, API
calls in AML have the syntax “call e.a(e1, . . . , ek)”, where a is an API method, the expression e eval-
uates to the object on which the method is called, and the expressions e1, . . . , ek evaluate to the ar-
guments of the method call. We abstract this call into an abstract method call “call τ.a(τ1, . . . , τk)”,
where τ is the type of e and τi is the type of ei. The keywords skip, while, if-then-else, and try-
catch preserve information about control flow and exception handling. Boolean conditions Cseq are
replaced by abstract expressions: lists whose elements abstract the API calls in Cseq.

4 LEARNING

Now we describe our learning approach. Equation 1 leaves us with the problem of computing
argmaxθ

∑
i logP (Yi|Xi, θ), when each Xi is a label and Yi is a sketch. Our answer is to utilize

an encoder-decoder and introduce a real vector-valued latent variable Z to stochastically link labels
and sketches: P (Y|X, θ) =

∫
Z∈Rm P (Z|X, θ)P (Y|Z, θ)dZ.
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P (Y |Z, θ) is realized as a probabilistic decoder mapping a vector-valued variable to a distribution
over trees. We describe this decoder in Appendix C. As for P (Z|X, θ), this distribution can, in
principle, be picked in any way we like. In practice, because both P (Y |Z, θ) and P (Z|X, θ) have
neural components with numerous parameters, we wish this distribution to regularize the learner. To
provide this regularization, we assume a Normal (~0, I) prior on Z.

Recall that our labels are of the form X = (XCalls,XTypes,XKeys), where XCalls , XTypes , and
XKeys are sets. Assuming that the j-th elements XCalls,j , XTypes,j , and XKeys,j of these sets are
generated independently, and assuming a function f for encoding these elements, let:

P (X|Z, θ) =

∏
j

Normal(f(XCalls,j)|Z, Iσ2
Calls)

∏
j

Normal(f(XTypes,j)|Z, Iσ2
Types)


∏

j

Normal(f(XKeys,j)|Z, Iσ2
Keys)

 .

That is, the encoded value of each XTypes,j , XCalls,j or XKeys,j is sampled from a high-dimensional
Normal distribution centered at Z. If f is 1-1 and onto with the set Rm then from Normal-Normal
conjugacy, we have: P (Z|X) = Normal

(
Z
∣∣ X

1+n ,
1

1+nI
)

, where

X =

σ−2Types

∑
j

f(XTypes,j)

+

σ−2Calls

∑
j

f(XCalls,j)

+

σ−2Keys

∑
j

f(XKeys,j)


and n = nTypesσ

−2
Types +nCallsσ

−2
Calls +nKeysσ

−2
Keys . Here, nTypes is the number of types supplied,

and nCalls and nKeys are defined similarly.

Note that this particular P (Z|X, θ) only follows directly from the Normal (~0, I) prior on Z and
Normal likelihood P (X|Z, θ) if the encoding function f is 1-1 and onto. However, even if f is not
1-1 and onto (as will be the case if f is implemented with a standard feed-forward neural network)
we can still use this probabilistic encoder, and in practice we still tend to see the benefits of the
regularizing prior on Z, with P (Z) distributed approximately according to a unit Normal. We call
this type of encoder-decoder, with a single, Normally-distributed latent variable Z linking the input
and output, a Gaussian encoder-decoder, or GED for short.

Now that we have chosen P (X|Z, θ) and P (Y |Z, θ), we must choose θ to perform CLE. Note that:∑
i

logP (Yi|Xi, θ) =
∑
i

log

∫
Z∈Rm

P (Z|Xi, θ)P (Yi|Z, θ)dZ =
∑
i

logEZ∼P (Z|Xi,θ)[P (Yi|Z, θ)]

≥
∑
i

EZ∼P (Z|Xi,θ)[logP (Yi|Z, θ)] = L(θ).

where the ≥ holds due to Jensen’s inequality. Hence, L(θ) serves as a lower bound on the log-
likelihood, and so we can compute θ∗ = argmaxθ L(θ) as a proxy for the CLE. We maximize
this lower bound using stochastic gradient ascent; as P (Z|Xi, θ) is Normal, we can use the re-
parameterization trick common in variational auto-encoders (Kingma & Welling, 2014) while doing
so. The parameter set θ contains all of the parameters of the encoding function f as well as σTypes ,
σCalls , and σKeys , and the parameters used in the decoding distribution funciton P (Y |Z, θ).

5 COMBINATORIAL CONCRETIZATION

The final step in our algorithm is to “concretize” sketches into programs, following the distribution
P (Prog |Y). Our method of doing so is a type-directed, stochastic search procedure that builds on
combinatorial methods for program synthesis (Schkufza et al., 2016; Feser et al., 2015).

Given a sketch Y, our procedure performs a random walk in a space of partially concretized sketches
(PCSs). A PCS is a term obtained by replacing some of the abstract method calls and expressions in
a sketch by AML method calls and AML expressions. For example, the term “x1.a(x2); τ1.b(τ2)”,
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which sequential composes an abstract method call to b and a “concrete” method call to a, is a PCS.
The state of the procedure at the i-th point of the walk is a PCS Hi. The initial state is Y.

Each state H has a set of neighbors Next(H). This set consists of all PCS-s H′ that are obtained by
concretizing a single abstract method call or expression in H, using variable names in a way that is
consistent with the types of all API methods and declared variables in H.

The (i + 1)-th state in a walk is a sample from a predefined, heuristically chosen distribution
P (Hi+1 | Hi, ). The only requirement on this distribution is that it assigns nonzero probability
to a state iff it belongs to Next(Hi). In practice, our implementation of this distribution prioritizes
programs that are simpler. The random walk ends when it reaches a state H∗ that has no neighbors.
If H∗ is fully concrete (that is, an AML program), then the walk is successful and H∗ is returned as
a sample. If not, the current walk is rejected, and a fresh walk is started from the initial state.

Recall that the concretization distribution P (Prog |Y) is only defined for sketches Y that are satisfi-
able. Our concretization procedure does not assume that its input Y is satisfiable. However, if Y is
not satisfiable, all random walks that it performs end with rejection, causing it to never terminate.

While the worst-case complexity of this procedure is exponential in the generated programs, it per-
forms well in practice because of our chosen language of sketches. For instance, our search does not
need to discover the high-level structure of programs. Also, sketches specify the types of method
arguments and return values, and this significantly limits the search space.

6 EXPERIMENTS

Now we present an empirical evaluation of the effectiveness of our method. The experiments we
describe utilize data from an online repository of about 1500 Android apps (and, 2017). We de-
compiled the APKs using JADX (Skylot, 2017) to generate their source code. Analyzing about 100
million lines of code that were generated, we extracted 150,000 methods that used Android APIs
or the Java library. We then pre-processed all method bodies to translate the code from Java to
AML, preserving names of relevant API calls and data types as well as the high-level control flow.
Hereafter, when we say “program” we refer to an AML program.

Min Max Median Vocab
XCalls 1 9 2 2584
XTypes 1 15 3 1521
XKeys 2 29 8 993
X 4 48 13 5098

Figure 4: Statistics on labels

From each program, we extracted the sets XCalls , XTypes ,
and XKeys as well as a sketch Y. Lacking separate nat-
ural language dscriptions for programs, we defined key-
words to be words obtained by splitting the names of the
API types and calls that the program uses, based on camel
case. For instance, the keywords obtained from the API
call readLine are “read” and “line”. As API method and
types in Java tend to be carefully named, these words often

contain rich information about what programs do. Figure 4 gives some statistics on the sizes of
the labels in the data. From the extracted data, we randomly selected 10,000 programs to be in the
testing and validation data each.

6.1 IMPLEMENTATION AND TRAINING

We implemented our approach in our tool called BAYOU, using TensorFlow (Abadi et al., 2015) to
implement the GED neural model, and the Eclipse IDE for the abstraction from Java to the language
of sketches and the combinatorial concretization.

In all our experiments we performed cross-validation through grid search and picked the best per-
forming model. Our hyper-parameters for training the model are as follows. We used 64, 32 and 64
units in the encoder for API calls, types and keywords, respectively, and 128 units in the decoder.
The latent space was 32-dimensional. We used a mini-batch size of 50, a learning rate of 0.0006 for
the Adam gradient-descent optimizer (Kingma & Ba, 2014), and ran the training for 50 epochs.

The training was performed on an AWS “p2.xlarge” machine with an NVIDIA K80 GPU with 12GB
GPU memory. As each sketch was broken down into a set of production paths, the total number of
data points fed to the model was around 700,000 per epoch. Training took 10 hours to complete.
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6.2 CLUSTERING

Figure 5: 2-dimensional projection of latent space

To visualize clustering in the 32-dimensional
latent space, we provided labels X from the
testing data and sampled Z from P (Z|X),
and then used it to sample a sketch from
P (Y |Z). We then used t-SNE (Maaten & Hin-
ton, 2008) to reduce the dimensionality of Z
to 2-dimensions, and labeled each point with
the API used in the sketch Y. Figure 5 shows
this 2-dimensional space, where each label has
been coded with a different color. It is imme-
diately apparent from the plot that the model
has learned to cluster the latent space neatly
according to different APIs. Some APIs such
as java.io have several modes, and we no-
ticed separately that each mode corresponds to
different usage scenarios of the API, such as
reading versus writing in this case.

6.3 ACCURACY

To evaluate prediction accuracy, we provided labels from the testing data to our model, sampled
sketches from the distribution P (Y |X) and concretized each sketch into an AML program using our
combinatorial search. We then measured the number of test programs for which a program that is
equivalent to the expected one appeared in the top-10 results from the model.

As there is no universal metric to measure program equivalence (in fact, it is an undecidable problem
in general), we used several metrics to approximate the notion of equivalence. We defined the
following metrics on the top-10 programs predicted by the model:

M1. This binary metric measures whether the expected program appeared in a syntactically
equivalent form in the results. Of course, an impediment to measuring this is that the
names of variables used in the expected and predicted programs may not match. It is
neither reasonable nor useful for any model of code to learn the exact variable names in
the training data. Therefore, in performing this equivalence check, we abstract away the
variable names and compare the rest of the program’s Abstract Syntax Tree (AST) instead.

M2. This metric measures the minimum Jaccard distance between the sets of sequences of API
calls made by the expected and predicted programs. It is a measure of how close to the
original program were we able to get in terms of sequences of API calls.

M3. Similar to metric M2, this metric measures the minimum Jaccard distance between the sets
of API calls in the expected and predicted programs.

M4. This metric computes the minimum absolute difference between the number of statements
in the expected and sampled programs, as a ratio of that in the former.

M5. Similar to metric M4, this metric computes the minumum absolute difference between the
number of control structures in the expected and sampled programs, as a ratio of that in the
former. Examples of control structures are branches, loops, and try-catch statements.

6.4 PARTIAL OBSERVABILITY

To evaluate our model’s ability to predict programs given a small amount of information about its
code, we varied the fraction of the set of API calls, types, and keywords provided as input from the
testing data. We experimented with 75%, 50% and 25% observability in the testing data; the median
number of items in a label in these cases were 9, 6, and 2, respectively.

7



Published as a conference paper at ICLR 2018

Model Input Label Observability
100% 75% 50% 25%

GED-AML 0.13 0.09 0.07 0.02
GSNN-AML 0.07 0.04 0.03 0.01
GED-Sk 0.59 0.51 0.44 0.21
GSNN-Sk 0.57 0.48 0.41 0.18

(a) M1. Proportion of test programs for
which the expected AST appeared in the top-10
results.

Model Input Label Observability
100% 75% 50% 25%

GED-AML 0.82 0.87 0.89 0.97
GSNN-AML 0.88 0.92 0.93 0.98
GED-Sk 0.34 0.43 0.50 0.76
GSNN-Sk 0.36 0.46 0.53 0.78

(b) M2. Average minimum Jaccard distance
on the set of sequences of API methods called in
the test program vs the top-10 results.

Model Input Label Observability
100% 75% 50% 25%

GED-AML 0.52 0.58 0.61 0.77
GSNN-AML 0.59 0.64 0.68 0.83
GED-Sk 0.11 0.17 0.22 0.50
GSNN-Sk 0.13 0.19 0.25 0.52

(c) M3. Average minimum Jaccard distance
on the set of API methods called in the test
program vs the top-10 results.

Model Input Label Observability
100% 75% 50% 25%

GED-AML 0.49 0.47 0.46 0.46
GSNN-AML 0.52 0.49 0.49 0.53
GED-Sk 0.05 0.06 0.06 0.09
GSNN-Sk 0.05 0.06 0.06 0.09

(d) M4. Average minimum difference be-
tween the number of statements in the test
program vs the top-10 results.

Model Input Label Observability
100% 75% 50% 25%

GED-AML 0.31 0.30 0.30 0.34
GSNN-AML 0.32 0.31 0.32 0.39
GED-Sk 0.03 0.03 0.03 0.04
GSNN-Sk 0.03 0.03 0.03 0.03

(e) M5. Average minimum difference be-
tween the number of control structures in the test
program vs the top-10 results.

Model Metric
M1 M2 M3 M4 M5

GED-AML 0.02 0.97 0.71 0.50 0.37
GSNN-AML 0.01 0.98 0.74 0.51 0.37
GED-Sk 0.23 0.70 0.30 0.08 0.04
GSNN-Sk 0.20 0.74 0.33 0.08 0.04

(f) Metrics for 50% obsevability evaluated
only on unseen data

Figure 6: Accuracy of different models on testing data. GED-AML and GSNN-AML are baseline
models trained over AML ASTs, GED-Sk and GSNN-Sk are models trained over sketches.

6.5 COMPETING MODELS

In order to compare our model with state-of-the-art conditional generative models, we implemented
the Gaussian Stochastic Neural Network (GSNN) presented by (Sohn et al., 2015), using the same
tree-structured decoder as the GED. There are two main differences: (i) the GSNN’s decoder is also
conditioned directly on the input label X in addition to Z, which we accomplish by concatenating
its initial state with the encoding of X, (ii) the GSNN loss function has an additional KL-divergence
term weighted by a hyper-parameter β. We subjected the GSNN to the same training and cross-
validation process as our model. In the end, we selected a model that happened to have very similar
hyper-parameters as ours, with β = 0.001.

6.6 EVALUATING SKETCHES

In order to evaluate the effect of sketch learning for program generation, we implemented and com-
pared with a model that learns directly over programs. Specifically, the neural network structure is
exactly the same as ours, except that instead of being trained on production paths in the sketches,
the model is trained on production paths in the ASTs of the AML programs. We selected a model
that had more units in the decoder (256) compared to our model (128), as the AML grammar is more
complex than the grammar of sketches. We also implemented a similar GSNN model to train over
AML ASTs directly.

Figure 6 shows the collated results of this evaluation, where each entry computes the average of the
corresponding metric over the 10000 test programs. It takes our model about 8 seconds, on average,
to generate and rank 10 programs.

When testing models that were trained on AML ASTs, namely the GED-AML and GSNN-AML
models, we observed that out of a total of 87,486 AML ASTs sampled from the two models, 2525
(or 3%) ASTs were not even well-formed, i.e., they would not pass a parser, and hence had to be
discarded from the metrics. This number is 0 for the GED-Sk and GSNN-Sk models, meaning that
all AML ASTs that were obtained by concretizing sketches were well-formed.
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In general, one can observe that the GED-Sk model performs best overall, with GSNN-Sk a reason-
able alternative. We hypothesize that the reason GED-Sk performs slightly better is the regularizing
prior on Z; since the GSNN has a direct link fromX to Y , it can choose to ignore this regularization.
We would classify both these models as suitable for conditional program generation. However, the
other two models GED-AML and GSNN-AML perform quite worse, showing that sketch learning is
key in addressing the problem of conditional program generation.

6.7 GENERALIZATION

To evaluate how well our model generalizes to unseen data, we gather a subset of the testing data
whose data points, consisting of label-sketch pairs (X,Y), never occurred in the training data. We
then evaluate the same metrics in Figure 6(a)-(e), but due to space reasons we focus on the 50%
observability column. Figure 6(f) shows the results of this evaluation on the subset of 5126 (out of
10000) unseen test data points. The metrics exhibit a similar trend, showing that the models based
on sketch learning are able to generalize much better than the baseline models, and that the GED-Sk
model performs the best.

7 RELATED WORK

Unconditional, corpus-driven generation of programs has been studied before (Maddison & Tarlow,
2014; Allamanis & Sutton, 2014; Bielik et al., 2016), as has the generation of code snippets con-
ditioned on a context into which the snippet is merged (Nguyen et al., 2013; Raychev et al., 2014;
Nguyen & Nguyen, 2015). These prior efforts often use models like n-grams (Nguyen et al., 2013)
and recurrent neural networks (Raychev et al., 2014) that are primarily suited to the generation of
straight-line programs; almost universally, they cannot guarantee semantic properties of generated
programs. Among prominent exceptions, Maddison & Tarlow (2014) use log-bilinear tree-traversal
models, a class of probabilistic pushdown automata, for program generation. Bielik et al. (2016)
study a generalization of probabilistic grammars known as probabilistic higher-order grammars.
Like our work, these papers address the generation of programs that satisfy rich constraints such
as the type-safe use of names. In principle, one could replace our decoder and the combinatorial
concretizer, which together form an unconditional program generator, with one of these models.
However, given our experiments, doing so is unlikely to lead to good performance in the end-to-end
problem of conditional program generation.

There is a line of existing work considering the generation of programs from text (Yin & Neubig,
2017; Ling et al., 2016; Rabinovich et al., 2017). These papers use decoders similar to the one used
in BAYOU, and since they are solving the text-to-code problem, they utilize attention mechanisms not
found in BAYOU. Those attention mechanisms could be particularly useful were BAYOU extended
to handle natural language evidence. The fundamental difference between these works and BAYOU,
however, is the level of abstraction at which learning takes place. These papers attempt to translate
text directly into code, whereas BAYOU uses neural methods to produce higher-level sketches that
are translated into program code using symbolic methods. This two-step code generation process
is central to BAYOU. It ensures key semantic properties of the generated code (such as type safety)
and by abstracting away from the learner many lower-level details, it may make learning easier. We
have given experimental evidence that this approach can give better results than translating directly
into code.

Kusner et al. (2017) propose a variational autoencoder for context-free grammars. As an auto-
encoder, this model is generative, but it is not a conditional model such as ours. In their application
of synthesizing molecular structures, given a particular molecular structure, their model can be used
to search the latent space for similar valid structures. In our setting, however, we are not given a
sketch but only a label for the sketch, and our task is learn a conditional model that can predict a
whole sketch given a label.

Conditional program generation is closely related to program synthesis (Gulwani et al., 2017), the
problem of producing programs that satisfy a given semantic specification. The programming lan-
guage community has studied this problem thoroughly using the tools of combinatorial search and
symbolic reasoning (Alur et al., 2013; Solar-Lezama et al., 2006; Gulwani, 2011; Feser et al.,
2015). A common tactic in this literature is to put syntactic limitations on the space of feasible
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programs (Alur et al., 2013). This is done either by adding a human-provided sketch to a problem
instance (Solar-Lezama et al., 2006), or by restricting synthesis to a narrow DSL (Gulwani, 2011;
Polozov & Gulwani, 2015).

A recent body of work has developed neural approaches to program synthesis. Terpret (Gaunt et al.,
2016) and Neural Forth (Riedel et al., 2016) use neural learning over a set of user-provided examples
to complete a user-provided sketch. In neuro-symbolic synthesis (Parisotto et al., 2016) and Robust-
Fill (Devlin et al., 2017), a neural architecture is used to encode a set of input-output examples and
decode the resulting representation into a Flashfill program. DeepCoder (Balog et al., 2017) uses
neural techniques to speed up the synthesis of Flashfill (Gulwani et al., 2015) programs.

These efforts differ from ours in goals as well as methods. Our problem is simpler, as it is condi-
tioned on syntactic, rather than semantic, facets of programs. This allows us to generate programs in
a complex programming language over a large number of data types and API methods, without need-
ing a human-provided sketch. The key methodological difference between our work and symbolic
program synthesis lies in our use of data, which allows us to generalize from a very small amount
of specification. Unlike our approach, most neural approaches to program synthesis do not combine
learning and combinatorial techniques. The prominent exception is Deepcoder (Balog et al., 2017),
whose relationship with our work was discussed in Section 1.

8 CONCLUSION

We have given a method for generating type-safe programs in a Java-like language, given a label
containing a small amount of information about a program’s code or metadata. Our main idea is to
learn a model that can predict sketches of programs relevant to a label. The predicted sketches are
concretized into code using combinatorial techniques. We have implemented our ideas in BAYOU,
a system for the generation of API-heavy code. Our experiments indicate that the system can often
generate complex method bodies from just a few tokens, and that learning at the level of sketches is
key to performing such generation effectively.

An important distinction between our work and classical program synthesis is that our generator
is conditioned on uncertain, syntactic information about the target program, as opposed to hard
constraints on the program’s semantics. Of course, the programs that we generate are type-safe, and
therefore guaranteed to satisfy certain semantic constraints. However, these constraints are invariant
across generation tasks; in contrast, traditional program synthesis permits instance-specific semantic
constraints. Future work will seek to condition program generation on syntactic labels as well as
semantic constraints. As mentioned earlier, learning correlations between the syntax and semantics
of programs written in complex languages is difficult. However, the approach of first generating and
then concretizing a sketch could reduce this difficulty: sketches could be generated using a limited
amount of semantic information, and the concretizer could use logic-based techniques (Alur et al.,
2013; Gulwani et al., 2017) to ensure that the programs synthesized from these sketches match the
semantic constraints exactly. A key challenge here would be to calibrate the amount of semantic
information on which sketch generation is conditioned.
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String s;
BufferedReader br;
FileReader fr;
try {
fr = new FileReader($String);
br = new BufferedReader(fr);
while ((s = br.readLine()) != null) {}
br.close();
} catch (FileNotFoundException _e) {
_e.printStackTrace();

} catch (IOException _e) {
_e.printStackTrace();

}

String s;
BufferedReader br;
FileReader fr;
try {
fr = new FileReader($File);
br = new BufferedReader(fr);
while ((s = br.readLine()) != null){}
br.close();
} catch (FileNotFoundException _e){
} catch (IOException _e){
}

(a) (b)
Figure 7: Programs generated in a typical run of BAYOU, given the API method name readLine
and the type FileReader.

A THE AML LANGUAGE

Prog ::= skip | Prog1;Prog2 | call Call |
let x = Call |
if Exp then Prog1 else Prog2 |
while Exp do Prog1 | try Prog1 Catch

Exp ::= Sexp | Call | let x = Call : Exp1
Sexp ::= c | x
Call ::= Sexp0.a(Sexp1, . . . , Sexpk)

Catch ::= catch(x1) Prog1 . . . catch(xk) Progk

Figure 8: Grammar for AML

AML is a core language that is designed to
capture the essence of API usage in Java-like
languages. Now we present this language.

AML uses a finite set of API data types. A
type is identified with a finite set of API
method names (including constructors); the
type for which this set is empty is said to be
void. Each method name a is associated with
a type signature (τ1, . . . , τk) → τ0, where
τ1, . . . , τk are the method’s input types and
τ0 is its return type. A method for which τ0
is void is interpreted to not return a value.

Finally, we assume predefined universes of constants and variable names.

The grammar for AML is as in Figure 8. Here, x, x1, . . . are variable names, c is a constant, and a
is a method name. The syntax for programs Prog includes method calls, loops, branches, statement
sequencing, and exception handling. We use variables to feed the output of one method into another,
and the keyword let to store the return value of a call in a fresh variable. Exp stands for (object-
valued) expressions, which include constants, variables, method calls, and let-expressions such as
“let x = Call : Exp”, which stores the return value of a call in a fresh variable x, then uses this
binding to evaluate the expression Exp. (Arithmetic and relational operators are assumed to be
encompassed by API methods.)

The operational semantics and type system for AML are standard, and consequently, we do not
describe these in detail.

B ABSTRACTING AML PROGRAMS INTO SKETCHES

We define the abstraction function α for the AML language in Figure 9.

C NEURAL NETWORK DETAILS

In this section we present the details of the neural networks used by BAYOU.

C.1 THE ENCODER

The task of the neural encoder is to implement the encoding function f for labels, which accepts an
element from a label, say XCalls,i as input and maps it into a vector in d-dimensional space, where d
is the dimensionality of the latent space of Z. To achieve this, we first convert each element XCalls,i

into its one-hot vector representation, denoted X′Calls,i. Then, let h be the number of neural hidden
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α(skip) = skip
α(call Sexp0.a(Sexp1, . . . , Sexpk)) = call τ0.a(τ1, . . . , τk) where τi is the type of Sexpi

α(Prog1;Prog2) = α(Prog1);α(Prog2)

α(let x = Sexp0.a(Sexp1, . . . , Sexpk)) = call τ0.a(τ1, . . . , τk) where τi is the type of Sexpi
α(if Exp then Prog1 else Prog2) = if α(Exp) then α(Prog1) else α(Prog2)

α(while Exp do Prog) = while α(Cond) do α(Prog)
α(try Prog catch(x1) Prog1 . . . catch(xk) Progk) = try α(Prog)

catch(τ1) α(Prog1) . . . catch(τk) α(Progk)
where τi is the type of xi

α(Exp) = [ ] if Exp is a constant or variable name
α(Sexp0.a(Sexp1, . . . , Sexpk)) = [τ0.a(τ1, . . . , τk)] where τi is the type of Sexpi

α(let x = Call : Exp1) = append(α(Call), α(Exp1))

Figure 9: The abstraction function α.

child
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FNFExceptionCatch
child
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printStackTrace()
sibling

FR.new(String)
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BR.new(FR)
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sibling

BR.close()

child
BR.readLine()

skip

child

IOExceptionCatch child
printStackTrace()

Figure 10: Tree representation of the sketch in Figure 7(a)

units in the encoder for API calls, and let Wh ∈ R|Calls|×h, bh ∈ Rh, Wd ∈ Rh×d, bd ∈ Rd be
real-valued weight and bias matrices of the neural network. The encoding function f(XCalls,i) can
be defined as follows:

f(XCalls,i) = tanh((Wh . X
′
Calls,i + bh) .Wd + bd)

where tanh is a non-linearity defined as tanh(x) = 1−e−2x

1+e−2x . This would map any given API call
into a d-dimensional real-valued vector. The values of entries in the matrices Wh, bh, Wd and bd
will be learned during training. The encoder for types can be defined analogously, with its own set
of matrices and hidden state.

C.2 THE DECODER

The task of the neural decoder is to implement the sampler for Y ∼ P (Y |Z). This is implemented
recursively via repeated samples of production rules Yi in the grammar of sketches, drawn as Yi ∼
P (Yi|Yi−1,Z), where Yi−1 = Y1, . . . ,Yi−1. The generation of each Yi requires the generation of a
new “path” from a series of previous “paths”, where each path corresponds to a series of production
rules fired in the grammar.

As a sketch is tree-structured, we use a top-down tree-structured recurrent neural network sim-
ilar to Zhang et al. (2016), which we elaborate in this section. First, similar to the notion of
a “dependency path” in Zhang et al. (2016), we define a production path as a sequence of pairs
〈(v1, e1), (v2, e2), . . . , (vk, ek)〉 where vi is a node in the sketch (i.e., a term in the grammar) and ei
is the type of edge that connects vi with vi+1. Our representation has two types of edges: sibling
and child. A sibling edge connects two nodes at the same level of the tree and under the same parent
node (i.e., two terms in the RHS of the same rule). A child edge connects a node with another that is
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h0 = Wl.Z+ bl yi =
{ softmax(Wc

y . hi + bcy) if ei = child
softmax(Ws

y . hi + bsy) if ei = sibling

(2)

hci = Wc
h . hi−1 + bch +Wc

v . v
′
i + bcv where

hsi = Ws
h . hi−1 + bsh +Ws

v . v
′
i + bsv tanh(x) =

1− e−2x

1 + e−2x
and

hi =
{ tanh(hci ) if ei = child

tanh(hsi ) if ei = sibling
softmax(x)j =

exj∑K
k=1 e

xk

for j ∈ 1 . . .K

Figure 11: Computing the hidden state and output of the decoder

one level deeper in the tree (i.e., the LHS with a term in the RHS of a rule). We consider a sequence
of API calls connected by sequential composition as siblings. The root of the entire tree is a special
node named root, and so the first pair in all production paths is (root, child). The last edge in a
production path is irrelevant (·) as it does not connect the node to any subsequent nodes.

As an example, consider the sketch in Figure 7(a), whose representation as a tree for the decoder is
shown in Figure 10. For brevity, we use s and c for sibling and child edges respectively, abbreviate
some classnames with uppercase letters in their name, and omit the first pair (root, c) that occurs in
all paths. There are four production paths in the tree of this sketch:

1. (try, c), (FR.new(String), s), (BR.new(FR), s), (while, c), (BR.readLine(), c), (skip, ·)
2. (try, c), (FR.new(String), s), (BR.new(FR), s), (while, s), (BR.close(), ·)
3. (try, s), (catch, c), (FNFException, c), (T.printStackTrace(), ·)
4. (try, s), (catch, s), (catch, c), (IOException, c), (T.printStackTrace(), ·)

Now, given a Z and a sequence of pairs Yi = 〈(v1, e1), . . . , (vi, ei)〉 along a production path, the
next node in the path is assumed to be dependent solely on Z and Yi. Therefore, a single inference
step of the decoder computes the probability P (vi+1|Yi,Z). To do this, the decoder uses two
RNNs, one for each type of edge c and s, that act on the production pairs in Yi. First, all nodes vi
are converted into their one-hot vector encoding, denoted v′i.

Let h be the number of hidden units in the decoder, and |G| be the size of the decoder’s output
vocabulary, i.e., the total number of terminals and non-terminals in the grammar of sketches. Let
We

h ∈ Rh×h and beh ∈ Rd be the decoder’s hidden state weight and bias matrices, We
v ∈ R|G|×h

and bev ∈ Rh be the input weight and bias matrices, and We
y ∈ Rh×|G| and bey ∈ R|G| be the output

weight and bias matrices, where e is the type of edge: either c (child) or s (sibling). We also use
“lifting” matrices Wl ∈ Rd×h and bl ∈ Rh, to lift the d-dimensional vector Z onto the (typically)
higher-dimensional hidden state space h of the decoder.

Let hi and yi be the hidden state and output of the network at time point i. We compute these
quantities as given in Figure 11, where tanh is a non-linear activation function that converts any
given value to a value between -1 and 1, and softmax converts a given K-sized vector of arbitrary
values to anotherK-sized vector of values in the range [0, 1] that sum to 1—essentially a probability
distribution.

The type of edge at time i decides which RNN to choose to update the (shared) hidden state hi
and the output yi. Training consists of learning values for the entries in all the W and b matrices.
During training, v′i, ei and the target output are known from the data point, and so we optimize a
standard cross-entropy loss function (over all i) between the output yi and the target output. During
inference, P (vi+1|Yi,Z) is simply the probability distribution yi, the result of the softmax.

A sketch is obtained by starting with the root node pair (v1, e1) = (root, child), recursively applying
Equation 2 to get the output distribution yi, sampling a value for vi+1 from yi, and growing the tree
by adding the sampled node to it. The edge ei+1 is provided as c or s depending on the vi+1 that was
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Figure 12: 2-dimensional projection of latent space of the GSNN-Sk model

sampled. If only one type of edge is feasible (for instance, if the node is a terminal in the grammar,
only a sibling edge is possible with the next node), then only that edge is provided. If both edges
are feasible, then both possibilities are recursively explored, growing the tree in both directions.

Remarks. In our implementation, we generate trees in a depth-first fashion, by exploring a child
edge before a sibling edge if both are possible. If a node has two children, a neural encoding of the
nodes that were generated on the left is carried onto the right sub-tree so that the generation of this
tree can leverage additional information about its previously generated sibling. We refer the reader
to Section 2.4 of Zhang et al. (2016) for more details.

D ADDITIONAL EVALUATION

In this section, we provide results of additional experimental evaluation.

D.1 CLUSTERING

Similar to the visualization of the 2-dimensional latent space in Figure 5, we also plotted the latent
space of the GSNN-Sk model trained on sketches. Figure 12 shows this plot. We observed that the
latent space is clustered, relatively, more densely than that of our model (keep in mind that the plot
colors are different when comparing them).

D.2 QUALITATIVE EVALUATION

To give a sense of the quality of the end-to-end generation, we present and discuss a few usage
scenarios for our system, BAYOU. In each scenario, we started with a set of API calls, types or
keywords as labels that indicate what we (as the user) would like the generated code to perform. We
then pick a single program in the top-5 results returned by BAYOU and discuss it. Figure 13 shows
three such example usage scenarios.

In the first scenario, we would like the system to generate a program to write something to a file by
calling write using the type FileWriter. With this label, we invoked BAYOU and it returned with a
program that actually accomplishes the task. Note that even though we only specified FileWriter,
the program uses it to feed a BufferedWriter to write to a file. This is an interesting pattern
learned from data, that file reads and writes in Java often take place in a buffered manner. Also
note that the program correctly flushes the buffer before closing it, even though none of this was
explicitly specified in the input.

In the second scenario, we would like the generated program to set the title and message of
an Android dialog. This time we provide no API calls or types but only keywords. With
this, BAYOU generated a program that first builds an Android dialog box using the helper class
AlertDialog.Builder, and does set its title and message. In addition, the program also adds a
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Input to BAYOU Generated program ranked among the top-5

XTypes = {FileWriter}
XCalls = {write}
XKeys = ∅

BufferedWriter bw;
FileWriter fw;
try {

fw = new FileWriter($String, $boolean);
bw = new BufferedWriter(fw);
bw.write($String);
bw.newLine();
bw.flush();
bw.close();

} catch (IOException _e) {
}

XTypes = ∅
XCalls = ∅
XKeys = {android, dialog, set,

title, message}

Builder builder2;
Builder builder1;
AlertDialog alertDialog;
Builder builder4;
Builder builder3;
builder1 = new Builder($Context);
builder2 = builder1.setTitle($String);
builder3 = builder2.setMessage($String);
builder4 = builder3.setNeutralButton($String,

$OnClickListener);
alertDialog = builder4.show();

XTypes = ∅
XCalls = {startPreview}
XKeys = ∅

Parameters parameters;
parameters = $Camera.getParameters();
parameters.setPreviewSize($int, $int);
parameters.setRecordingHint($boolean);
$Camera.setParameters(parameters);
$Camera.startPreview();

Figure 13: Qualitative usage scenarios of BAYOU.

button to the dialog box – another interesting pattern learned from data that dialog boxes in Android
often have a button, typically to close the dialog. Finally it shows the dialog with these items.

In the final scenario, we would like BAYOU to generate code to start preview mode in the phone’s
camera. We provided simply the API call startPreview as input. With this, the system was
automatically able to recognize that we are interested in the camera API, and generate a program
that accomplishes the task. Note that the program first obtains the camera parameters, and sets the
preview display size (the int arguments are the width and height) before starting the preview. We
confirmed from the Android Camera API documentation that this is recommended practice, and the
model appears to have learned this automatically from data.
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